Easy To Use Patents Search & Patent Lawyer Directory

At Patents you can conduct a Patent Search, File a Patent Application, find a Patent Attorney, or search available technology through our Patent Exchange. Patents are available using simple keyword or date criteria. If you are looking to hire a patent attorney, you've come to the right place. Protect your idea and hire a patent lawyer.


Search All Patents:



  This Patent May Be For Sale or Lease. Contact Us

  Is This Your Patent? Claim This Patent Now.



Register or Login To Download This Patent As A PDF




United States Patent 10,064,314
Shelnutt ,   et al. August 28, 2018

Runtime service of liquid cooled servers operating under positive hydraulic pressure without impacting component performance

Abstract

A method provides a service mode within a direct-injection liquid-cooled (DL) Rack Information Handling System (RIHS) having at least one liquid-cooled (LC) node. The method includes: in response to detecting selection of the service mode trigger, transmitting a first control signal to cause a proportional valve to move to an open position for enhanced cooling of the node; monitoring a temperature being sensed in the node; and in response to the temperature reaching a pre-established service mode temperature: forwarding a second control signal, to cause the proportional valve to move to a fully closed position; and generating a notification of an entry of the RIHS into a service mode during which an LC node can be re-engaged with the supply and return port, without affecting an operational on-state of the RIHS and without incurring significant hydraulic pressure when re-engaging the LC node with the liquid cooling system.


Inventors: Shelnutt; Austin Michael (Leander, TX), Vancil; Paul W. (Austin, TX), Stuewe; John R. (Austn, TX), Bailey; Edmond I. (Cedar Park, TX)
Applicant:
Name City State Country Type

DELL PRODUCTS, L.P.

Round Rock

TX

US
Assignee: Dell Products, L.P. (Round Rock, TX)
Family ID: 59067294
Appl. No.: 15/017,492
Filed: February 5, 2016


Prior Publication Data

Document IdentifierPublication Date
US 20170181327 A1Jun 22, 2017

Related U.S. Patent Documents

Application NumberFiling DatePatent NumberIssue Date
62272061Dec 28, 2015
62270584Dec 22, 2015
62270563Dec 21, 2015

Current U.S. Class: 1/1
Current CPC Class: H05K 7/20836 (20130101); H05K 7/20781 (20130101); G05B 15/02 (20130101)
Current International Class: G05D 7/00 (20060101); G05B 15/02 (20060101); H05K 7/20 (20060101)
Field of Search: ;700/282

References Cited [Referenced By]

U.S. Patent Documents
5758607 June 1998 Brendel et al.
6462949 October 2002 Parish et al.
6574104 June 2003 Patel et al.
6775137 August 2004 Chu et al.
7013955 March 2006 Phillips et al.
7106590 September 2006 Chu
7403384 July 2008 Pflueger
7657347 February 2010 Campbell et al.
7907406 March 2011 Campbell et al.
7944694 May 2011 Campbell et al.
7963119 June 2011 Campbell et al.
7990709 August 2011 Campbell et al.
8245764 August 2012 Eriksen
8387249 March 2013 Campbell
8405975 March 2013 Helberg et al.
8422218 April 2013 Fried
8516284 August 2013 Chan
8564951 October 2013 Watanabe et al.
8583290 November 2013 Campbell et al.
8749968 June 2014 Branton
8797740 August 2014 Campbell
8824143 September 2014 Campbell
8842433 September 2014 Koblenz et al.
8934244 January 2015 Shelnutt et al.
8978401 March 2015 Chainer
9045995 June 2015 Graybill
9069532 June 2015 Campbell
9250636 February 2016 Chainer et al.
9386727 July 2016 Barringer et al.
9451726 September 2016 Regimbal et al.
9496200 November 2016 Lyon
2004/0190247 September 2004 Chu et al.
2004/0221604 November 2004 Ota
2005/0248922 November 2005 Chu et al.
2008/0067805 March 2008 Kamada et al.
2008/0232064 September 2008 Sato et al.
2008/0276639 November 2008 Stoddard
2009/0086428 April 2009 Campbell et al.
2009/0086432 April 2009 Campbell et al.
2009/0126909 May 2009 Ellsworth, Jr.
2009/0154096 June 2009 Iyengar et al.
2009/0165868 July 2009 Pearson
2009/0259343 October 2009 Rasmussen et al.
2009/0262501 October 2009 Claassen et al.
2010/0032142 February 2010 Copeland et al.
2010/0103614 April 2010 Campbell et al.
2010/0103618 April 2010 Campbell et al.
2011/0060470 March 2011 Campbell et al.
2011/0075373 March 2011 Campbell
2011/0083621 April 2011 Ogunleye et al.
2011/0112694 May 2011 Bash et al.
2011/0313576 December 2011 Nicewonger
2012/0180979 July 2012 Harrington
2013/0098085 April 2013 Judge et al.
2013/0106265 May 2013 Shelnutt et al.
2013/0112378 May 2013 Shelnutt et al.
2013/0128455 May 2013 Koblenz et al.
2013/0229769 September 2013 Yang
2013/0264046 October 2013 Chainer et al.
2013/0312839 November 2013 Shelnutt et al.
2013/0312846 November 2013 Eriksen et al.
2013/0312854 November 2013 Eriksen et al.
2014/0202678 July 2014 Goth et al.
2014/0203550 July 2014 Utsch
2014/0218859 August 2014 Shelnutt et al.
2014/0321056 October 2014 Yoshikawa et al.
2014/0328562 November 2014 Pitwon
2015/0109735 April 2015 Campbell et al.
2015/0233597 August 2015 Dempster et al.
2015/0334878 November 2015 Long et al.
2015/0371508 December 2015 Devale et al.
2016/0066480 March 2016 Eckberg et al.
2016/0242319 August 2016 Edwards et al.
2016/0242326 August 2016 Edwards et al.
2016/0366792 December 2016 Smith et al.
2017/0049009 February 2017 Steinke et al.
2017/0181322 June 2017 Shelnutt et al.
2017/0181323 June 2017 Shelnutt et al.

Other References

Dravininkas, Adam B., Restriction Requirement, U.S. Appl. No. 15/049,074, The United States Patent and Trademark Office, dated Jul. 13, 2017. cited by applicant .
Ahmad, Yahya A., Non-Final Office Action, U.S. Appl. No. 15/016,226, The United States Patent and Trademark Office, dated Apr. 7, 2017. cited by applicant .
Brown, Robert D., Notice of Allowance, U.S. Appl. No. 15/017,582, The United States Patent and Trademark Office, dated Jun. 13, 2017. cited by applicant .
Dravininkas, Adam B., Non-Final Office Action, U.S. Appl. No. 15/016,249, The United States Patent and Trademark Office, dated Jun. 20, 2017. cited by applicant .
Dravininkas, Adam, Ex Parte Quayle Action, U.S. Appl. No. 15/016,249, The United States Patent and Trademark Office, dated Oct. 24, 2017. cited by applicant .
Dravininkas, Adam, Non-Final Office Action, U.S. Appl. No. 15/049,074, The United States Patent and Trademark Office, dated Nov. 14, 2017. cited by applicant .
Suryawanshi, Suresh, Non-Final Office Action, U.S. Appl. No. 15/017,604, The United States Patent and Trademark Office, dated Dec. 22, 2017. cited by applicant .
Suryawanshi, Suresh, Non-Final Office Action, U.S. Appl. No. 15/017,451, The United States Patent and Trademark Office, dated Dec. 14, 2017. cited by applicant .
Brown, Michael J., Non-Final Office Action, U.S. Appl. No. 15/016,234, The United States Patent and Trademark Office, dated Mar. 30, 2018. cited by applicant .
Dravininkas, Adam B., Notice of Allowance, U.S. Appl. No. 15/016,249, The United States Patent and Trademark Office, dated Feb. 26, 2018. cited by applicant.

Primary Examiner: Suryawanshi; Suresh
Attorney, Agent or Firm: Isidore PLLC

Parent Case Text



PRIORITY

The present invention claims priority from each of the following provisional patent applications, with relevant content of each listed provisional application incorporated herein by reference: Provisional Application Ser. No.: 62/270,563, with filing date Dec. 21, 2015; Provisional Application Ser. No. 62/270,584, with filing date Dec. 22, 2015; and Provisional Application Ser. No. 62/272,061, with filing date Dec. 28, 2015.
Claims



What is claimed is:

1. A Rack Information Handling System (RIHS) comprising: a rack having at least one node-receiving bay and configured to support liquid cooling of inserted functional nodes, including server nodes with heat generating components; at least one liquid cooled (LC) node received in a respective node-receiving bay of the rack and which includes at least one component designed for operation within a preset range of temperatures, the at least one LC node configured with a system of conduits to receive direct injection of cooling liquid, the system of conduits including a cooling liquid intake connector and a cooling liquid return connector; at least one temperature sensor positioned to detect temperature within the at least one LC node; a liquid cooling subsystem having (i) a cooling liquid supply conduit with a supply port that receives and mates with the cooling liquid intake connector, (ii) a return conduit with a return port that receives and mates with the cooling liquid return connector, and (iii) a proportional valve that can be controlled to be in one of a plurality of open positions, from a fully closed position to a fully open position, wherein the liquid cooling subsystem provides a flow of cooling liquid under hydraulic pressure through the proportional valve, into and through the system of conduits, to enable cooling liquid absorption of heat from within the nodes to regulate the temperature of the nodes to be within the preset range of temperatures; and a service mode control subsystem comprising: at least one pressure release valve in line with the cooling liquid supply conduit, the pressure release valve configurable in one of (i) a closed position to maintain hydraulic pressure within the cooling liquid supply conduit and (ii) an open position to release enough fluid from the cooling liquid supply conduits to reduce an amount of liquid pressure within the cooling liquid supply conduit; and a service mode trigger that places the RIHS into a service mode during which the LC nodes can operate without receiving injection of additional cooling liquid from respective cooling liquid supply conduits; and a controller that is communicatively coupled to the service mode trigger, the proportional valve, and the at least one temperature sensor, and a notification mechanism, wherein the controller: detects selection of the service mode trigger; in response to detecting selection of the service mode trigger, transmit a first control signal to cause the proportional valve to move to an open position that provides enhanced cooling of the at least one node due to increase rate of cooling liquid flow through the system of conduits; monitor a temperature being sensed by the at least one temperature sensor; and in response to the temperature reaching a pre-established service mode temperature: forward a second control signal, to cause the proportional valve to move to a fully closed position; and generate a notification of an entry of the RIHS into a service mode during which the at least one LC node can be one of (1) disengaged from the supply port and return port and (2) re-engaged with the supply port and return port, without affecting an operational on-state of the RIHS, and without incurring significant hydraulic pressure when re-engaging the LC node with the liquid cooling system.

2. The RIHS of claim 1, further comprising a timer and a notification mechanism associated with the timer, and wherein the controller further: sets the timer to track an elapsed time since the at least one LC node is placed in the service mode; signals, via the notification mechanism, when an available time for completion of the service mode is about to expire; and in response to expiration of the timer, automatically forwards a third control signal to the proportional valve to open and resume a supply of cooling liquid to the system of conduits.

3. The RIHS of claim 2, wherein the notification mechanism comprises a built-in delay period from a time at which the service mode is initially triggered to when the service mode becomes active and the LC node can be removed from and/or inserted into the rack to sealably mate with the cooling liquid supply conduit and return conduit.

4. The RIHS of claim 2, wherein the notification mechanism is a display, and the controller signals the expiration of the available time by displaying a time remaining status on the display of the RIHS.

5. The RIHS of claim 2, wherein the notification mechanism is a set of lights having at least two different visible illumination representing when the service mode is active and when the service mode is expiring or expired, wherein the at least one LC node should not be removed from the RIHS or inserted into the RIHS when the service mode is expired.

6. The RIHS of claim 5, wherein the at least one pressure release valve includes a purge fitting end for receiving an end of a purging tube that includes a bore and which funnels pressurized cooling liquid from inside the conduits away from the least one LC node, wherein a portion of the pressurized cooling liquid is pushed out of the cooling liquid supply conduit into the purging tube to reduce a build-up of hydraulic pressure and to facilitate re-insertion of the at least one LC node into the rack.

7. The RIHS of claim 1, wherein the controller moderates a flow rate of cooling liquid received by the at least one node during normal operation to be less than a full rate supported when the proportional valve is moved to a full open position and the controller increases the flow rate to a higher rate to cause enhanced cooling for a pre-set period of time prior to the at least one node entering into the service mode.

8. The RIHS of claim 1, wherein the cooling liquid supply conduit and return conduit are a part of a liquid rail formed by more than one node-to-node, Modular Liquid Distribution (MLD) conduit between multiple LC nodes provisioned in the rack, the MLD conduit comprising first and second terminal fluid connections attached on opposite ends of a central conduit to seal to and enable fluid transfer between a port of a selected LC node and a port of another adjacent node.

9. The RIHS of claim 8, further comprising a plurality of block liquid manifolds mountable at a back of a rack, where each block liquid manifold has two supply ports and two rail return ports on an outside facing side of the block liquid manifold that respectively communicate with at least one manifold supply port and a manifold return port on an inside facing side of the block liquid manifold, wherein the more than one LC nodes are insertably placed in receiving bays of the rack corresponding to locations of the mounted block liquid manifolds, with block supply ports and block return ports of the LC nodes and an inside facing portion of the corresponding block liquid manifold aligned with, and sealing, for fluid transfer, the block supply and return ports of a selected one or more LC nodes to the aligned manifold supply and return ports of the inside facing portion of the block liquid manifold, each block liquid manifold comprising a supply bypass tube that communicates a bypass supply flow between the two rail supply ports with a node-selected portion of the bypass supply flow diverted from the manifold supply port to the block supply port, each block liquid manifold comprising a return bypass tube that communicates a bypass return flow between the two rail return ports with the node-selected portion of the bypass supply flow diverted after routing through the respective LC node from the block return port to the manifold supply port.

10. The RIHS of claim 1, further comprising a rack filtration unit (RFU) within which the components of the node servicing system are provided, the rack filtration unit comprising: a node enclosure insertable into the rack; at least one supply port and at least one return port positioned on an inserted side of the node chassis to seal respectively to a facility supply conduit and a rail supply conduit of a liquid rail for supply liquid transfer; first and second filtration subunits connected in parallel fluid communication within the node chassis, wherein each filtration subunit is individually dis-engageable from the node chassis for maintenance or replacement, while the other filtration subunit remains engaged in the node chassis and continues liquid filtration; and a liquid coolant diversion network that diverts liquid flow to the other filtration unit for continuous filtration of contaminants and particulates from the cooling liquid received from the facility supply conduit when one filtration unit is removed.

11. The RIHS of claim 10, wherein: the purge valve is a small diameter, quick disconnect, purge solenoid valve that receives a purge tube fitting; the service mode trigger comprises at least one of a first push button linked to a LIMB at a front face of the RFU and a rear face of the RFU; the notification mechanism comprises a series of status light emitting diodes (LEDs) located proximate to each service mode trigger; and the controller initiates the service mode only following receipt of a continuous activation of the service mode trigger for more than a pre-set threshold amount of time to reduce an occurrence of an accidental triggering of the service node.

12. The RIHS of claim 1, wherein the controller executes a service mode utility that configures the controller to: track a number of service mode activations that occurs within a monitored time frame; and in response to the number of service mode activations being above a maximum threshold for the monitored time interval, suspend an activation of a last service mode request until sufficient time has passed to re-enable activation of the service mode.

13. The RIHS of claim 1, wherein the controller executes a processor sub-cooling utility that configures the controller to: increase a flow of cooling liquid to specific high value components to sub-cool the high value components and enable a longer service window.

14. The RIHS of claim 1, wherein the controller: continually monitors temperature and other operating conditions of the LC nodes during the service mode; and automatically shortens a time available for a service mode in response to the temperature or other operating conditions indicating that an internal operating condition of the at least one LC node is approaching one or more pre-set limits that falls outside of an ideal operating condition due to an increase in node temperature.

15. A method for providing a service mode within a direct-injection liquid-cooled (DL) Rack Information Handling System (RIHS) having at least one liquid-cooled (LC) node, the method comprising: a controller detecting selection of a service mode trigger; in response to detecting selection of the service mode trigger, the controller transmitting a first control signal to cause the proportional valve to move to an open position that causes enhanced cooling of the at least one node due to increase rate of cooling liquid flow through the system of conduits; monitoring a temperature being sensed by the at least one temperature sensor; and in response to the temperature reaching a pre-established service mode temperature: forwarding a second control signal, to cause the proportional valve to move to a fully closed position; and generating a notification of an entry of the RIHS into a service mode during which the at least one LC node can be one of (1) disengaged from the supply port and return port and (2) re-engaged with the supply port and return port, without affecting an operational on-state of the RIHS and without incurring significant hydraulic pressure when re-engaging the LC node into the liquid cooling system.

16. The method of claim 15, wherein the RIHS further comprises a timer and a notification mechanism associated with the timer, and wherein the method further comprises: setting the timer to track an elapsed time since the at least one LC node is placed in the service mode; signaling, via the notification mechanism, when an available time for completion of the service mode is about to expire; and in response to expiration of the timer, automatically forwarding a third control signal to the proportional valve to open and resume a supply of cooling liquid to the system of conduits.

17. The method of claim 16, wherein: the notification mechanism comprises a built-in delay period from a time at which the service mode is initially triggered to when the service mode become active and the LC node can be removed from and/or inserted into the rack to sealably mate with the cooling liquid supply conduit and return conduit; the notification mechanism is a display, and the controller signals the expiration of the available time by displaying a time remaining status on the display of the RIHS.

18. The method of claim 16, wherein the notification mechanism is a set of lights having at least two different visible illumination representing when the service mode is active and when the service mode is expiring or expired, wherein the at least one LC node should not be removed from the RIHS or inserted into the RIHS when the service mode is expired.

19. The method of claim 15, wherein: the purge valve is a small diameter, quick disconnect, purge solenoid valve that receives a purge tube fitting; the service mode trigger comprises at least one of a first push button linked to a Liquid Instrumentation Management Board (LIMB) at a front face of a rack filtration unit (RFU) and a rear face of the RFU; the notification mechanism comprises a series of status light emitting diodes (LEDs) located proximate to each service mode trigger; and the controller initiates the service mode only following receipt of a continuous activation of the service mode trigger for more than a pre-set threshold amount of time to reduce an occurrence of an accidental triggering of the service node.

20. The method of claim 15, further comprising: tracking a number of service mode activations that occurs within a monitored time frame; and in response to the number of service mode activations being above a maximum threshold for the monitored time interval, suspending an activation of a last service mode request until sufficient time has passed to re-enable activation of the service mode.

21. The method of claim 15, further comprising: increasing a flow of cooling liquid to specific high value components to sub-cool the high value components and enable a longer service window; continually monitoring a temperature and other operating conditions of the LC nodes during the service mode; and automatically shortening a time available for a service mode in response to the temperature or other operating conditions indicating that an internal operating condition of the at least one LC node is approaching one or more pre-set limits that falls outside of an ideal operating condition due to an increase in node temperature.
Description



BACKGROUND

1. Technical Field

The present disclosure generally relates to information handling systems (IHS), and more particular to a rack-configured IHS, having a liquid cooling subsystem and liquid-cooled nodes. Still more particularly, the disclosure is related to servicing of a liquid cooling system having modular rack liquid distribution network of conduits.

2. Description of the Related Art

As the value and use of information continue to increase, individuals and businesses seek additional ways to process and store information. One option available to users is Information Handling Systems (IHSs). An IHS generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes, thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, IHSs may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in IHSs allow for IHSs to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, IHSs may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.

For implementations requiring a large amount of processing capability, a rack-configured (or rack) IHS (RIHS) can be provided. The RIHS includes a physical rack, within which is inserted a plurality of functional nodes, such as server (or processing) nodes/modules, storage nodes, and power supply nodes. These nodes, and particularly the server nodes, typically include processors and other functional components that dissipate heat when operating and/or when connected to a power supply. Efficient removal of the heat being generated by these components is required to maintain the operational integrity of the RIHS. Traditional heat removal systems include use of air movers, such as fans, to convectionally transfer the heat from inside of the RIHS to outside the RIHS. More recently, some RIHS have been designed to enable submersion of the server modules and/or the heat generating components in a tank of cooling liquid to effect cooling via absorption of the heat by the surrounding immersion liquid.

The amount of processing capacity and storage capacity per node and/or per rack continues to increase, providing greater heat dissipation per node and requiring more directed cooling solutions. Thus, there is a continuing need for further innovations to provide directed cooling for the individual heat generating components, both at the individual node level, as well as at the larger rack level. When designing the cooling subsystem, consideration must also be given to the different form factors of IT nodes and rack heights of the RIHS, and the ability to effectively control cooling discretely (at device or node level) and generally across the overall RIHS.

As liquid cooling improves in efficiencies and performance, data center solutions continue to focus on implementing liquid cooling at the rack level. Recently, localized liquid solutions (CPU/GPU cold plates) have been successful in removing most of the heat from these components within a server and into the facility cooling loop through direct fluid-to-fluid heat exchangers (server cooling loop to facility cooling loop) within the rack, but this method does not provide cooling to auxiliary components (such as storage devices (HDDs, memory), or critical secondary ICT equipment, such as top of the rack switch, network switches, battery backup units, or Power Supply Units (PSUs). Servicing of liquid cooled system also creates an additional problem.

BRIEF SUMMARY

The illustrative embodiments of the present disclosure provide a Direct-Interface Liquid-Cooled (DL) Rack Information Handling System (RIHS) and a method for providing a service mode within the DL RIHS having at least one liquid-cooled (LC) node. The DL RIHS includes liquid cooled (LC) nodes containing heat-generating functional components. Each LC node is configured with a system of conduits to receive direct injection of cooling liquid to regulate the ambient temperature of the node. A cooling subsystem has a liquid rail formed by more than one node-to-node, Modular Liquid Distribution (MLD) conduits. A service node is provided in which a controller causes enhanced flow of cooling liquid to supercool the nodes, and a purging of some of the pressurized cooling liquid, before the nodes can be removed or inserted into the rack.

According to at least one aspect of the present disclosure, the method generally includes a controller detecting selection of a service mode trigger. Then, in response to detecting selection of the service mode trigger, the method includes the controller transmitting a first control signal to cause the proportional valve to move to an open position that causes enhanced cooling of the at least one node due to increase rate of cooling liquid flow through the system of conduits. Following, the method includes monitoring a temperature being sensed by the at least one temperature sensor, and in response to the temperature reaching a pre-established service mode temperature: forwarding a second control signal which triggers or causes the proportional valve to move to a fully closed position; and generating a notification of an entry of the RIHS into a service node. With this notification, and while the RIHS is in the service mode, the at least one LC node can be: (1) disengaged from the supply port and return port and/or (2) inserted or re-engaged with the supply port and return port, without affecting an operational on-state of the RIHS, and without incurring significant hydraulic pressure when inserting/re-engaging the LC node into the liquid cooling system.

The above presents a general summary of several aspects of the disclosure in order to provide a basic understanding of at least some aspects of the disclosure. The above summary contains simplifications, generalizations and omissions of detail and is not intended as a comprehensive description of the claimed subject matter but, rather, is intended to provide a brief overview of some of the functionality associated therewith. The summary is not intended to delineate the scope of the claims, and the summary merely presents some concepts of the disclosure in a general form as a prelude to the more detailed description that follows. Other systems, methods, functionality, features and advantages of the claimed subject matter will be or will become apparent to one with skill in the art upon examination of the following figures and detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The description of the illustrative embodiments can be read in conjunction with the accompanying figures. It will be appreciated that for simplicity and clarity of illustration, elements illustrated in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements are exaggerated relative to other elements. Embodiments incorporating teachings of the present disclosure are shown and described with respect to the figures presented herein, in which:

FIG. 1 illustrates a side perspective view of an internal layout/configuration of an example Direct-Interface Liquid-Cooled (DL) RIHS, according to one or more embodiments;

FIG. 2 illustrates a top view of an example LC node configured with a liquid cooling subsystem that includes a liquid-to-liquid manifold and cooling pipes for conductively cooling internal functional components, according to one or more embodiments;

FIG. 3 illustrates a rear perspective view of an example DL RIHS with a louvered rear door in a closed position over uncovered MLD conduits, according to one or more embodiments;

FIGS. 4 and 5 both illustrate a rear perspective view of the example DL RIHS of FIG. 3 with the louvered rear door opened to expose node-to-node interconnection of MLD conduits of different vertical sizes having appropriately sized and removable pipe covers, according to one or more embodiments;

FIG. 6 illustrates the rear perspective view of FIGS. 4-5 with the pipe covers removed to expose the MLD conduits, according to one or more embodiments;

FIG. 7 illustrates a rear perspective view of an example RIHS with MLD conduits in fluid communication with supply side conduits extending from a top of the rack, according to one or more embodiments;

FIG. 8 illustrates a detailed block diagram of a DL RIHS configured with LC nodes arranged in blocks and which are cooled in part by a liquid cooling system having a rail comprised of MLD conduits, and in part by a subsystem of air-liquid heat exchangers, according to multiple embodiments;

FIG. 9 illustrates an expanded, more detailed view of the liquid interconnection between the node level heat exchange manifold, the block liquid manifold containing the air-liquid heat exchanger, and example MLDs of the liquid rail, according to multiple embodiments;

FIG. 10 illustrates a perspective view of a portion of a DL RIHS depicting example nodes, block radiators with Air-Liquid heat exchangers, and MLD conduits, according to one or more embodiments;

FIG. 11 illustrates a rear perspective view of the example RIHS of FIG. 5 with an exploded detail view of MLD conduits, according to one or more embodiments;

FIG. 12 illustrates a rear perspective view of the example RIHS of FIG. 5 with an exploded detail view of example bottom-feed facility supply conduits and return MLD conduits, according to one or more embodiments;

FIG. 13A illustrates a top view of a rack filtration unit (RFU) of the example cooling subsystem, according to one or more embodiments;

FIG. 13B illustrates a bottom view of the RFU of the example cooling subsystem, according to one or more embodiments;

FIG. 13C illustrates a front perspective view of the RFU of FIGS. 13A-13B, according to one or more embodiments;

FIG. 13D illustrates a rear side view of the RFU of FIGS. 13A-13C,

FIG. 13E illustrates a front isometric view of an RFU rear input/output (I/O) card, according to one or more embodiments;

FIG. 13F illustrates a rear isometric view of the RFU rear I/O card of FIG. 13E, according to one or more embodiments;

FIG. 14 then provides a block diagram representation of some of the control features that enable implementation of the service mode, according to one or more embodiments

FIG. 15 illustrates a flow diagram of a method of assembling a DL RIHS with MLD conduits and an RFU, according to one or more embodiments; and

FIG. 16 is a flow diagram illustrating a method for enabling a service mode within an operational DL RIHS by enhanced cooling of the LC nodes, according to one or more embodiments.

DETAILED DESCRIPTION

The present disclosure generally provides a Direct-Injection Liquid-Cooled (DL) Rack Information Handling System (RIHS) providing liquid cooled (LC) information technology (IT) nodes containing heat-generating functional components and which are cooled at least in part by a liquid cooling subsystem. The RIHS includes a rack configured with chassis-receiving bays in which is received a respective chassis of one of the LC nodes. Each LC node is configured with a system of conduits to receive direct injection of cooling liquid to regulate the ambient temperature of the node. Additionally, each LC node, configured with a system of conduits, provides cooling to the components inside the node by conductively absorbing, via the cooling liquid, heat generated by the heat-generating functional components. The absorbed heat is removed (or transferred away) from within the node to outside of the node and/or the RIHS. The cooling subsystem has a liquid rail formed by more than one node-to-node, Modular Liquid Distribution (MLD) conduit, which includes first and second terminal connections attached on opposite ends of a central conduit. The MLD conduits are rack-unit dimensioned to seal to and enable fluid transfer between a port of a selected LC node and a port of an adjacent LC node.

According to one or more embodiments, the DL RIHS also includes a rack filtration unit (RFU) that filters physical and chemical impurities from liquid ran through the RFU. The RFU filters incoming liquid received from a facility supply before the liquid is sent through the liquid rail and the rest of the liquid cooling system. The RFU also provides components that enable implementation of a service mode operation, in one or more embodiments.

According to yet another embodiment, a method is provided for providing a service mode within the DL RIHS. The method generally includes a controller detecting selection of a service mode trigger. Then, in response to detecting selection of the service mode trigger, the method includes the controller transmitting a first control signal to cause the proportional valve to move to an open position that causes enhanced cooling of the at least one node due to increase rate of cooling liquid flow through the system of conduits. Following, the method includes monitoring a temperature being sensed by the at least one temperature sensor, and in response to the temperature reaching a pre-established service mode temperature: forwarding a second control signal, to cause the proportional valve to move to a fully closed position; and generating a notification of an entry of the RIHS into a service node. With this notification, and while the RIHS is in the service mode, the at least one LC node can be one of (1) disengaged from the supply port and return port and (2) re-engaged with the supply port and return port, without affecting an operational on-state of the RIHS, and without incurring significant hydraulic pressure when re-engaging the LC node into the liquid cooling system.

In the following detailed description of exemplary embodiments of the disclosure, specific exemplary embodiments in which the disclosure may be practiced are described in sufficient detail to enable those skilled in the art to practice the disclosed embodiments. For example, specific details such as specific method orders, structures, elements, and connections have been presented herein. However, it is to be understood that the specific details presented need not be utilized to practice embodiments of the present disclosure. It is also to be understood that other embodiments may be utilized and that logical, architectural, programmatic, mechanical, electrical and other changes may be made without departing from general scope of the disclosure. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims and equivalents thereof.

References within the specification to "one embodiment," "an embodiment," "embodiments", or "one or more embodiments" are intended to indicate that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. The appearance of such phrases in various places within the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not other embodiments.

It is understood that the use of specific component, device and/or parameter names and/or corresponding acronyms thereof, such as those of the executing utility, logic, and/or firmware described herein, are for example only and not meant to imply any limitations on the described embodiments. The embodiments may thus be described with different nomenclature and/or terminology utilized to describe the components, devices, parameters, methods and/or functions herein, without limitation. References to any specific protocol or proprietary name in describing one or more elements, features or concepts of the embodiments are provided solely as examples of one implementation, and such references do not limit the extension of the claimed embodiments to embodiments in which different element, feature, protocol, or concept names are utilized. Thus, each term utilized herein is to be given its broadest interpretation given the context in which that terms is utilized.

As utilized herein, the term "rack-configured" (as in RIHS) generally refers to the configuration of a large scale sever system within a physical rack having multiple chassis receiving rails for receiving specific sizes of information technology (IT) nodes, such as server modules, storage modules, and power modules. The term node generally refers to each separate unit inserted into a 1U or other height rack space within the rack. In one embodiment, operational characteristics of the various IT nodes can be collectively controlled by a single rack-level controller. However, in the illustrated embodiments, multiple nodes can be arranged into blocks, with each block having a separate block-level controller that is communicatively connected to the rack-level controller.

For purposes of this disclosure, an information handling system (defined at the individual server level) may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, an information handling system may be a personal computer, a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. The information handling system may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, ROM, and/or other types of nonvolatile memory. Additional components of the information handling system may include one or more disk drives, one or more network ports for communication with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, and a video display. The information handling system may also include one or more buses operable to transmit communications between the various hardware components.

As illustrated by the figures and described herein, multiple processing servers or server IHSs (referred to herein as server nodes) can be included within the single RIHS. Certain aspect of the disclosure then relate to the specific LC (sever or other) nodes and the functionality associated with these individual nodes or block-level groupings of nodes, while other aspects more generally relate to the overall DL RIHS containing all of the LC nodes.

As one design detail/aspect for the present innovation, consideration is given to the fact that extreme variations can exist in server/power/network topology configurations within an IT rack. In addition to dimension variations, the thermal requirements for heat-generating functional components for power, control, storage and server nodes can be very different between types or vary according to usage. These variations drive corresponding extreme diversity in port placement, fitting size requirements, mounting locations, and manifold capacity for a liquid cooling subsystem. Further, a chassis of each node is typically densely provisioned. Lack of space thus exists to mount a discrete water distribution manifold in high-power IT racks. The present disclosure addresses and overcomes the challenges with distributing liquid cooling fluids throughout an IT rack having nodes with a large number of variations in distribution components.

The disclosure also includes the additional consideration that in addition to cooling the primary heat generating components of the rack, such as the processor, what is needed is a way to allow for cooling of secondary equipment within the rack, as well as auxiliary components that would further support utilizing the advantages of a fluid-to-fluid heat exchanger methodology. Additionally, the present disclosure provides a modular approach to utilizing an air-to-liquid heat exchanger with quick connection and scalability to allow the solution to be scalable in both 1U and 2U increments.

FIG. 1 illustrates a side perspective view of an internal layout/configuration of an example Direct-Interface Liquid-Cooled (DL) RIHS 100 configured with a plurality of LC nodes 102, according to one or more embodiments. For simplicity, the example DL RIHS presented in the various illustrations can be described herein as simply RIHS 100; however, references to RIHS 100 are understood to refer to a DL RIHS, with the associated liquid cooling infrastructure and/or subsystems and supported LC nodes 102. RIHS 100 includes rack 104, which comprises a rack frame and side panels, creating a front-to-back cabinet within which a plurality of chassis receiving bays are vertically arranged and in which a chassis of a respective IT node 102 can be inserted. Rack 104 includes certain physical support structures (not specifically shown) that support IT gear insertion at each node location. Additional description of the structural make-up of an example rack is provided in the description of FIGS. 2-4, which follows.

FIG. 1 further depicts an illustrative example of LC nodes 102a-102j (collectively refer to as nodes 102), with each nodes 102a-102i including heat-generating functional components 106. Additionally, RIHS 100 also includes an infrastructure node 102j and liquid filtration node 102k, which do not necessarily include heat-generating functional components 106 that require liquid cooling, as the other LC nodes 102a-102i. In the illustrative embodiments, nodes 102a-102b, and 102e-102h include other components 108 that are not necessarily heat generating, but which are exposed to the same ambient heat conditions as the heat generating components by virtue of their location within the node. In one embodiment, these other components 108 can be sufficiently cooled by the direct injection of cooling liquid applied to the node and/or using forced or convective air movement, as described later herein. Each node 102 is supported and protected by a respective node enclosure 107. Nodes 102a-102d are further received in node receiving bays 109 of a first block chassis 110a of a first block 112a. Nodes 102e-102i are received in a second block chassis 110 of a second block 112b. In the illustrative embodiments, the nodes 102 are vertically arranged. In one or more alternate embodiments, at least portions of the nodes 102 (and potentially all of the nodes) may also be arranged horizontally while benefitting from aspects of the present innovation.

The present innovation is not limited to any specific number or configuration of nodes 102 or blocks 112 in a rack 104. According to one aspect, nodes 102 can be of different physical heights of form factors (e.g., 1U, 1.5U, 2U), and the described features can also be applied to nodes 102 having different widths and depths (into the rack), with some extensions made and/or lateral modifications to the placement of cooling subsystem conduits, as needed to accommodate the different physical dimensions. As a specific example, node 102i is depicted as having a larger node enclosure 107' (with corresponding different dimensions of heat-generating functional components 106') of a different number of rack units in physical height (e.g., 2U) that differs from the heights (e.g., 1U) of the other nodes 102a-102h and 102j-102k. RIHS 100 can include blocks 112 or nodes 102 selectably of a range of discrete rack units. Also, different types of IT components can be provided within each node 102, with each node possibly performing different functions within RIHS 100. Thus, for example, a given node 102 may include one of a server module, a power module, a control module, or a storage module. In a simplest configuration, the nodes 102 can be individual nodes operating independent of each other, with the RIHS 100 including at least one rack-level controller (RC) 116 for controlling operational conditions within the RIHS 100, such as temperature, power consumption, communication, and the like. Each node 102 is then equipped with a node-level controller (NC) 118 that communicates with the rack-level controller 116 to provide localized control of the operational conditions of the node 102. In the more standard configuration of a DL RIHS 100, and in line with the described embodiments, RIHS 100 also includes block-level controllers (BCs) 114, communicatively coupled to the rack-level controller 116 and performing block-level control functions for the LC nodes within the specific block. In this configuration, the nodes 102 are arranged into blocks 112, with each block 112 having one or more nodes 102 and a corresponding block-level controller 114. Note the blocks do not necessarily include the same number of nodes, and a block can include a single node, in some implementations.

A Direct-Interface Liquid Cooling (DL) subsystem (generally shown as being within the RIHS and labelled herein as 120) provides liquid cooling to heat-generating functional components 106 via a liquid rail 124 under the control of the rack-level controller 116, block-level controllers 114, and/or node-level controllers 118, in some embodiments. Rack-level controller 116 controls a supply valve 126, such as a solenoid valve, to allow cooling liquid, such as water, to be received from a facility supply 128. The cooling liquid is received from facility supply 128 and is passed through liquid filtration node 102k before being passed through supply conduit 130 of liquid rail 124. Each block 112a, 112b receives a dynamically controlled amount of the cooling liquid via block-level dynamic control valve 132, such as a proportional valve. Return flow from each block 112a, 112b can be protected from backflow by a block check valve 133. The individual needs of the respective nodes 102a-102d of block 112a can be dynamically provided by respective node-level dynamic control valves 134, controlled by the block-level controller 114, which control can, in some embodiments, be facilitated by the node-level controllers 118. In addition to allocating cooling liquid in accordance with cooling requirements (which can be optimized for considerations such as performance and economy), each of the supply valve 126 and/or dynamic control valves 132, 134 can be individually closed to mitigate a leak. A check valve 136 is provided between each node 102a-102j and a return conduit 138 of the liquid rail 124 to prevent a backflow into the nodes 102a-102j. The return conduit 138 returns the cooling liquid to a facility return 140.

To support the temperature control aspects of the overall system, RIHS 100 includes temperature sensors 101 that are each located within or proximate to each node 102a-102j, with each gauge 101 connected to the node-level controller 118 and/or the corresponding block-level controller 114. Temperature sensors 101 operate in a feedback control loop of the liquid cooling system 122 to control the amount of liquid flow required to cool the nodes 102a-102j. In one or more embodiments, the rack-level controller 116 can coordinate performance constraints to block-level controllers 114 and/or node-level controllers 118 that limit an amount of heat generated by the heat-generating functional components 106 to match a heat capacity of the flow of cooling liquid in DL subsystem 122. Alternatively or in addition, the rack-level controller 116 can coordinate cooling levels to block-level controllers 114 and/or node-level controllers 118 that in turn control the dynamic control valves 132, 134 for absorption and transfer of the heat generated by the heat-generating functional components 106 by the DL subsystem 122. In one or more embodiments, support controllers such as a Rack Liquid Infrastructure Controller (RLIC) 142 can perform management and operational testing of DL subsystem 122. RLIC 142 can monitor pressure sensors 144 and liquid sensors 146 to detect a leak, to validate operation of namic control valves 132, 134 or shut-off valves such as supply valve 126. RLIC 142 can perform close-loop control of specific flow rates within the RIHS 100.

FIG. 2 illustrates example LC node 200 of example DL RIHS 100 of FIG. 1 having a node enclosure 208 insertable into a block chassis 210. For purposes of description, node 200 is a server IHS that includes processing components or central processing units (CPUs), storage devices, and other components. LC node 200 includes cooling subsystem (generally shown and represented as 220) that includes a liquid-to-liquid manifold 242 to cool heat-generating functional components 206 by heat transfer from liquid provided by node-level supply conduit 244, and return conduit 246, according to one or more embodiments. Node-level supply conduit 244 and return conduit 246 are appropriately sized and architecturally placed relative to the other components and the dimensionality (i.e., width, height, and depth/length) of LC node 200 to permit sufficient cooling liquid to pass through the interior of LC the node 200 to remove the required amount of heat from LC node 200 in order to provide appropriate operating conditions (in terms of temperature) for the functional components located within LC node 200. Liquid-to-liquid manifold 242 can include CPU cold plates 248 and voltage regulator cold plates 250. A sled assembly grab handle 252 can be attached between CPU cold plates 248 for lifting LC node 200 out of block chassis 210. A return-side check valve 254 of the return conduit 246 can prevent facility water from back-feeding into LC node 200 such as during a leak event. Flex hose links 256 in each of node-level supply conduit 244 and return conduits 246 can reduce insertion force for sleds into block chassis 210. Sled emergency shutoff device 234 interposed in the supply conduit 244 can be a solenoid valve that closes in response to input from a hardware circuit during a sled-level leak detection event. Node-level carrier 258 received in node enclosure 208 can incorporate liquid containment structure 260 to protect storage device 262. In the illustrative example illustrated by FIG. 2, LC node 200 is oriented horizontally and is viewed from above. In one or more embodiments node-level carrier 258 is configured to route leaked cooling liquid away from storage device 262 when oriented vertically.

FIGS. 3-7 illustrate different exterior and rear views of an example assembled DL RIHS 300. DL RIHS 300 includes rack 304, which is a physical support structure having an exterior frame and attached side panels to create cabinet enclosure 364 providing interior chassis receiving bays (not shown) within which a plurality of individual node chasses (or sleds) 208 of functional IT nodes, such as LC node 200 of FIG. 2, are received. In the description of the figures, similar features introduced in an earlier figure are not necessarily described again in the description of the later figures.

FIGS. 3-5 specifically illustrate exterior views of rack 304 of example DL RIHS 100. As illustrated, rack 304 includes opposing side panels 366, attached to a top panel 368 (and bottom panel--not shown) to create the main cabinet enclosure 364 that includes multiple chassis receiving bays for housing LC nodes 102/200. The created cabinet enclosure 364 includes a front access side (not shown) and a rear side. The front access side provides access to the chassis receiving bays created within the main cabinet enclosure 364 for receiving LC nodes 102 (of FIG. 1) into rack 304. Attached to the rear ends of the main opposing side panels 366 are opposing side panel extensions 372. A louvered rear door 374 is hinged (or otherwise attached) to one of the side panel extensions 372 and includes a latching mechanism for holding the door 374 in a closed position, where in a closed position is relative to the otherwise open space extending laterally between opposing side panel extensions 372. Side panel extensions 372 and louvered rear door 374 provide an extension to main cabinet enclosure 364 for housing, covering/protecting, and providing access to the modular, scalable liquid rail 324 of a liquid cooling subsystem 322 that provides liquid cooling to each LC node 102 (of FIG. 1) inserted into the chassis of the main cabinet enclosure 364.

FIG. 4 illustrates an embodiment in which rear pipe covers 476 can protect portions of liquid rail 324 (of FIG. 3), and specifically Modular Liquid Distribution (MLD) conduits 478, from inadvertent damage as well as containing any leaks from being directed at sensitive functional components 106 (of FIG. 1).

Illustrated in FIG. 5 are rear pipe covers 476 (of FIG. 4) of MLD conduits 478 (of FIG. 4) of liquid rail 324 (of FIG. 3) having different sizes. According to one aspect, the MLD conduits 478 (of FIG. 4) are rack unit dimensioned pipes that form a node-to-node scalable rack liquid manifold ("liquid rail") to distribute cooling liquid, as required, for each node 102 (of FIG. 1) and through the vertical arrangement of nodes 102 (of FIG. 1) within RIHS 100 (of FIG. 1). In an exemplary embodiment, the cooling liquid is received from a facility supply 128 (of FIG. 1) via below rack (e.g. ground level or below floor) connections 580.

FIG. 6 illustrates an example RIHS 100, as depicted in FIG. 1, with MLD conduits 478 (of FIG. 4), that are uncovered, displaying liquid rail 324 (of FIG. 3). In the embodiment of FIG. 6, cooling liquid is received from a facility supply 128 (FIG. 1) by below rack (e.g. ground level or below floor) connections 680.

FIG. 7 illustrates a second example RIHS 700, wherein cooling liquid is received from facility supply 128 (FIG. 1) provided by an above-rack (and possibly in ceiling) connections 780. Also shown by FIG. 7 are air movers depicted as fan modules 782 adjacent to the liquid rail. These fan modules 782 are mounted at the back of RIHS 700 to draw air flow through LC nodes 102 providing additional cooling of LC nodes 102, of FIG. 1, (e.g., convection cooling for node components 106, of FIG. 1) that may or may not also receive direct-interface of cooling liquid, in different embodiments.

FIG. 8 illustrates a more detailed view of the interconnections of the liquid cooling subsystem, at a node level and rack level within an example DL RIHS 800. As shown, RIHS 800 is configured with LC nodes 802a-802e arranged in blocks (e.g., block 1 comprising 802a-802c) and which are cooled in part by a liquid cooling system having a liquid rail comprised of MLD conduits, and in part by a subsystem of air-liquid heat exchangers, can be configured with heat-generating functional components 806 and that are cooled at least in part by a system of MLD conduits 878a-878b, according to one or more embodiments. Illustrated within nodes 802 are heat-generating functional components 806, such as processors, voltage regulators, etc., which emit heat during operation and or when power is applied to the component, such that the ambient temperature increases around the component, and within the node, and eventually within the block, and ultimately DL RIHS 800, during standard operation. To mitigate heat dissipation (and effects thereof), and to maintain the RIHS, block, node, and functional components within proper operating temperatures, DL RIHS 800 is configured with a DL subsystem 822. DL subsystem 822 includes a rack level network of liquid propagating pipes, or conduits that are in fluid communication with individual node level networks of liquid propagating conduits. Additionally, DL subsystem 822 collectively facilitates heat absorption and removal at the component level, the node level, the block level, and/or the rack level. The rack-level network of conduits includes a modular arrangement of a liquid rail 824 formed by more than one node-to-node MLD conduit 878 a-878b spanning (or extending) between LC nodes 802 provisioned in rack 804.

At the top position of RIHS 800, a block chassis 810 is received in a block chassis receiving bay 870a of rack 804. Within block chassis 810, a first node 802a received in a first node receiving bay 809a of the rack 804 has a vertical height of one rack unit (1U). A rack unit, U or RU as a unit of measure, describes the height of electronic equipment designed to mount in a 19-inch rack or a 13-inch rack. The 19 inches (482.60 mm) or 13 inches (584.20 mm) dimension reflects the horizontal lateral width of the equipment mounting-frame in the rack including the frame; the width of the equipment that can be mounted inside the rack is less. According to current convention, one rack unit is 1.75 inches (44.45 mm) high. A second node 802b received in a second node receiving bay 809b of the rack 104 (of FIG. 1) has a vertical height of 1U. A third node 802c received in a third node receiving bay 809c of the rack 804 has a vertical height of 1U. A fourth node 802d, infrastructure node 802b, is received in a second block chassis receiving bay 870b of rack 804 and has a vertical height of 1U. Infrastructure node 802b can contain functional components such as a rack-level controller 816. A fifth node 802e is received in a third chassis receiving bay 870c and has a vertical height of 2U. A sixth node 802f, which provides a Rack Filtration Unit (RFU) 871, is received in a fourth block chassis receiving bay 870d of the rack 804. Infrastructure node 802 and RFU 871 are examples of nodes 802 that may not require liquid cooling. A cascading liquid containment unit 890 is received in a fifth chassis receiving bay 870e and includes liquid sensor 897.

MLD conduits 878a of 1U can be used to connect nodes of 1U vertical spacing. Because of the additional 1U separation of LC nodes 802c and 802e by inclusion of infrastructure node 802d, MLD conduit 878b between the third and fifth nodes 802c-802d is dimension 2U to accommodate the increased spacing. MLD conduits 878 a-878b can thus support different heights (1U to/VU) of IT components.

Each MLD conduit 878 a-878b includes first and second terminal connections 883, 884 attached on opposite ends of central conduit 885 that is rack-unit dimensioned to seal to a port of LC node 802 and enable fluid transfer between a port of a selected LC node 802 and a port of an adjacent LC node 802. In FIG. 8, facility supply 828 and facility return 840 are respectively located at the intake end of liquid rail 824 and the exhaust end of liquid rail 824. The actual location of facility supply 828 and facility return 840 can be reversed. Alternatively, facility supply 828 and facility return 840 can be located above the RIHS 800 or both conduits can be located on opposite sides of the RIHS 800 in alternate embodiments.

Liquid cooling subsystem 822 includes a liquid infrastructure manager controller (LIMC) 886 which is communicatively coupled to block liquid controllers (BLCs) 887 to collectively control the amount of cooling liquid that flows through the RIHS 800 and ultimately through each of the nodes 802 in order to effect a desired amount of liquid cooling at the component level, node level, block level, and rack level. For clarity, LIMC 886 and BLCs 887 are depicted as separate components. In one or more embodiments, the liquid control features of the LIMC 886 and BLCs 887 can be incorporated into one or more of the rack-level controller 816, block-level controllers 820, and the node-level controllers 818. As illustrated in FIG. 1 and previously described, each of the LIMC 886 and BLCs 887 are connected to and respectively control the opening and closing of flow control valves that determine the amount of flow rate applied to each block and to each node within the specific block. During cooling operations, one of LIMC 886 and BLC 887 causes a specific amount of liquid to be directly injected into the intake conduits of the LC node 802, which forces the cooling liquid through the system of conduits within the LC node 802 to the relevant areas and/or functional components/devices inside the nodes 802 to absorb and remove heat away from the inside of the node and/or from around the components within the node.

As another aspect, the present disclosure provides a modular approach to utilizing air-to-liquid heat exchanger 888 with quick connection and is scalable in both 1U and 2U increments. In one or more embodiments, DL cooling subsystem 822 can include a plurality of air-to-liquid (or liquid-to-air) heat exchangers 888 that facilitate the release of some of the heat absorbed by the exhaust liquid to the surrounding atmosphere around the RIHS 100 (of FIG. 1). Air-to-liquid heat exchangers 888 can be integral to block liquid manifold 889 that, along with the MLD conduits 878a-878b, form scalable liquid rail 824. One aspect of the present disclosure is directed to providing scalable rack-mounted air-to-liquid heat exchanger 888 for targeted heat rejection of rack-mounted equipment to DL cooling subsystem 822. Hot air 899 from auxiliary components, such as storage device 895, would be pushed through the air-to-liquid heat exchanger 888, and the resulting energy would transfer to liquid rail 824 and be rejected to a facility cooling loop, represented by the facility return 840.

RIHS 800 can include variations in LC node 802 that still maintain uniformity in interconnections along liquid rail 824 formed by a chassis-to-chassis modular interconnect system of MLD conduits 878a-878b. With this scalability feature accomplished using MLD conduits 878a-878b, cooling subsystem 822 of the RIHS 800 allows each block chassis 810 to be a section of a scalable manifold, referred herein as liquid rail 824, eliminating the need for a rack manifold. The scalability of liquid rail 824 enables flexible configurations to include various permutations of server and switch gear within the same rack (rack 804). MLD conduits 878a-878b can comprise standardized hoses with sealable (water tight) end connectors. Thus, the rack liquid flow network can encompass 1 to N IT chassis without impacting rack topology, space constraints, and without requiring unique rack manifolds. Additionally, according to one aspect, the MLD conduits are arranged in a pseudo daisy chain modular configuration, which allows for unplugging of one MLD conduit from one rack level without affecting liquid flow to and cooling of other rack levels.

The system of conduits extending from node intake valve 834 into each LC node 802 enables each LC node 802 to engage to block liquid manifold 889. Block chassis 810 or node enclosure 808 of each LC node 102 provides the intake and exhaust conduit connections to engage to respective terminals of MLD conduits 878 a-878b within the MLD network provided by liquid rail 824. For example, where nodes 802 are designed as sleds, node enclosure 808 would be a sled tray, and each block would then include more than one sled tray received into block chassis 810, forming the extensions of block liquid manifold 889. Alternatively, the node enclosure 808 can be a single node chassis such as one of nodes 802c-802f.

Supply and return bypass tubes 890, 891 of each block liquid manifold 889 are connected by MLD conduits 878a-878b to form supply rail conduit 830 and return rail conduit 838. Due to constraints in the spacing within the figure, the tubing that extends from supply and return bypass tubes 890, 891 are not shown, and the valves are shown as if connected directly to the bypass. FIG. 9 provides a more accurate view of this feature of the disclosure, with conduits extended into the respective supply and return valves at each block. Also, for clarity, FIG. 8 illustrates the return rail conduit 838 separately. Liquid rail 824 enables multiple types of devices to be coupled together, each receiving an appropriately controlled portion of cooling liquid capacity. In one embodiment, liquid cooling subsystem 822 is passively pressurized by attaching MLD supply conduit 892a to facility supply 828 and an MLD return conduit 892b to facility return 840. Liquid flow from supply rail conduit 830 to return rail conduit 838 of liquid rail 824 can be controlled based upon factors such as a temperature of the liquid coolant, detected temperature within LC nodes 802, air temperature inside or outside of DL RIHS 800, etc.

In an exemplary embodiment, the scalable rack manifold provided by liquid rail 824 is formed in part by MLD conduits 878 a-878b that run vertically in the back of the RIHS 800 with quick disconnects on the front and rear face of block liquid manifold 889 that allows for IT/infrastructure equipment respectively to be plugged into both front and back sides of the block liquid manifold 889. For example, LC nodes 802, such as server modules, can plug into the front side and fan modules 882 can plug onto the back side of block liquid manifold 889. This also allows for other liquid cooled devices such as LC Power Distribution Units (PDUs) to be plugged into the cooling liquid supply rail conduit 830 and return rail conduit 838 of liquid rail 824. Thereby, a rack hot pluggable cooling interface is created for any rack-mounted equipment.

Cooling subsystem 822 can support an embedded liquid-to-liquid heat exchanger manifold 842, such as in LC node 802c. Node liquid-to-liquid heat exchangers are provided for rejecting heat from one fluid source to a secondary source. One aspect of the present disclosure solves the problems that many shared-infrastructure IT systems (e.g., blade chassis) do not have adequate space to accommodate a liquid-to-liquid heat exchanger. Unlike with generally-known systems that rely upon liquid heat transfer having to exchange heat with an external liquid-to-liquid heat exchanger, the present disclosure enables on-rack liquid-to-liquid heat exchanger that does not require any of the vertical chassis space. Additionally, the present disclosure provides these benefits without requiring a central distribution unit (CDU), which takes up datacenter floor space. One aspect of the present disclosure provides embedded heat exchanger manifold 842 having a common heat transfer plate and a shared bulk header to create a combined liquid distribution manifold that includes a secondary liquid coolant for absorbing heat through the shared bulk header. In particular, the combined embedded heat exchanger manifold 842 rejects heat within shared node enclosure 808 such as node 802c to a secondary liquid coolant. Internal node supply 844 and return conduits 846 of a manifold built on top of a heat exchanger core allow heat transport within manifold 842. In one embodiment, closed system pump 898 can use a first coolant to cool a high thermal energy generating functional component such as a CPU or voltage regulator.

Additionally, the liquid cooling subsystem 822 also includes a filtration system or unit 871, which prevents chemical impurities and particulates from clogging or otherwise damaging the conduits as the fluid passes through the network of conduits. According to one aspect of the disclosure, liquid cooling subsystem 822 provides RFU 871 in fluid connection with the intake pipes from facility supply 828. In at least one embodiment, RFU 871 includes a sequenced arrangement of liquid filters within a full-sized sled that can be removably inserted by an end user into one of the receiving slots of rack 804. In one embodiment, the RFU 871 is located on an infrastructure sled having rack-level controllers and other rack-level functional components. In at least one embodiment, the entirety of the sled is filed with components associated with RFU 871. Thus, it is appreciated that the RFU 871 may occupy the entire area of one vertical slot/position within the chassis. Alternate locations of the RFU 871 can also be provided, in different embodiments, with an ideal location presenting the intake port of the RFU 871 in close proximity to a connection to facility supply 828 to directly receive the facility supply 828 prior to the liquid being passed into the remainder of the conduits of the liquid cooling subsystem 822. It is appreciated that if the system was capable of completing all heat exchange within the rack, then sealing the rack would be feasible and would reduce and/or remove any requirements for filtration and/or allocation of rack space for RFU 871.

Liquid cooled compute systems use the high heat transport capacity of water. However, the disclosure recognizes and addresses the fact that with liquid introduced into an electronic enclosure, there is a potential for leaks that can cause catastrophic system failure. Also, in some instances, a leak can create an electronic short with a resulting exothermal reaction causing permanent damage to the DL RIHS 800. To mitigate such risks, as one design feature, node-level carrier 893 can include a trench/gutter system for use as liquid containment structure 894. In one embodiment, the gutter system can also incorporate an absorbent material that can accumulate sufficient amounts of liquid from small leaks to enable external sensing of the leak. Advantageously, the carrier 893 can also be thermally conductive to serve as a heat sink for components such as storage devices 895. In one embodiment, another leak detection solution that can be incorporated into the LC node 802 involves use of a solenoid to create an event when additional current is applied, due to water pooling around the solenoid. Barriers on carrier 893 can be specifically designed to contain a liquid leak and assist in funneling the liquid through the gutter system. Liquid rail 824 can also be provided with leak containment and detection. In one or more embodiments, removable pipe covers 876 are sized to be mounted around respective MLD conduits 878a-878b and can include liquid sensors 897 for automatic alerts and shutdown measures.

In one or more embodiments, DL RIHS 800 further incorporates a node-level liquid containment structure 890 with a cascading drain runoff tubing network 896 to a rack-level cascading liquid containment structure 894. In one or more embodiments, the DL RIHS 800 further incorporates leak detection response such as partial or complete automated emergency shutdown. Liquid sensors (LS) 897 at various cascade levels can identify affected portions of DL RIHS 800. Containment and automatic shutoff can address the risks associated with a leak developing in the DL cooling system 822.

FIG. 9 illustrates a more detailed view of DL subsystem 920 associated with example DL RIHS 900. Within DL RIHS 900, each LC node 902 includes chassis 910 received in a respective chassis-receiving bay 970 of rack 904. Each LC node 902 contains heat-generating functional components 906. Each LC node 902 is configured with a system of internal supply conduit 944 and return conduit 946, associated with embedded heat exchanger manifold 942. Embedded heat exchanger manifold 942 receives direct injection of cooling liquid to regulate the ambient temperature of LC node 902. A node-level dynamic control valve 934 and node-level return check valve 936 control an amount of normal flow and provide shutoff and/or otherwise mitigate a leak. Cooling subsystem 920 provides cooling to heat-generating functional components 906 inside the LC node 902 by removing heat generated by heat-generating functional components 906. Liquid rail 924 is formed from more than one node-to-node, MLD conduit 978 between more than one LC node 902 within in rack 904. MLD conduits 978 includes first terminal connection 983 and second terminal connection 984. First terminal connection 983 and second terminal connection 984 are attached on opposite ends of central conduit 985. Central conduit 985 is rack-unit dimensioned to directly mate and seal to and enable fluid transfer between a selected pair of rail supply ports 917 and/or rail return ports 919 of a selected LC node 902 and an adjacent LC node 902.

The cooling subsystem 920 includes block liquid manifolds 989 mountable at a back side of the rack 904. Each block liquid manifold has at least one rail supply port 917 and at least one rail return port 919 on an outside facing side of the block liquid manifold 989. The at least one rail supply port 917 and the at least one rail return port 919 respectively communicate with at least one block supply port 921 and a block return port 923 on an inside facing side of the block liquid manifold 989. LC nodes 902 are insertable in receiving bays 970 of rack 904 corresponding to locations of the mounted block liquid manifolds 989. Block supply ports 921 and block return ports 923 of the LC nodes 902 and an inside facing portion of the corresponding block liquid manifold 989 are linearly aligned. The linear alignment enables direct sealing, for fluid transfer, of the lineally aligned inside manifold supply ports 925 and return ports 927 to the inside facing portion of the block liquid manifold 989. In one or more embodiments, block supply port 921 sealed to the internal manifold supply port 925 communicates via supply bypass tube 990 to two rail supply ports 917. Block return port 923 sealed to internal manifold return port 927 communicates via return bypass tube 991 of the respective block liquid manifold 989 to two rail return ports 919. Fan modules 982 mounted respectively onto back of block liquid manifold 989 have apertures to expose rail supply 917 and return ports 919. Additionally, fan modules 982 draw hot air 999 from LC nodes 902 through an air-liquid heat exchanger 988 in block liquid manifold 989.

In one or more embodiments, supply liquid conduit 992a is attached for fluid transfer between facility supply 928 and rail supply port 917 of block liquid manifold 989 of RIHS 900. A return liquid conduit 992b can be attached for fluid transfer between rail return port 919 of block liquid manifold 989 to facility return 940. FIG. 9 further illustrates that the fluid connection to facility supply 928 includes RFU 971. To prevent contamination or causing damage to cooling subsystem 920, RFU 971 is received in bay 970 of rack 904 and includes one of two input ports 929 connected via supply liquid conduit 992a to facility supply 928. The RFU 971 includes one of two output ports 931 that is connected to MLD conduit 978 of supply rail conduit 930. Liquid rail 924 also includes return rail conduit 938. RFU 971 controls two parallel emergency shutoff valves 933 for controlling the liquid flow received from input port 929 and which is provided via hot-pluggable disconnects 935 to two replaceable filtration subunits ("filters") 937. The flow of cooling liquid from supply input port 929 flows in parallel to two replaceable filtration subunits 937, automatically diverting to the other when one is removed for replacing. Thereby, filtration and cooling of RIHS 900 can be continuous, even when one filter is removed and/or one of the valves malfunctions (e.g., does not open). Back-flow is prevented by check valve 939 that allows normal flow to exit to output port 931. Differential pressure sensor 944 measures the pressure drop across filters") 937 and provides an electrical signal proportional to the differential pressure. According to one aspect, a Rack Liquid Infrastructure Controller (RLIC) 942 can determine that one filter 937 is clogged if the differential pressure received from differential pressure sensor 944 falls below a pre-determined value.

In one or more embodiments, RIHS 900 can provide hot-pluggable server-level liquid cooling, an integrated leak collection and detection trough, and an automatic emergency shut-off circuit. At a block level, RIHS 900 can provide embedded air-to-liquid heat exchange, and dynamic liquid flow control. At a rack level, RIHS 900 can provide facility-direct coolant delivery, a scalable rack fluid network, a rack filtration unit, and automated rack flow balancing, and a service mode.

In one or more embodiments, instead of an open-loop pressurization by facility supply 928, RIHS 900 can include a fluid mover such as a pump 941 that pressurizes and moves cooling liquid through a recirculation conduit 947 that reconfigures the liquid rail 924 in a closed loop. First divert valve 943 and second divert valve 945, can manually or automatically close off the liquid rail 924 from facility supply and return 928, 940, such as in response to the DL subsystem 920 being filled with cooling liquid, in response to a facility supply failure, or to reduce water usage. For clarity, pump 941 is shown supporting only one RIHS 900. However, pump 941 can be used to service more than one RIHS 900. In a closed loop implementation, the air-to-liquid heat exchangers 988 of RIHS 900 can utilize the air flow to remove heat from the cooling liquid, producing exhausted hot air. Alternatively, in the standard operation of an open loop system, the directional flow of heat transfer can be controlled such that the cooling liquid absorbs specific amounts of heat from the air flow to moderate the temperature outside of the RIHS and/or within the data center using the moderated temperature of the exhausted air.

According to one embodiment, liquid rail 924 includes a series of secondary conduits, such as supply divert conduit 997 and return divert conduit 998 that provides a by-pass fluid path for each of MLD conduits 978. In operation, divert conduit 997 allows for the removal of corresponding MLD conduit 978, thus removing the flow of cooling liquid to the particular block of nodes, without interrupting the flow of cooling liquid to the other surrounding blocks of computer gear. For example, a particular MLD conduit 978 can be replaced due to a leak. For another example, a block liquid manifold 989 can be replaced. The inclusion of divert conduits 997, 998 thus enables rapid servicing and maintenance of block liquid manifold 989 and/or nodes within block chassis without having to reconfigure the MLD conduits 978. In addition, the RIHS 900 can continue operating as cooling liquid continues to be provided to the remainder of the blocks that are plugged into the liquid rail. Re-insertion of the MLD conduit 978 then reconnects the flow of cooling liquid to the block for normal cooling operations, and shuts off the diverted flow of cooling liquid. In an exemplary embodiment, the MLD conduits 978 provide a quick disconnect feature that interrupts flow when not fully engaged to a respective port 917, 919, 921, 923. Disconnection of an MLD conduit 978 interrupts flow in a primary portion of the liquid rail 924 for either supply or return, shifting flow through one or more divert conduits 997 to provide cooling liquid to the other block liquid manifolds 989. In one or more embodiments, a manual or active shutoff valve can interrupt flow on either or both of the primary or divert portions of the liquid rail 924.

FIG. 10 illustrates a more detailed view of the internal makeup of the rails and other functional components of the cooling subsystem 1022 of example RIHS 1000. According to one embodiment, cooling subsystem 1022 also includes air movers and/or other devices to provide for forced air cooling in addition to the direct injection liquid cooling. As shown by FIG. 10, at least one fan module 1082 is rear mounted to a block liquid manifold 1089 in which an air-to-liquid heat exchanger (or radiator) 1088 is incorporated. The fan module 1082 provides air movement through the chassis 1010 and/or node enclosure 1008 of the node 1002 as well as through the air-to-liquid heat exchanger 1088. Each block liquid manifold 1089 includes a supply bypass tube 1090 and a return bypass tube 1091 through which a dynamically determined amount of cooling liquid is directed into the respective node 1002 while allowing a bypass flow to proceed to the next node/s 1002 in fluid path of the intake flow. Fan module 1082 includes apertures 1047 through which the supply and return bypass tubes 1090, 1091 are extended, in one embodiment. Nodes 1002 are connected into the back side of the block liquid manifold with the ends of intake and exhaust liquid transfer conduits in sealed fluid connection with bypass tubes 1090 and 1091 respectively.

FIG. 11 illustrates the example DL RIHS 1000 with MLD conduits 878a-878b (of FIG. 8) of two different multiples of rack units in dimension, according to one or more embodiments. Terminal connections 1083, 1084 with connecting central conduit 1085 can be formed from hose materials with molded perpendicular bends. FIG. 12 illustrates the example RIHS 1000 including bottom-feed facility supply and return MLD conduits 1292a, 1292b, according to one or more embodiments. FIG. 12 also illustrates two service mode buttons 1210 located at the back-lower portion of the rack. Service mode buttons 1210 are located on and/or in communication with RFU 102k (FIG. 1), features of which are presented in greater detail in FIGS. 13A-13F. Service mode buttons 1210 enable manual triggering of a service mode of DL RIHS, that allows for removal and re-insertion of one or more nodes and/or other components plugged into the fluid rail without experiencing a significant amount of hydraulic force and without having to shut down the entire DL RIHS to implement the service of one component.

FIGS. 13A-13F illustrate additional structural details of hot pluggable RFU 1371, which includes filters for filtering out contaminants in order to protect the liquid transfer conduits from clogging and/or chemical deterioration. RFU 1371 includes an embedded controller, which executes liquid management commands for connected liquid cooled devices within the rack (or series of racks). The embedded controller can be located on Liquid Instrumentation Management Board (LIMB) and utilized to initiate a rack flow balancing algorithm as well as a service mode operation, among others. RFU 1371 includes front purge connection/fitting 1303 utilized for temporary bleeding of pressure for filter tray installation and also for service mode operations. RFU 1371 also includes rear purge connection/fitting 1305 utilized for temporary bleeding of pressure from the liquid cooling subsystem to support a service mode. In one embodiment, front purge fitting 1303 is utilized to assist with filter tray installation, while rear purge fitting 1305 is primarily utilized for block liquid interconnect installation (i.e., installation of nodes into the liquid rail). However, no limitation is provided on the use of either fitting or the location of the fittings on the RIHS, and both can be used for either purpose, as they both can reduce the hydraulic pressure within the liquid cooling subsystem. Each purge fitting 1303 and 1305 can be fluidly linked to purge valve 1310 (or to other purge valves, in alternate embodiments) to allow for release of fluid when purge valve 1310 is opened during (or prior to) service mode operation. Purge fittings 1303 and 1305 can be implemented as small-diameter, quick disconnect valves to which a purge tube 1302, 1307 designed with a similarly small coupling 1304, 1306 can be connected to (e.g., via mating of the coupling 1304, 1306 with the purge fitting 1303, 1305, which depresses/triggers the valve open trigger) and open up the trigger to allow flow of liquid through the respective purge tube 1302, 1307. As shown, each purge tube 1302, 1307 extends from the connection with its respective purge fitting 1303, 1305 and can terminate into container 1313, 1314 or into a liquid drain external to the RIHS. Purged fluid is collected by the container 1313, 1314 and can be disposed of without spillage in or around the RIHS floor.

RFU 1371 includes hot-pluggable filter drawer 1311 and drawer 1313 that are plumbed in parallel for continued operation during servicing of drawer 1311 or drawer 1313. RFU 1371 includes node chassis 1308 insertable into a rack of an RIHS. At least one node supply port 1349 and at least one node return port 1351 are positioned on an inserted side 1353 of the node chassis 1308 to seal for fluid transfer respectively to a facility liquid supply conduit and a rail supply conduit of the liquid rail of a liquid cooling system for the RIHS. First filtration subunit 1355 and second filtration subunit 1357 are housed in hot-pluggable filter drawer 1311 and drawer 1313, which are connected in parallel fluid communication within node chassis 1308. Each filtration subunit 1355 and filtration subunit 1357 is individually disengageable from node chassis 1308 for maintenance or replacement, while the other filtration subunit 1355 or filtration subunit 1357 remains engaged in the node chassis and continues liquid filtration. A liquid coolant diversion network 1359 diverts liquid flow to the other filtration unit 1355 or filtration unit 1357 for continuous filtration of contaminants and/or particulates from the cooling liquid received from the supply side, when one filtration unit 1355 or filtration unit 1357 is removed.

In an exemplary embodiment, dual node supply ports 1349a, 1349b and dual node return port 1351a, 1351b support two independent feeds with external solenoids that are powered and/or controlled from RFU 1371 for filter drawers 1311, 1313, respectively. According to one aspect, purge solenoid valve 1310 is triggered by a rack liquid infrastructure controller (RLIC) or other service mode controller to open and dispense a specific amount of liquid from within the liquid cooling system of conduits to reduce the overall pressure of liquid within the system. In one embodiment, the amount of liquid released by purge solenoid valve 1310 can be variable based on the pressure within the system of conduits as measured by one or more liquid pressure sensors (not specifically shown). RFU 1371 includes a differential pressure sensor that measures a pressure drop across a filter and provides an electrical signal proportional to the differential pressure. According to one aspect, the RLIC can determine that the filter is clogged if the differential pressure received from differential pressure sensor 1184C falls below a pre-determined value.

FIGS. 13B-13C illustrate purge check valves 1359 that prevent liquid short circuit through solenoid purge valve 1310 of RFU 1371. Solenoid purge valve 1310 can also be referred to as pressure release valve 1310, which is utilized to reduce hydraulic pressure during service mode operation. In an exemplary service mode, a latching (non blind mate) small-diameter quick disconnect valve for "purge fitting" can be located at both a rear RFU face and a front RFU face. Each purge fitting 1303 and 1305 can be plumbed to a single small-diameter purge solenoid valve 1310 connected to the RFU liquid system.

According to one embodiment, service mode button 1210 is linked to LIMB. RFU 1371 includes status LEDs, which can be located proximate to service mode buttons 1210 at front RFU face and rear RFU face. According to one embodiment, service mode can be triggered by a user pressing any one of service mode buttons 1210. In one embodiment, control logic can require service mode button 1210 to be pushed for at least a preset minimum amount of time (e.g., five (5) seconds) before service mode is initiated. This time delay accounts for and/or prevents accidental triggering of service mode by a user mistakenly/accidentally pressing service mode button 1210 without intending to place the RIHS in service mode. In one embodiment, control logic can also provide a protection scheme to prevent the button from being pressed too many times within a set time interval, with the threshold being set to indicate an abnormal or failure condition (e.g., detecting multiple service mode button depressions before an ongoing service mode is completed and/or in a period that does not logically connect with a periodicity for service mode operation). A CPU subcool algorithm is activated when the service mode is imitated. In one embodiment, the CPU cooling algorithm can delay service mode by a preset amount of time (e.g., thirty (30) seconds) to increase coolant flow to CPUs and increase the service window. In another embodiment, the CPU cooling algorithm receives sensed temperature values from the nodes and delays the start of the service mode until the CPUs reach a preset service mode temperature based on the increased flow of cooling liquid.

FIG. 13D illustrates RFU rear panel 1373 of the RFU 1371 including a service mode button 1372 and service mode LED 1373 provided to assist with low-force insertion of liquid handling fittings. According to one embodiment, service mode status LEDs can include 1.times. tri-color LED at each of the front and rear face of RFU. The LEDs can be triggered to provide Red/Orange/Green light based on a specific input received from LIMB (or controller). According to one embodiment, these different colors can be programmed as follows:

Green=The Rack liquid components may be serviced at this time;

Orange=The "Service Mode" timer is ending soon (i.e. 10 seconds); and

Red=Do Not Service.

It is appreciated that other color LEDs and different forms of notification can be supported in alternate embodiments.

RFU rear panel 1373 includes purge fitting 1305 and dual node supply ports 1349a, 1349b and dual node return port 1351a, 1351b. Solenoid 1 and 2 power plugs 1374a, 1374b are provided for controlling emergency or maintenance shutoff of each filter drawer 1311, 1313. Block BLCB to LIMB connectors 1375 supports having each chassis in the rack having an independent link to RFU 1371, which provides both communication and DC power to the RFU 1371. RFU BC link to IM 1376 provides an uplink that allows the RFU 1371 to be registered as a rack device on any managed power bay when discrete MC is not used. Power bay auxiliary power input 1377 provides for up to three (3) power bays in an exemplary embodiment can independently supply auxiliary power to the RFU 1371 for management functions. A test mode button 1378 allows rack management to perform self-assessment of liquid handling equipment before power-ON of the servers. RFU 1371 also includes RFU BC 1379 and RFU MC 1380. FIGS. 13E-13F illustrate two views of example RFU rear input/output (I/O) card 1381.

In addition to the above introductory features, the present disclosure provides additional embodiments in which the aforementioned service mode is supported via a plurality of physical affordances provided within the RFU and additional control options implemented in part by LIC. In describing these additional embodiments, reference is made to FIGS. 2, 13B and 14, which illustrates some of aspects of the service mode embodiments. FIGS. 2 and 13B have been previously described, and these figures illustrate the physical components of the RFU. FIG. 14 then provides a block diagram representation of some of the control features that enable implementation of the service mode, according to one or more embodiments. As shown, within example RIHS 1400 is rack level liquid cooling subsystem 1172, which includes RLIC 1178 that is physically located on liquid instrumentation management circuit board (LIMB) 1410. LIMB 1410 includes I/O interface 1412 and can include several pulse width modulation (PWM) circuits 1414. RLIC 1178 is shown having a processor 1415 communicatively coupled to RLIC memory (or storage) 1420. Processor 1415 represents any functional component that performs the control functionality associated with RLIC 1178. In one embodiment, RLIC memory 1420 can be a non-volatile memory device such as flash memory. RLIC memory 1420 can store algorithms and/or firmware that, when executed by RLIC 1178, perform one or more of the processes and methods described herein. Among these software and firmware components are service mode utility 1425, which can include CPU subcooling algorithm, service mode notification triggering algorithm (for controlling LEDs, for example), and other functional modules that are executed by processor 1415 (or embedded controller). RLIC memory 1420 can also store one or more data, of which operating temperature ranges 1422, high temperature threshold 1424, service time 1426, and service periodicity 1428 are illustrated. Within the figure, communication/signal transfer lines are presented as solid lines between components, while the directional flow of cooling liquid is illustrated by the doted and dashed lines between components.

PWM circuits 1414 generate PWM signals that can control the operation of connected devices such as the open position of proportional supply valve 1180 and solenoid purge valve 1310. In one embodiment, different PWM circuits can be provided, which generate different signals to control a secondary purge valve (not shown) that can be associated with connected purge fittings 1303 and 1305. In the illustrative embodiment, solenoid purge valve 1310 can be set to an open position during service mode to allow draining off of some of the cooling liquid within the pressurized cooling system conduits. As described in greater detail hereafter, solenoid valve 1310 thus enable pressure reduction of cooling liquid, which allows for easier insertion of a node that has been removed for servicing or for first installation of a node in an active pressurized system.

I/O interface 1412 enables communication between RLIC 1178 and other connected devices such as valves, sensors, and flow meters. Facility supply 1430 is a source of cooling liquid for DL RIHS 1100. In one embodiment, facility supply 1430 can be a fluid, such as water. Facility supply 1430 is in fluid communication with supply valve 1180, which can be a proportional valve and is thus interchangeably referred to as proportional supply valve 1180. Supply valve 1180 is in fluid communication with filter 1432, which in one embodiment is synonymous with hot-pluggable filtration subunit 937 (FIG. 9). Filter 1432 can remove contaminants or particulates from the cooling liquid. Filter 1432 is in fluid communication with flow meter 1182, which is in fluid communication with liquid cooling components of blocks 1150A-D.

From a block-level perspective, cooling liquid flows from incoming facility supply 1230, through supply valve 1180, filter 1432, and then on to liquid cooling components of blocks 1150A-D. After the cooling liquid has removed heat from blocks 1150A-D, the cooling liquid flows to facility return 1440. According to one or more embodiment, the cooling liquid received at facility return 1440 can be recirculated for use or discarded or otherwise used at the facility.

The incoming flow rate of cooling liquid to DL RIHS 1100 can be regulated by supply valve 1180. Supply valve 1180 is communicatively coupled to and receives power from PWM circuit 1414A. Supply valve 1180 can be placed in different states of openness, ranging from fully closed (with no liquid flow) to fully open (for full or maximum liquid flow) based on the amount of power received from PWM circuit 1414A. RLIC 1178 can control the open state/position of (and thus the liquid flow rate permitted through) supply valve 1180 by sending control signals to PWM 1414A identifying the desired open position of supply valve 1180, and thus the amount of power that PWM circuit 1414A applies to supply valve 1180. RLIC 1178 thus regulates the flow rate and amount of cooling liquid being supplied to DL RIHS 1400. Similarly, RLIC 1178 can control the open state/position of (and thus the liquid flow rate permitted through) solenoid valve 1310 (and in one embodiment through secondary purge valves associated with purge fittings 1303 and 1305) by sending control signals to PWM 1414B, identifying the desired open or closed position of solenoid valve 1310, and thus the amount of power that PWM circuit 1414B applies to solenoid valve 1310. RLIC 1178 thus regulates the flow rate and amount of cooling liquid being supplied to DL RIHS 1400.

I/O interface 1412 is further communicatively coupled to supply liquid temperature sensor 1184A, and differential pressure sensor 1184B. Liquid temperature sensor 1184A can measure the temperature of the incoming cooling liquid and provide an electrical signal proportional to the temperature of the incoming cooling liquid. Differential pressure sensor 1184B measures the pressure drop across filter 1232 and provides an electrical signal proportional to the differential pressure. According to one aspect, RLIC 1178 can determine that filter 1232 is clogged if the differential pressure received from differential pressure sensor 1184C falls below a pre-determined value.

I/O interface 1212 is further communicatively coupled to flow meter 1182. Flow meter 1182 can measure a flow rate of cooling liquid being supplied to DL RIHS 1100 and provide an electrical signal proportional to the flow rate to RLIC 1178 via I/O interface 1412. I/O interface 1212 is further communicatively coupled to return liquid temperature sensor 1184E. Return liquid temperature sensor 1184E can measure the temperature of the return (outgoing) cooling liquid exiting from RIHS and provide an electrical signal proportional to the temperature of the return cooling liquid. A user input device 1197 is communicatively coupled to I/O interface 1212. In one embodiment, user input device 1197 can include a keyboard, mouse and/or touch pad. User input device 1197 can allow an IT manager or system administrator to input operational parameters, such as a service mode trigger and/or a desired exterior ambient temperature for a rack or block, and to later modify the inputted values as needed. Additionally, user input device 1197 can be utilized to enter a service mode by entry of a service mode command within a command line interface provided by firmware executing on the block controller. Entry of the service mode command triggers a series of operations by controller, including, but not limited to super cooling of the blocks, setting of timers, shutting off of supply input valves, and purging of the lines to reduce pressure.

Additionally, to support entry into the service mode, RFU 1432 is configured with at least one and potentially two service mode triggers, indicated as service mode (activation) buttons 1445, as well as a notification mechanism, indicated as LEDs 1447. In one embodiment, service mode activation buttons 1445 are located at both the front of the node and the back of the RFU to allow service mode to be triggered and monitored from both the front of rack and back of rack. Service mode activation buttons 1445 can be physically located proximate to the purge fittings 1303 and 1305 for easier access to the service mode interface options and for making tube connections to the purge fittings 1303 extending from the purge valves. LEDs 1447 can be similarly located near to service mode activation buttons 1445 at the front and/or back of RFU 1432.

Thus, the above described features of the control aspect of the service mode operations combine with the previous descriptions of the RIHS to provide a RIHS that includes: a rack 104 having at least one node-receiving bay and configured to support liquid cooling of inserted functional nodes, including server nodes with heat generating components; at least one liquid cooled (LC) node received in a respective node-receiving bay of the rack and which includes at least one component (e.g., a CPU) designed for operation within a preset range of temperatures. The at least one LC node is configured with a system of conduits to receive direct injection of cooling liquid, the system of conduits including a cooling liquid intake connector and a cooling liquid return connector. At least one temperature sensor is positioned to detect a high temperature within the at least one LC node.

The RIHS further includes: a liquid cooling subsystem having (i) a cooling liquid supply conduit with a supply port that receives and mates with the cooling liquid intake connector, (ii) a return conduit with a return port that receives and mates with the cooling liquid return connector, and (iii) a proportional valve that can be controlled to be in one of a plurality of open positions, ranging from a fully-closed position to a fully-open position. The liquid cooling subsystem provides a flow of cooling liquid under hydraulic pressure through the proportional valve, into and through the system of conduits, to enable cooling liquid absorption of heat from within the node to regulate the node temperature to be within the preset range of temperatures. The intake connector and return connector are sealably mated to a supply and return port with the cooling liquid maintained in the conduits under hydraulic pressure. With the pressure of the liquid, insertion of the LC node into the rack to connect to an already primed liquid cooling system can prove difficult due to having to overcome the very large hydraulic pressure that is pushing back on the intake and return connectors as they are being mated to the supply and return port. The RIHS also includes a rack or node servicing subsystem having: at least one pressure release valve (e.g., solenoid valves 1310 and, in one embodiment, purge valves associated with purge fittings 1303 and/or 1305) in line with the cooling liquid supply conduit. The pressure release valve (1310) is selectably configurable in one of (i) a closed position to maintain hydraulic pressure within the cooling liquid supply conduit and (ii) an open position to release enough fluid from the cooling liquid supply conduits to reduce an amount of liquid pressure within the cooling liquid supply conduit. The RIHS also includes a service mode trigger (activation button 1145/1210) that places the RIHS (and the at least one LC node) into a service mode. To enter into the service mode, the nodes are super-cooled such that the LC nodes can continue to operate without receiving injection of additional cooling liquid from respective cooling liquid supply conduits, while the RIHS is in the service mode.

The RIHS includes a controller (RLIC 1178) that is communicatively coupled to service mode trigger (1445), proportional valve 1180, at least one temperature sensor 1184, and notification mechanism (LEDs 1447). The controller: detects selection of the service mode trigger (service mode activation buttons 1445); in response to detecting selection of the service mode trigger, transmits a first control signal to cause the proportional supply valve 1180 to move to an open position that causes enhanced cooling of the at least one node due to increase rate of cooling liquid flow through the system of conduits; monitor a temperature being sensed by the at least one temperature sensor 1184; and in response to the temperature reaching a pre-established service mode temperature: forwards a second control signal, to cause the proportional supply valve 1180 to move to a fully closed position; and generates a notification of an entry of the RIHS into a service mode. While in the service mode, the at least one LC node can be one of (1) disengaged from the supply port and return port and (2) re-engaged with the supply port and return port, without affecting an operational on-state of the other nodes within the RIHS or the RIHS as a whole, and without incurring significant hydraulic pressure when re-engaging the LC node into the liquid cooling system.

In at least one embodiment, the RIHS further includes a timer 1417 and a notification mechanism (LEDS 1447) associated with the timer 1147. The controller then: sets the timer to track an elapsed time since the RIHS (or the at least one LC node) is placed in the service mode; signals, via the notification mechanism, when an available time for completion of the service mode is about to expire; and in response to expiration of the timer, automatically forwards a third control signal to the proportional supply valve 1180 to open and resume a supply of cooling liquid to the cooling subsystem. According to one aspect, the amount of time provided for the service mode (i.e., service time 1426) is a pre-set or calculated number, which is based on empirical testing and/or real time calculations of temperature change over time in the current operating state of the RIHS. For example, a default service time of 60 seconds can be established and stored in RLIC memory 1420 and processor 1415 can adjust that service time based on the actual rate of temperature increase recorded at the nodes when circulation of cooling liquid is paused, as when in the service mode. If rate of temperature increase is greater than when the baseline/default service time was generated, then processor 1415 adjusts the service time downwards (e.g., to 50 seconds), while if the rate of temperature increase is slower than when the baseline/default service time was generated, processor 1415 can either adjust service time 1426 upwards (e.g., to 65 seconds) and/or processor can adjust the temperature to which the nodes are super-cooled to be a higher temperature. This later adjustment enables the service mode delay/response time, (i.e., time after receiving the activation trigger until the nodes are sufficiently super-cooled to signal the beginning of the serviceable period of the service mode) to be shortened (e.g., from 30 seconds to 45 seconds). It is understood that the time values utilized herein are solely for providing an example scenario and are not intended to reflect actual times utilized or limit the use of different or the same times. These times are variable and adjustable based on the system makeup (e.g., number of LC nodes), ambient conditions of the system (e.g., facility temperature), liquid being utilized as the cooling liquid, etc. As another aspect of the disclosure, RLIC 1178 can also transmit a signal to the rack controller and/or block controller to throttle the operations of the processing components within one or more of the LC nodes to reduce a rate of heat dissipation when a longer service time 1426 is desired or in response to the temperature raising faster than expected, reducing the service time 1426 due to some imbalance. In one embodiment, the throttling of processor operations across the entire RIHS is automatically activated in response to detecting an activation of the service mode trigger.

As introduced above, in at least one embodiment, triggering the notification mechanism includes a built in delay period from a time at which the service mode is initially triggered (e.g., receipt of a selection of activation button 1445) to when the service mode becomes active and the LC node can be removed from and/or inserted into the rack to sealably mate with the cooling liquid supply conduit and return conduit. Further, in one embodiment, the notification mechanism includes a display, and the controller signals the expiration of the available time by displaying a time remaining status on the display associated with or communicatively connected to RLIC 1178. In another embodiment, the notification mechanism includes a set of lights (and particularly LEDs 1447, in the illustrative embodiment) having at least two different visible illumination representing when the service mode is active and when the service mode is expiring or expired. The second illumination represents a signal to the technician that the at least one LC node should not be removed from the RIHS or inserted into the RIHS when the service mode is expired.

According to one embodiment, the at least one pressure release valve includes a purge fitting/head for receiving an end of a purging tube that includes a bore and which funnels pressurized cooling liquid from inside the conduits away from the least one LC node. A portion of the pressurized cooling liquid is pushed out of the cooling liquid supply conduit into the purging tube to reduce a built up of hydraulic pressure and to facilitate re-insertion of the at least one LC node into the rack.

With the above configuration and control aspects, the controller moderates a flow rate of cooling liquid received by the at least one node during normal operation to be less than a full rate supported when the proportional valve is moved to a full open position and the controller increases the flow rate to a higher rate to cause enhanced cooling for a pre-set period of time prior to the at least one node entering into the service mode. Additionally, the controller executes a service mode utility 1425 that configures the controller to: increase a flow of cooling liquid to specific high value components to sub-cool the high value components and enable a longer service window. Finally, as one aspect of the disclosure, the controller: continually monitors temperature and other operating conditions of the LC nodes during the service mode; and automatically shortens a time available for a service mode in response to the temperature or other operating conditions indicating that an internal operating condition of the at least one LC node is approaching one or more pre-set limits that falls outside of an ideal operating condition due to an increase in node temperature.

In one embodiment, the cooling liquid supply conduit and return conduit are a part of a liquid rail formed by more than one node-to-node, Modular Liquid Distribution (MLD) conduit between multiple LC nodes provisioned in the rack and comprising first and second terminal fluid connections attached on opposite ends of a central conduit to seal to and enable fluid transfer between a port of a selected LC node and a port of another adjacent node. Accordingly, as described above, the RIHS includes a plurality of block liquid manifolds mountable at a back of a rack, where each block liquid manifold has two supply ports and two rail return ports on an outside facing side of the block liquid manifold that respectively communicate with at least one manifold supply port and a manifold return port on an inside facing side of the block liquid manifold. The more than one LC nodes are insertably placed in receiving bays of the rack corresponding to locations of the mounted block liquid manifolds, with block supply ports and block return ports of the LC nodes and an inside facing portion of the corresponding block liquid manifold aligned with, and sealing, for fluid transfer, the block supply and return ports of a selected one or more LC nodes to the aligned manifold supply and return ports of the inside facing portion of the block liquid manifold, each block liquid manifold comprising a supply bypass tube that communicates a bypass supply flow between the two rail supply ports with a node-selected portion of the bypass supply flow diverted from the manifold supply port to the block supply port. Each block liquid manifold includes a return bypass tube that communicates a bypass return flow between the two rail return ports with the node-selected portion of the bypass supply flow diverted after routing through the respective LC node from the block return port to the manifold supply port.

According to the illustrative embodiment of FIG. 14, the RIHS is configured with a rack filtration unit (RFU) within which the components of the node servicing system are provided. The RFU includes the aforementioned components (i.e., a node enclosure, at least one supply port and at least one return port, first and second filtration subunits connected in parallel fluid communication within the node chassis, and a liquid coolant diversion network. Additionally, to support the features of the current disclosure, the RFU is further configured with the purge valve, which is a small diameter, quick disconnect, purge solenoid valve that connects at one end to the RFU liquid system. The solenoid valve terminates with a latching (non-blind mated) small-diameter, quick disconnect "purge fitting" located at both the rear RFU face and the front RFU face, and receives a purge tube that extends away from the sensitive components of the RIHS. Following the sub-cooling period and the closing of the supply valve, the processor 1415 send a control signal to open the solenoid valves for a predeterminable amount of time to allow excess pressurized liquid to flow out through the valves into the purge tubing, thus releasing the pressure of the liquid built up in the liquid subsystem.

The FRU is further configured with the service mode trigger, which includes at least one of a first push button linked to a LIMB at a front face of the RFU and a rear face of the RFU. "Service Mode" activation buttons 1445 are located at the front RFU face (near the status LEDs) and at the rear RFU face. As shown, the activation buttons 1445 are communicatively linked to LIMB 1410.

In at least one embodiment, the notification mechanism includes a series of status light emitting diodes (LEDs) located proximate to each service mode trigger. According to one embodiment, in the implementation involving LEDs 1447, a single tri-colored Service Mode Status LEDs can be provided, having three distinguishably different colors, with one example color coding of the notification being as follows:

(i) Green=The Rack liquid components may be serviced at this time

(ii) Orange=The "Service Mode" timer is ending soon (i.e. 10 seconds)

(iii) Red=Do Not Service

The tri-colored LEDs can be located both at the front and the rear face of RFU 1432.

According to one aspect of the disclosure, the controller initiates the service mode only following receipt of a continuous activation of the service mode trigger (e.g., depressing of activation button 1445) for more than a pre-set threshold amount of time (e.g., 5 second). This functionality is provided to reduce an occurrence of an accidental triggering of the service node. RLIC 1178 executes a service mode utility 1425 that configures the controller (1178) to: track a number of service mode activations that occurs within a monitored time frame; and in response to the number of service mode activations being above a maximum threshold for the monitored time interval (referenced in FIG. 14 as the service periodicity 1428), suspend an activation of a last service mode request until sufficient time has passed to re-enable activation of the service mode.

FIG. 15 illustrates a method 1500 of assembling a DL RIHS, such as one of RIHS 100, 800, 900, and/or 1000. In one or more embodiments, the method 1500 includes forming a block liquid manifold having a supply bypass tube and a return bypass tube that terminate respectively in a pair of supply ports and a pair of return ports to form a portion of a supply conduit and a return conduit respectively of a liquid rail (block 1502). The method includes configuring a rack enclosure to receive more than one LC nodes each configured with a system of internal conduits to receive direct injection of cooling liquid from a liquid rail side of the rack chassis to regulate the ambient temperature of the node (block 1504). The method 1500 includes mounting more than one LC node and corresponding block liquid manifolds in a rack with the respective supply ports linearly aligned and the return ports linearly aligned, wherein the supply bypass tube and the return bypass tube of a respective block liquid manifold seals via a dynamic control valve to the internal conduits of a corresponding LC node (block 1506). The method 1500 optionally includes providing selected MLD conduits in a first number of rack units in size and a forming selected conduits in a second number of rack units in size, wherein each MLD conduit is formed having first and second terminal connections between a central conduit (block 1508). In one embodiment, the MLD conduits are purchased in correct dimensions from a third party supplier. The method 1500 includes attaching node-to-node interconnecting MLD conduits between a selected pair of adjacent rail supply ports and adjacent rail return ports of the exterior face of the block liquid manifolds to form a supply conduit and a return conduit respectively of a scalable liquid rail that enables cooling to the functional components inside the LC nodes by enabling liquid transfer through each node to absorb and remove heat generated by heat-generating functional components inside of the node (block 1510). The method 1500 includes optionally attaching a supply liquid conduit for fluid transfer to one port of one block liquid manifold of the RIHS to a facility supply and attaching a return liquid conduit for fluid transfer to one port of one block liquid manifold of the RIHS to a facility return (block 1512). The method finally includes inserting an RFU into the RFU receiving bay (block 1514). Following, method 1500 includes pressurizing the liquid cooling system by opening the liquid supply to initiate flow of cooling liquid (block 1516). Then method 1500 ends.

FIG. 16 illustrates an example method for implementing a service mode within a DL RIHS having at least one LC node. The description of the method is provided with consideration of a simplest representation of a DL RIHS, in which a single LC node is provided and a single proportional supply valve, assumed to be the rack-level valve located within the facility supply line and which is controlled by a RLIC on an inserted RFU. It is however appreciated that with the more complex configuration of a multi-node and multi-block DL RIHS, certain aspects of the method can be provided by either RLIC and/or block liquid controller controlling the open and closing of a block-level proportional valve, while the RLIC controls the rack-level supply valve and the purge solenoid valve(s). Also, it is appreciate that certain operations can be provided using a different set of service node buttons and valves than those illustrated and described as being a part of the RFU, in one or more alternate embodiments.

Referring now to the figure, method 1600 generally includes a controller detecting selection of a service mode trigger (block 1602). Then, method 1600 includes, in response to detecting selection of the service mode trigger, the controller transmitting a first control signal to cause the proportional valve to move to an open position that provides enhanced cooling of the at least one LC node due to increase rate of cooling liquid flow through the system of conduits (block 1604). Following, method 1600 includes monitoring a temperature being sensed by the at least one temperature sensor (block 1606). In an alternate embodiment (shown by side blocks having dashed lines), method 1600 includes setting a timer to track an elapsed time during which the super cooling of the node is performed (1605). The increased rate of cooling liquid is thus linked to a predetermine/pre-established amount of time that is required, with that time determined from empirical testing, for example, and knowledge of the desired lower temperature of the CPUs and/or nodes to be reached. The pre-established time for cooling can also be tied to temperature measurements, whereby different cooling times are predetermined and one selected to be applied for the supercooling period based on a highest sensed temperature of the CPUs just prior to opening the valve. If all of the nodes are already relatively cool, the supercooling would only occur for a short time (if at all necessary), while if at least one node has a high operating/ambient (internal) temperature, supercooling is performed for a much greater time period. RLIC monitors for expiration at the timer at decision block 1607, and triggers the generation of the second control signal in block 1606 in response to expiration of the pre-established time.

Returning to the main branch of the flow chart, in response to the temperature reaching a pre-established service mode temperature, method 1600 provides: RLIC forwarding a second control signal to cause the proportional valve to move to a fully closed position (block 1608); and generating a notification of an entry of the RIHS into a service mode (block 1610). With this notification, and while the RIHS is in the service mode, purging of a portion of the cooling liquid can occur through one or more of the solenoid valves located in the RFU. This purging occurs via cooling liquid removal from the conduits, which reduces the hydraulic pressure built up inside of the conduits. With the hydraulic pressure removed or substantially reduced, a LC node being serviced can be re-inserted into the rack and reconnected to the cooling liquid subsystem via the node connecting ports and the supply ports without the installer having to exert significant effort to overcome the otherwise high hydraulic pressure within the conduits. During the service mode, the at least one LC node (or the RFU) can be (1) disengaged from the supply port and return port and/or (2) easily re-engaged with the supply port and return port, without affecting an operational on-state of the remainder of the RIHS.

Concurrently with entering into the service node, method 1600 provides setting a timer to track an elapsed time since the at least one LC node is placed in the service mode (block 1612). In one embodiment, method 1600 also includes displaying (on a connected display device or by an LED bar, for example, comprising a series of LEDs that light up in sequence as the time increases, or vice versa) the time remaining before the RIHS exits the service mode. Method 1600 involves determining (decision block 1614) if the timer is expiring (i.e., the time remaining is below a preset threshold time, measured in seconds or minutes, or other unitary measure of time. As one aspect, method 1600 includes continually monitoring a temperature and other operating conditions of the LC nodes during the service mode. During periods when the timer is not expiring or has not expired, method 1600 also includes determining (decision block 1616) if the LC node(s) temperature is still below a high temperature threshold. The high temperature threshold represents a temperature that is a high point of the temperature range for optimal node operation. In response to the node temperature being at or above the high temperature threshold, method 1600 includes triggering/activating a device protective mode (block 1618). While in the device protective mode, method 1600 can include automatically shortening a time available for a service mode in response to the temperature or other operating conditions indicating that an internal operating condition of the at least one LC node is approaching one or more pre-set limits that falls outside of an ideal operating condition due to an increase in node temperature. Additionally, method 1600 can involve the rack controller informing the block controller of the need to throttle the operations occurring at the various nodes.

In response to the timer expiring, method 1600 includes signaling, via the provided notification mechanism, when an available time for completion of the service mode is about to expire (block 1620). In one embodiment, this signaling may also include a request for completion, wrap-up, or pausing of the service mode operations due to the pending time expiration. Following, method 1600 includes, and in response to expiration of the timer, automatically forwarding a third control signal to the proportional supply valve to open and resume a supply of cooling liquid to the cooling subsystem (block 1622).

Additional method features are supported by the disclosure and are generally described herein. Included in these features are the controller: tracking a number of service mode activations that occurs within a monitored time frame; and in response to the number of service mode activations being above a maximum threshold for the monitored time interval, suspending an activation of a last service mode request until sufficient time has passed to re-enable activation of the service mode. In one embodiment, method 1800 also includes: increasing a flow of cooling liquid to specific high value components to sub-cool the high value components and enable a longer service window.

In the above described flow charts of FIGS. 15-16, one or more of the methods may be embodied in an automated manufacturing system that performs a series of functional processes. In some implementations, certain steps of the methods are combined, performed simultaneously or in a different order, or perhaps omitted, without deviating from the scope of the disclosure. Thus, while the method blocks are described and illustrated in a particular sequence, use of a specific sequence of functional processes represented by the blocks is not meant to imply any limitations on the disclosure. Changes may be made with regards to the sequence of processes without departing from the scope of the present disclosure. Use of a particular sequence is therefore, not to be taken in a limiting sense, and the scope of the present disclosure is defined only by the appended claims.

One or more of the embodiments of the disclosure described can be implementable, at least in part, using a software-controlled programmable processing device, such as a microprocessor, digital signal processor or other processing device, data processing apparatus or system. Thus, it is appreciated that a computer program for configuring a programmable device, apparatus or system to implement the foregoing described methods is envisaged as an aspect of the present disclosure. The computer program may be embodied as source code or undergo compilation for implementation on a processing device, apparatus, or system. Suitably, the computer program is stored on a carrier device in machine or device readable form, for example in solid-state memory, magnetic memory such as disk or tape, optically or magneto-optically readable memory such as compact disk or digital versatile disk, flash memory, etc. The processing device, apparatus or system utilizes the program or a part thereof to configure the processing device, apparatus, or system for operation.

While the disclosure has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications may be made to adapt a particular system, device or component thereof to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiments disclosed for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.

The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope of the disclosure. The described embodiments were chosen and described in order to best explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.

* * * * *

File A Patent Application

  • Protect your idea -- Don't let someone else file first. Learn more.

  • 3 Easy Steps -- Complete Form, application Review, and File. See our process.

  • Attorney Review -- Have your application reviewed by a Patent Attorney. See what's included.