Easy To Use Patents Search & Patent Lawyer Directory

At Patents you can conduct a Patent Search, File a Patent Application, find a Patent Attorney, or search available technology through our Patent Exchange. Patents are available using simple keyword or date criteria. If you are looking to hire a patent attorney, you've come to the right place. Protect your idea and hire a patent lawyer.


Search All Patents:



  This Patent May Be For Sale or Lease. Contact Us

  Is This Your Patent? Claim This Patent Now.



Register or Login To Download This Patent As A PDF




United States Patent Application 20170101479
Kind Code A1
Sahin; Ugur ;   et al. April 13, 2017

GENETIC PRODUCTS DIFFERENTIALLY EXPRESSED IN TUMORS AND USE THEREOF

Abstract

The invention relates to the identification of genetic products that are expressed in association with a tumor and the nucleic acid coding therefor. The invention relates to the therapy and diagnosis of diseases in which said genetic products that are expressed in association with a tumor are expressed in aberrant manner. The invention also relates to proteins, polypeptides, and peptides which are expressed in association with a tumor and the nucleic acids coding therefor.


Inventors: Sahin; Ugur; (Mainz, DE) ; Tureci; Ozlem; (Mainz, DE) ; Koslowski; Michael; (Mainz, DE)
Applicant:
Name City State Country Type

Ganymed Pharmaceuticals AG

Mainz

DE
Family ID: 1000002368955
Appl. No.: 15/273378
Filed: September 22, 2016


Related U.S. Patent Documents

Application NumberFiling DatePatent Number
14268160May 2, 20149453260
15273378
12197960Aug 25, 20088716455
14268160
10506443Sep 2, 20047429461
PCT/EP2003/002556Mar 12, 2003
12197960

Current U.S. Class: 1/1
Current CPC Class: C07K 16/30 20130101; C07K 16/3053 20130101; C07K 16/3015 20130101; C07K 2317/76 20130101; C07K 16/3023 20130101; C07K 2317/34 20130101; C07K 16/3069 20130101
International Class: C07K 16/30 20060101 C07K016/30

Foreign Application Data

DateCodeApplication Number
Mar 12, 2002DE102-11-088.3

Claims



1.-117. (canceled)

118. A pharmaceutical composition, comprising a pharmaceutically compatible carrier or adjuvant and an antibody capable of specifically binding to an extracellulary exposed region of a protein or polypeptide, said protein or polypeptide being encoded by a nucleic acid, which comprises a nucleic acid sequence set forth in SEQ ID NO: 19.

119. The pharmaceutical composition of claim 118, wherein the antibody is a monoclonal, chimeric or humanized antibody.

120. The pharmaceutical composition of claim 118, wherein the protein or polypeptide comprises an amino acid sequence as set forth in SEQ ID NO: 22.

121. The pharmaceutical composition of claim 118, wherein the extracellularly exposed region of the protein or polypeptide being has an amino acid sequence set forth in SEQ ID NO: 81 or SEQ ID NO: 82.

122. The pharmaceutical composition of claim 118, wherein the antibody is capable of inhibiting the activity of said protein or polypeptide.

123. A method of treating a cancer in a patient, comprising: administering to the patient a pharmaceutical composition comprising a pharmaceutically compatible carrier or adjuvant and an antibody capable of specifically binding to an extracellularly exposed region of a protein or polypeptide, said protein or polypeptide being encoded by a nucleic acid, which comprises a nucleic acid sequence set forth in SEQ ID NO: 19, wherein said cancer is characterized by cancer cells expressing a tumor-associated antigen encoded by a nucleic acid which is selected from the group consisting of: (a) a nucleic acid which comprises a nucleic acid sequence set forth in SEQ ID NO: 19; and (b) a nucleic acid which hybridizes with the complement of the nucleic acid of (a) under stringent conditions, wherein the stringent conditions are a hybridization temperature of 65.degree. C. in a hybridization buffer containing 3.5.times.SSC, 0.02% Ficoll.RTM., 0.02% polyvinylpyrrolidone, 0.02% bovine serum albumin, 2.5 mM NaH.sub.2PO.sub.4, 0.5% SDS, and 2 mM EDTA.

124. The method of claim 123, wherein the protein or polypeptide or tumor-associated antigen comprises an amino acid sequence set forth in SEQ ID NO: 22.

125. The method of claim 123, wherein the antibody is a monoclonal, chimeric, or humanized antibody.

126. The method of claim 123, wherein the cancer is a melanoma, a mammary carcinoma, a prostate carcinoma, a bronchial carcinoma, an ovarian carcinoma, or a cervical carcinoma, each of which is characterized by expression or abnormal expression of the protein or polypeptide.
Description



[0001] Despite interdisciplinary approaches and exhaustive use of classical therapeutic procedures, cancers are still among the leading causes of death. More recent therapeutic concepts aim at incorporating the patient's immune system into the overall therapeutic concept by using recombinant tumor vaccines and other specific measures such as antibody therapy. A prerequisite for the success of such a strategy is the recognition of tumor-specific or tumor-associated antigens or epitopes by the patient's immune system whose effector functions are to be interventionally enhanced. Tumor cells biologically differ substantially from their nonmalignant cells of origin. These differences are due to genetic alterations acquired during tumor development and result, inter alia, also in the formation of qualitatively or quantitatively altered molecular structures in the cancer cells. Tumor-associated structures of this kind which are recognized by the specific immune system of the tumor-harboring host are referred to as tumor-associated antigens. The specific recognition of tumor-associated antigens involves cellular and humoral mechanisms which are two functionally interconnected units: CD.sup.4 and CD8.sup.+ T lymphocytes recognize the processed antigens presented on the molecules of the MHC (major histocompatibility complex) classes II and I, respectively, while B lymphocytes produce circulating antibody molecules which bind directly to unprocessed antigens. The potential clinical-therapeutical importance of tumor-associated antigens results from the fact that the recognition of antigens on neoplastic cells by the immune system leads to the initiation of cytotoxic effector mechanisms and, in the presence of T helper cells, can cause elimination of the cancer cells (Pardoll, Nat. Med. 4:525-31, 1998). Accordingly, a central aim of tumor immunology is to molecularly define these structures. The molecular nature of these antigens has been enigmatic for a long time. Only after development of appropriate cloning techniques has it been possible to screen cDNA expression libraries of tumors systematically for tumor-associated antigens by analyzing the target structures of cytotoxic T lymphocytes (CTL) (van der Bruggen et al., Science 254:1643-7, 1991) or by using circulating autoantibodies (Sahin et al., Curr. Opin. Immunol. 9:709-16, 1997) as probes. To this end, cDNA expression libraries were prepared from fresh tumor tissue and recombinantly expressed as proteins in suitable systems. Immunoeffectors isolated from patients, namely CTL clones with tumor-specific lysis patterns, or circulating autoantibodies were utilized for cloning the respective antigens.

[0002] In recent years a multiplicity of antigens have been defined in various neoplasias by these approaches. The class of cancer/testis antigens (CTA) is of great interest here. CTA and genes encoding them (cancer/testis genes or CTG) are defined by their characteristic expression pattern [Tureci et al, Mol Med Today. 3:342-9, 1997]. They are not found in normal tissues, except testis and germ cells, but are expressed in a number of human malignomas, not tumor type-specifically but with different frequency in tumor entities of very different origins (Chen & Old, Cancer J. Sci. Am. 5:16-7, 1999). Serum reactivities against CTA are also not found in healthy controls but only in tumor patients. This class of antigens, in particular owing to its tissue distribution, is particularly valuable for immunotherapeutic projects and is tested in current clinical patient studies (Marchand et al., Int. J. Cancer 80:219-30, 1999; Knuth et al., Cancer Chemother. Pharmacol. 46:p 46-51, 2000).

[0003] However, the probes utilized for antigen identification in the classical methods illustrated above are immunoeffectors (circulating autoantibodies or CTL clones) from patients usually having already advanced cancer. A number of data indicate that tumors can lead, for example, to tolerization and anergization of T cells and that, during the course of the disease, especially those specificities which could cause effective immune recognition are lost from the immunoeffector repertoire. Current patient studies have not yet produced any solid evidence of a real action of the previously found and utilized tumor-associated antigens. Accordingly, it cannot be ruled out that proteins evoking spontaneous immune responses are the wrong target structures.

[0004] It was the object of the present invention to provide target structures for a diagnosis and therapy of cancers.

[0005] According to the invention, this object is achieved by the subject matter of the claims.

[0006] According to the invention, a strategy for identifying and providing antigens expressed in association with a tumor and the nucleic acids coding therefor was pursued. This strategy is based on the fact that actually testis- and thus germ cell-specific genes which are usually silent in adult tissues are reactivated in tumor cells in an ectopic and forbidden manner. First, data mining produces a list as complete as possible of all known testis-specific genes which are then evaluated for their aberrant activation in tumors by expression analyses by means of specific RT-PCR. Data mining is a known method of identifying tumor-associated genes. In the conventional strategies, however, transcriptoms of normal tissue libraries are usually subtracted electronically from tumor tissue libraries, with the assumption that the remaining genes are tumor-specific (Schmitt et al., Nucleic Acids Res. 27:4251-60, 1999; Vasmatzis et al., Proc. Natl. Acad. Sci. USA. 95:300-4, 1998. Scheurle et al., Cancer Res. 60:4037-43, 2000).

[0007] The concept of the invention, which has proved much more successful, however, is based on utilizing data mining for electronically extracting all testis-specific genes and then evaluating said genes for ectopic expression in tumors.

[0008] The invention thus relates in one aspect to a strategy for identifying genes differentially expressed in tumors. Said strategy combines data mining of public sequence libraries ("in silico") with subsequent evaluating laboratory-experimental ("wet bench") studies.

[0009] According to the invention, a combined strategy based on two different bioinformatic scripts enabled new members of the cancer/testis (CT) gene class to be identified. These have previously been classified as being purely testis-, germ cell- or sperm-specific. The finding that these genes are aberrantly activated in tumor cells allows them to be assigned a substantially new quality with functional implications. According to the invention, these tumor-associated genes and the genetic products encoded thereby were identified and provided independently of an immunogenic action.

[0010] The tumor-associated antigens identified according to the invention have an amino acid sequence encoded by a nucleic acid which is selected from the group consisting of (a) a nucleic acid which comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-5, 19-21, 29, 31-33, 37, 39, 40, 54-57, 62, 63, 70, 74, 85-88, a part or derivative thereof, (b) a nucleic acid which hybridizes with the nucleic acid of (a) under stringent conditions, (c) a nucleic acid which is degenerate with respect to the nucleic acid of (a) or (b), and (d) a nucleic acid which is complementary to the nucleic acid of (a), (b) or (c). In a preferred embodiment, a tumor-associated antigen identified according to the invention has an amino acid sequence encoded by a nucleic acid which is selected from the group consisting of SEQ ID NOs: 1-5, 19-21, 29, 31-33, 37, 39, 40, 54-57, 62, 63, 70, 74, 85-88. In a further preferred embodiment, a tumor-associated antigen identified according to the invention comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 6-13, 14-18, 22-24, 30, 34-36, 38, 41, 58-61, 64, 65, 71, 75, 80-84, 89-100, a part or derivative thereof.

[0011] The present invention generally relates to the use of tumor-associated antigens identified according to the invention or of parts thereof, of nucleic acids coding therefor or of nucleic acids directed against said coding nucleic acids or of antibodies directed against the tumor-associated antigens identified according to the invention or parts thereof for therapy and diagnosis. This utilization may relate to individual but also to combinations of two or more of these antigens, functional fragments, nucleic acids, antibodies, etc., in one embodiment also in combination with other tumor-associated genes and antigens for diagnosis, therapy and progress control.

[0012] Preferred diseases for a therapy and/or diagnosis are those in which one or more of the tumor-associated antigens identified according to the invention are selectively expressed or abnormally expressed.

[0013] The invention also relates to nucleic acids and genetic products' which are expressed in association with a tumor cell and which are produced by altered splicing (splice variants) of known genes or by altered translation with utilization of alternative open reading frames. Said nucleic acids comprise the sequences according to (SEQ ID NO: 2-5, 20, 21, 31-33, 54-57, 85-88) of the sequence listing. Furthermore, the genetic products comprise sequences according to (SEQ ID NO: 7-13, 23, 24, 34-36, 58-61, 89-100) of the sequence listing. The splice variants of the invention can be used according to the invention as targets for diagnosis and therapy of neoplastic diseases.

[0014] Very different mechanisms may cause splice variants to be produced, for example [0015] utilization of variable transcription initiation sites [0016] utilization of additional exons [0017] complete or incomplete splicing out of single or two or more exons, [0018] splice regulator sequences altered via mutation (deletion or generation of new donor/acceptor sequences), [0019] incomplete elimination of intron sequences.

[0020] Altered splicing of a gene results in an altered transcript sequence (splice variant). Translation of a splice variant in the region of its altered sequence results in an altered protein which may be distinctly different in the structure and function from the original protein. Tumor-associated splice variants may produce tumor-associated transcripts and tumor-associated proteins/antigens. These may be utilized as molecular markers both for detecting tumor cells and for therapeutic targeting of tumors. Detection of tumor cells, for example in blood, serum, bone marrow, sputum, bronchial lavage, bodily secretions and tissue biopsies, may be carried out according to the invention, for example, after extraction of nucleic acids by PCR amplification with splice variant-specific oligonucleotides. According to the invention, all sequence-dependent detection systems are suitable for detection. These are, apart from PCR, for example gene chip/microarray systems, Northern blot, RNAse protection assays (FDA) and others. All detection systems have in common that detection is based on a specific hybridization with at least one splice variant-specific nucleic acid sequence. However, tumor cells may also be detected according to the invention by antibodies which recognize a specific epitope encoded by the splice variant. Said antibodies may be prepared by using for immunization peptides which are specific for said splice variant. Suitable for immunization are particularly the amino acids whose epitopes are distinctly different from the variant(s) of the genetic product, which is (are; preferably produced in healthy cells. Detection of the tumor cells with antibodies may be carried out here on a sample isolated from the patient or as imaging with intravenously administered antibodies. In addition to diagnostic usability, splice variants having new or altered epitopes are attractive targets for immunotherapy. The epitopes of the invention may be utilized for targeting therapeutically active monoclonal antibodies or T lymphocytes. In passive immunotherapy, antibodies or T lymphocytes which recognize splice variant-specific epitopes are adoptively transferred here. As in the case of other antigens, antibodies may be generated also by using standard technologies (immunization of animals, panning strategies for isolation of recombinant antibodies) with utilization of polypeptides which include these epitopes. Alternatively, it is possible to utilize for immunization nucleic acids coding for oligo- or polypeptides which contain said epitopes. Various techniques for in vitro or in vivo generation of epitope-specific T lymphocytes are known and have been described in detail, for example (Kessler J H, et al. 2001, Sahin et al., 1997) and are likewise based on utilizing oligo- or polypeptides which contain the splice variant-specific epitopes or nucleic acids coding for said oligo- or polypeptides. Oligo- or polypeptides which contain the splice variant-specific epitopes or nucleic acids coding for said polypeptides may also be used for utilization as pharmaceutically active substances in active immunotherapy (vaccination, vaccine therapy).

[0021] In one aspect, the invention relates to a pharmaceutical composition comprising an agent which recognizes the tumor-associated antigen identified according to the invention and which is preferably selective for cells which have expression or abnormal expression of a tumor-associated antigen identified according to the invention. In particular embodiments, said agent may cause induction of cell death, reduction in cell growth, damage to the cell membrane or secretion of cytokines and preferably have a tumor-inhibiting activity. In one embodiment, the agent is an antisense nucleic acid which hybridizes selectively with the nucleic acid coding for the tumor-associated antigen. In a further embodiment, the agent is an antibody which binds selectively to the tumor-associated antigen, in particular a complement-activated antibody which binds selectively to the tumor-associated antigen. In a further embodiment, the agent comprises two or more agents which each selectively recognize different tumor-associated antigens, at least one of which is a tumor-associated antigen identified according to the invention. Recognition needs not be accompanied directly with inhibition of activity or expression of the antigen. In this aspect of the invention, the antigen selectively limited to tumors preferably serves as a label for recruiting effector mechanisms to this specific location. In a preferred embodiment, the agent is a cytotoxic T lymphocyte which recognizes the antigen on an HLA molecule and lyses the cell labeled in this way. In a further embodiment, the agent is an antibody which binds selectively to the tumor-associated antigen and thus recruits natural or artificial effector mechanisms to said cell. In a further embodiment, the agent is a T helper lymphocyte which enhances effector functions of other cells specifically recognizing said antigen.

[0022] In one aspect, the invention relates to a pharmaceutical composition comprising an agent which inhibits expression or activity of a tumor-associated antigen identified according to the invention. In a preferred embodiment, the agent is an antisense nucleic acid which hybridizes selectively with the nucleic acid coding for the tumor-associated antigen. In a further embodiment, the agent is an antibody which binds selectively to the tumor-associated antigen. In a further embodiment, the agent comprises two or more agents which each selectively inhibit expression or activity of different tumor-associated antigens, at least one of which is a tumor-associated antigen identified according to the invention.

[0023] The invention furthermore relates to a pharmaceutical composition which comprises an agent which, when administered, selectively increases the amount of complexes between an HLA molecule and a peptide epitope from the tumor-associated antigen identified according to the invention. In one embodiment, the agent comprises one or more components selected from the group consisting of (i) the tumor-associated antigen or a part thereof, (ii) a nucleic acid which codes for said tumor-associated antigen or a part thereof, (iii) a host cell which expresses said tumor-associated antigen or a part thereof, and (iv) isolated complexes between peptide epitopes from said tumor-associated antigen and an MHC molecule. In one embodiment, the agent comprises two or more agents which each selectively increase the amount of complexes between MHC molecules and peptide epitopes of different tumor-associated antigens, at least one of which is a tumor-associated antigen identified according to the invention.

[0024] The invention furthermore relates to a pharmaceutical composition which comprises one or more components selected from the group consisting of (i) a tumor-associated antigen identified according to the invention or a part thereof, (ii) a nucleic acid which codes for a tumor-associated antigen identified according to the invention or for a part thereof, (iii) an antibody which binds to a tumor-associated antigen identified according to the invention or to a part thereof, (iv) an antisense nucleic acid which hybridizes specifically with a nucleic acid coding for a tumor-associated antigen identified according to the invention, (v) a host cell which expresses a tumor-associated antigen identified according to the invention or a part thereof, and (vi) isolated complexes between a tumor-associated antigen identified according to the invention or a part thereof and an HLA molecule.

[0025] A nucleic acid coding for a tumor-associated antigen identified according to the invention or for a part thereof may be present in the pharmaceutical composition in an expression vector and functionally linked to a promoter.

[0026] A host cell present in a pharmaceutical composition of the invention may secrete the tumor-associated antigen or the part thereof, express it on the surface or may additionally express an HLA molecule which binds to said tumor-associated antigen or said part thereof. In one embodiment, the host cell expresses the HLA molecule endogenously. In a further embodiment, the host cell expresses the HLA molecule and/or the tumor-associated antigen or the part thereof in a recombinant manner. The host cell is preferably nonproliferative. In a preferred embodiment, the host cell is an antigen-presenting cell, in particular a dendritic cell, a monocyte or a macrophage.

[0027] An antibody present in a pharmaceutical composition of the invention may be a monoclonal antibody. In further embodiments, the antibody is a chimeric or humanized antibody, a fragment of a natural antibody or a synthetic antibody, all of which may be produced by combinatory techniques. The antibody may be coupled to a therapeutically or diagnostically useful agent.

[0028] An antisense nucleic acid present in a pharmaceutical composition of the invention may comprise a sequence of 6-50, in particular 10-30, 15-30 and 20-30, contiguous nucleotides of the nucleic acid coding for the tumor-associated antigen identified according to the invention.

[0029] In further embodiments, a tumor-associated antigen, provided by a pharmaceutical composition of the invention either directly or via expression of a nucleic acid, or a part thereof binds to MHC molecules on the surface of cells, said binding preferably causing a cytolytic response and/or inducing cytokine release.

[0030] A pharmaceutical composition of the invention may comprise a pharmaceutically compatible carrier and/or an adjuvant. The adjuvant may be selected from saponin, GM-CSF, CpG nucleotides, RNA, a cytokine or a chemokine. A pharmaceutical composition of the invention is preferably used for the treatment of a disease characterized by selective expression or abnormal expression of a tumor-associated antigen. In a preferred embodiment, the disease is cancer.

[0031] The invention furthermore relates to methods of treating or diagnosing a disease characterized by expression or abnormal expression of one of more tumor-associated antigens. In one embodiment, the treatment comprises administering a pharmaceutical composition of the invention.

[0032] In one aspect, the invention relates to a method of diagnosing a disease characterized by expression or abnormal expression of a tumor-associated antigen identified according to the invention. The method comprises detection of (i) a nucleic acid which codes for the tumor-associated antigen or of a part thereof and/or (ii) detection of the tumor-associated antigen or of a part thereof, and/or (iii) detection of an antibody to the tumor-associated antigen or to a part thereof and/or (iv) detection of cytotoxic or T helper lymphocytes which are specific for the tumor-associated antigen or for a part thereof in a biological sample isolated from a patient. In particular embodiments, detection comprises (i) contacting the biological sample with an agent which binds specifically to the nucleic acid coding for the tumor-associated antigen or to the part thereof, to said tumor-associated antigen or said part thereof, to the antibody or to cytotoxic or T helper lymphocytes specific for the tumor-associated antigen or parts thereof, and (ii) detecting the formation of a complex between the agent and the nucleic acid or the part thereof, the tumor-associated antigen or the part thereof, the antibody or the cytotoxic or T helper lymphocytes. In one embodiment, the disease is characterized by expression or abnormal expression of two or more different tumor-associated antigens and detection comprises detection of two or more nucleic acids coding for said two or more different tumor-associated antigens or of parts thereof, detection of two or more different tumor-associated antigens or of parts thereof, detection of two or more antibodies binding to said two or more different tumor-associated antigens or to parts thereof or detection of two or more cytotoxic or T helper lymphocytes specific for said two or more different tumor-associated antigens In a further embodiment, the biological sample isolated from the patient is compared to a comparable normal biological sample.

[0033] In a further aspect, the invention relates to a method for determining regression, course or onset of a disease characterized by expression or abnormal expression of a tumor-associated antigen identified according to the invention, which method comprises monitoring a sample from a patient who has said disease or is suspected of falling ill with said disease, with respect to one or more parameters selected from the group consisting of (i) the amount of nucleic acid which codes for the tumor-associated antigen or of a part thereof, (ii) the amount of the tumor-associated antigen or a part thereof, (iii) the amount of antibodies which bind to the tumor-associated antigen or to a part thereof, and (iv) the amount of cytolytic T cells or T helper cells which are specific for a complex between the tumor-associated antigen or a part thereof and an MHC molecule. The method preferably comprises determining the parameter(s) in a first sample at a first point in time and in a further sample at a second point in time and in which the course of the disease is determined by comparing the two samples. In particular embodiments, the disease is characterized by expression or abnormal expression of two or more different tumor-associated antigens and monitoring comprises monitoring (i) the amount of two or more nucleic acids which code for said two or more different tumor-associated antigens or of parts thereof, and/or (ii) the amount of said two or more different tumor-associated antigens or of parts thereof, and/or (iii) the amount of two or more antibodies which bind to said two or more different tumor-associated antigens or to parts thereof, and/or (iv) the amount of two or more cytolytic T cells or of T helper cells which are specific for complexes between said two or more different tumor-associated antigens or of parts thereof and MHC molecules.

[0034] According to the invention, detection of a nucleic acid or of a part thereof or monitoring the amount of a nucleic acid or of a part thereof may be carried out using a polynucleotide probe which hybridizes specifically to said nucleic acid or said part thereof or may be carried out by selective amplification of said nucleic acid or said part thereof. In one embodiment, the polynucleotide probe comprises a sequence of 6-50, in particular 10-30, 15-30 and 20-30, contiguous nucleotides of said nucleic acid.

[0035] In particular embodiments, the tumor-associated antigen to be detected or the part thereof is present intracellularly or on the cell surface. According to the invention, detection of a tumor-associated antigen or of a part thereof or monitoring the amount of a tumor-associated antigen or of a part thereof may be carried out using an antibody binding specifically to said tumor-associated antigen or said part thereof.

[0036] In further embodiments, the tumor-associated antigen to be detected or the part thereof is present in a complex with an MHC molecule, in particular an HLA molecule.

[0037] According to the invention, detection of an antibody or monitoring the amount of antibodies may be carried cut using a protein or peptide binding specifically to said antibody.

[0038] According to the invention, detection of cytolytic T cells or of T helper cells or monitoring the amount of cytolytic T cells or of T helper cells which are specific for complexes between an antigen or a part thereof and MHC molecules may be carried out using a cell presenting the complex between said antigen or said part thereof and an MHC molecule.

[0039] The polynucleotide probe, the antibody, the protein or peptide or the cell, which is used for detection or monitoring, is preferably labeled in a detectable manner. In particular embodiments, the detectable marker is a radioactive marker or an enzymic marker. T lymphocytes may additionally be detected by detecting their proliferation, their cytokine production, and their cytotoxic activity triggered by specific stimulation with the complex of MHC and tumor-associated antigen or parts thereof. T lymphocytes may also be detected via a recombinant MHC molecule or else a complex of two or more MHC molecules which are loaded with the particular immunogenic fragment of one or more of the tumor-associated antigens and which can identify the specific T lymphocytes by contacting the specific T cell receptor.

[0040] In a further aspect, the invention relates to a method of treating, diagnosing or monitoring a disease characterized by expression or abnormal expression of a tumor-associated antigen identified according to the invention, which method comprises administering an antibody which binds to said tumor-associated antigen or to a part thereof and which is coupled to a therapeutic or diagnostic agent. The antibody may be a monoclonal antibody. In further embodiments, the antibody is a chimeric or humanized antibody or a fragment of a natural antibody.

[0041] The invention also relates to a method of treating a patient having a disease characterized by expression or abnormal expression of a tumor-associated antigen identified according to the invention, which method comprises (i) removing a sample containing immunoreactive cells from said patient, (ii) contacting said sample with a host cell expressing said tumor-associated antigen or a part thereof, under conditions which favor production of cytolytic T cells against said tumor-associated antigen or a part thereof, and (iii) introducing the cytolytic T cells into the patient in an amount suitable for lysing cells expressing the tumor-associated antigen or a part thereof. The invention likewise relates to cloning the T cell receptor of cytolytic T cells against the tumor-associated antigen. Said receptor may be transferred to other T cells which thus receive the desired specificity and, as under (iii), may be introduced into the patient.

[0042] In one embodiment, the host cell endogenously expresses an HLA molecule. In a further embodiment, the host cell recombinantly expresses an HLA molecule and/or the tumor-associated antigen or the part thereof. The host cell is preferably nonproliferative. In a preferred embodiment, the host cell is an antigen-presenting cell, in particular a dendritic cell, a monocyte or a macrophage.

[0043] In a further aspect, the invention relates to a method of treating a patient having a disease characterized by expression or abnormal expression of a tumor-associated antigen, which method comprises (i) identifying a nucleic acid which codes for a tumor-associated antigen identified according to the invention and which is expressed by cells associated with said disease, (ii) transfecting a host cell with said nucleic acid or a part thereof, (iii) culturing the transfected host cell for expression of said nucleic acid (this is not obligatory when a high rate of transfection is obtained), and (iv) introducing the host cells or an extract thereof into the patient in an amount suitable for increasing the immune response to the patient's cells associated with the disease. The method may further comprise identifying an MHC molecule presenting the tumor-associated antigen or a part thereof, with the host cell expressing the identified MHC molecule and presenting said tumor-associated antigen or a part thereof. The immune response may comprise a B cell response or a T cell response. Furthermore, a T cell response may comprise production of cytolytic T cells and/or T helper cells which are specific for the host cells presenting the tumor-associated antigen or a part thereof or specific for cells of the patient which express said tumor-associated antigen or a part thereof.

[0044] The invention also relates to a method of treating a disease characterized by expression or abnormal expression of a tumor-associated antigen identified according to the invention, which method comprises (i) identifying cells from the patient which express abnormal amounts of the tumor-associated antigen, (ii) isolating a sample of said cells, (iii) culturing said cells, and (iv) introducing said cells into the patient in an amount suitable for triggering an immune response to the cells.

[0045] Preferably, the host cells used according to the invention are nonproliferative or are rendered nonproliferative. A disease characterized by expression or abnormal expression of a tumor-associated antigen is in particular cancer.

[0046] The present invention furthermore relates to a nucleic acid selected from the group consisting of (a) a nucleic acid which comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 2-5, 20-21, 31-33, 39, 54-57, 62, 63, 85-88, a part or derivative thereof, (b) a nucleic acid which hybridizes with the nucleic acid of (a) under stringent conditions, (c) a nucleic acid which is degenerate with respect to the nucleic acid of (a) or (b), and (d) a nucleic acid which is complementary to the nucleic acid of (a), (b) or (c). The invention furthermore relates to a nucleic acid, which codes for a protein or polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 7-13, 14-18, 23-24, 34-36, 58-61, 64, 65, 89-100, a part or derivative thereof.

[0047] In a further aspect, the invention relates to promoter sequences of nucleic acids of the invention. These sequences may be functionally linked to another gene, preferably in an expression vector, and thus ensure selective expression of said gene in appropriate cells.

[0048] In a further aspect, the invention relates to a recombinant nucleic acid molecule, in particular DNA or RNA molecule, which comprises a nucleic acid of the invention.

[0049] The invention also relates to host cells which contain a nucleic acid of the invention or a recombinant nucleic acid molecule comprising a nucleic acid of the invention.

[0050] The host cell may also comprise a nucleic acid coding for a HLA molecule. In one embodiment, the host cell endogenously expresses the HLA molecule. In a further embodiment, the host cell recombinantly expresses the HLA molecule and/or the nucleic acid of the invention or a part thereof. Preferably, the host cell is nonproliferative. In a preferred embodiment, the host cell is an antigen-presenting cell, in particular a dendritic cell, a monocyte or a macrophage.

[0051] In a further embodiment, the invention relates to oligonucleotides which hybridize with a nucleic acid identified according to the invention and which may be used as genetic probes or as "antisense" molecules. Nucleic acid molecules in the form of oligonucleotide primers or competent samples, which hybridize with a nucleic acid identified according to the invention or parts thereof, may be used for finding nucleic acids which are homologous to said nucleic acid identified according to the invention. PCR amplification, Southern and Northern hybridization may be employed for finding homologous nucleic acids. Hybridization may be carried out under low stringency, more preferably under medium stringency and most preferably under high stringency conditions. The term "stringent conditions" according to the invention refers to conditions which allow specific hybridization between polynucleotide.

[0052] In a further aspect, the invention relates to a protein or polypeptide which is encoded by a nucleic acid selected from the group consisting of (a) a nucleic acid which comprises a nucleic acid sequence selected from the group consisting of SEQ IQ NOs: 2-5, 20-21, 31-33, 39, 54-57, 62, 63, 85-88, a part or derivative thereof, (b) a nucleic acid which hybridizes with the nucleic acid of (a) under stringent conditions, (c) a nucleic acid which is degenerate with respect to the nucleic acid of (a) or (b), and (d) a nucleic acid which is complementary to the nucleic acid of (a), (b) or (c). In a preferred embodiment, the invention relates to a protein or polypeptide which comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 7-13, 14-18, 23-24, 34-36, 58-61, 64, 65, 89-100, a part or derivative thereof.

[0053] In a further aspect, the invention relates to an immunogenic fragment of a tumor-associated antigen identified according to the invention. Said fragment preferably binds to a human HLA receptor or to a human antibody. A fragment of the invention preferably comprises a sequence of at least 6, in particular at least 8, at least 10, at least 12, at least 15, at least 20, at least 30 or at least 50, amino acids.

[0054] In a further aspect, the invention relates to an agent which binds to a tumor-associated antigen identified according to the invention or to a part thereof. In a preferred embodiment, the agent is an antibody. In further embodiments, the antibody is a chimeric, a humanized antibody or an antibody produced by combinatory techniques or is a fragment of an antibody. Furthermore, the invention relates to an antibody which binds selectively to a complex of (i) a tumor-associated antigen identified according to the invention or a part thereof and (ii) an MHC molecule to which said tumor-associated antigen identified according to the invention or said part thereof binds, with said antibody not binding to (i) or (ii) alone. An antibody of the invention may be a monoclonal antibody. In further embodiments, the antibody is a chimeric or humanized antibody or a fragment of a natural antibody.

[0055] The invention furthermore relates to a conjugate between an agent of the invention which binds to a tumor-associated antigen identified according to the invention or to a part thereof or an antibody of the invention and a therapeutic or diagnostic agent. In one embodiment, the therapeutic or diagnostic agent is a toxin.

[0056] In a further aspect, the invention relates to a kit for detecting expression or abnormal expression of a tumor-associated antigen identified according to the invention, which kit comprises agents for detection (i) of the nucleic acid which codes for the tumor-associated antigen or of a part thereof, (ii) of the tumor-associated antigen or of a part thereof, (iii) of antibodies which bind to the tumor-associated antigen or to a part thereof, and/or (iv) of T cells which are specific for a complex between the tumor-associated antigen or a part thereof and an MHC molecule. In one embodiment, the agents for detection of the nucleic acid or the part thereof are nucleic acid molecules for selective amplification of said nucleic acid, which comprise, in particular a sequence of 6-50, in particular 10-30, 15-30 and 20-30, contiguous nucleotides of said nucleic acid.

DETAILED DESCRIPTION OF THE INVENTION

[0057] According to the invention, genes are described which are expressed in tumor cells selectively or aberrantly and which are tumor-associated antigens.

[0058] According to the invention, these genes or their derivatives are preferred target structures for therapeutic approaches. Conceptionally, said therapeutic approaches may aim at inhibiting the activity of the selectively expressed tumor-associated genetic product. This is useful, if said aberrant respective selective expression is functionally important in tumor pathogenicity and if its ligation is accompanied by selective damage of the corresponding cells. Other therapeutic concepts contemplate tumor-associated antigens as labels which recruit effector mechanisms having cell-damaging potential selectively to tumor cells. Here, the function of the target molecule itself and its role in tumor development are totally irrelevant.

[0059] "Derivative" of a nucleic acid means according to the invention that single or multiple nucleotide substitutions, deletions and/or additions are present in said nucleic acid. Furthermore, the term "derivative" also comprises chemical derivatization of a nucleic acid on a nucleotide base, on the sugar or on the phosphate. The term "derivative" also comprises nucleic acids which contain nucleotides and nucleotide analogs not occurring naturally.

[0060] According to the invention, a nucleic acid is preferably deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). Nucleic acids comprise according to the invention genomic DNA, cDNA, mRNA, recombinantly produced and chemically synthesized molecules. According to the invention, a nucleic acid may be present as a single-stranded or double-stranded and linear or covalently circularly closed molecule.

[0061] The nucleic acids described according to the invention have preferably been isolated. The term "isolated nucleic acid" means according to the invention that the nucleic acid was (i) amplified in vitro, for example by polymerase chain reaction (PCR), (ii) recombinantly produced by cloning, (iii) purified, for example by cleavage and gel-electrophoretic fractionation, or (iv) synthesized, for example by chemical synthesis. An isolated nucleic acid is a nucleic acid which is available for manipulation by recombinant DNA techniques.

[0062] A nucleic acid is "complementary" to another nucleic acid if the two sequences are capable of hybridizing and forming a stable duplex with one another, with hybridization preferably being carried out under conditions which allow specific hybridization between polynucleotides (stringent conditions). Stringent conditions are described, for example, in Molecular Cloning: A Laboratory Manual, J. Sambrook et al., Editors, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, N.Y., 1989 or Current Protocols in Molecular Biology, F. M. Ausubel et al., Editors, John Wiley & Sons, Inc., New York and refer, for example, to hybridization at 65.degree. C. in hybridization buffer (3.5.times.SSC, 0.02% Ficoll, 0.02% polyvinylpyrrolidone, 0.02% bovine serum albumin, 2.5 mM NaH.sub.2PO.sub.4 (pH 7), 0.5% SDS, 2 mM EDTA). SSC is 0.15 M sodium chloride/0.15 M sodium citrate, pH 7. After hybridization, the membrane to which the DNA has been transferred is washed, for example, in 2.times.SSC at room temperature and then in 0.1-0.5.times.SSC/0.1.times.SDS at temperatures of up to 68.degree. C.

[0063] According to the invention, complementary nucleic acids have at least 40%, in particular at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and preferably at least 95%, at least 98 or at least 99%, identical nucleotides.

[0064] Nucleic acids coding for tumor-associated antigens may, according to the invention, be present alone or in combination with other nucleic acids, in particular heterologous nucleic acids. In preferred embodiments, a nucleic acid is functionally linked to expression control sequences or regulatory sequences which may be homologous or heterologous with respect to said nucleic acid. A coding sequence and a regulatory sequence are "functionally" linked to one another, if they are covalently linked to one another in such a way that expression or transcription of said coding sequence is under the control or under the influence of said regulatory sequence. If the coding sequence is to be translated into a functional protein, then, with a regulatory sequence functionally linked to said coding sequence, induction of said regulatory sequence results in transcription of said coding sequence, without causing a frame shift in the coding sequence or said coding sequence not being capable of being translated into the desired protein or peptide.

[0065] The term "expression control sequence" or "regulatory sequence" comprises according to the invention promoters, enhancers and other control elements which regulate expression of a gene. In particular embodiments of the invention, the expression control sequences can be regulated. The exact structure of regulatory sequences may vary as a function of the species or cell type, but generally comprises 5'untranscribed and 5'untranslated sequences which are involved in initiation of transcription and translation, respectively, such as TATA box, capping sequence, CAAT sequence, and the like. More specifically, 5'untranscribed regulatory sequences comprise a promoter region which includes a promoter sequence for transcriptional control of the functionally linked gene. Regulatory sequences may also comprise enhancer sequences or upstream activator sequences.

[0066] Thus, on the one hand, the tumor-associated antigens illustrated herein may be combined with any expression control sequences and promoters. On the other hand, however, the promoters of the tumor-associated genetic products illustrated herein may, according to the invention, be combined with any other genes. This allows the selective activity of these promoters to be utilized.

[0067] According to the invention, a nucleic acid may furthermore be present in combination with another nucleic acid which codes for a polypeptide controlling secretion of the protein or polypeptide encoded by said nucleic acid from a host cell. According to the invention, a nucleic acid may also be present in combination with another nucleic acid which codes for a polypeptide causing the encoded protein or polypeptide to be anchored on the cell membrane of the host cell or compartmentalized into particular organelles of said cell.

[0068] In a preferred embodiment, a recombinant DNA molecule is according to the invention a vector, where appropriate with a promoter, which controls expression of a nucleic acid, for example a nucleic acid coding for a tumor-associated antigen of the invention. The term "vector" is used here in its most general meaning and comprises any intermediary vehicle for a nucleic acid which enables said nucleic acid, for example, to be introduced into prokaryotic and/or eukaryotic cells and, where appropriate, to be integrated into a genome. Vectors of this kind are preferably replicated and/or expressed in the cells. An intermediary vehicle may be adapted, for example, to the use in electroporation, in bombardment with microprojectiles, in liposomal administration, in the transfer with the aid of agrobacteria or in insertion via DNA or RNA viruses. Vectors comprise plasmids, phagemids or viral genomes. The nucleic acids coding for a tumor-associated antigen identified according to the invention may be used for transfection of host cells. Nucleic acids here mean both recombinant DNA and RNA. Recombinant RNA may be prepared by in-vitro transcription of a DNA template. Furthermore, it may be modified by stabilizing sequences, capping and polyadenylation prior to application. According to the invention, the term "host cell" relates to any cell which can be transformed or transfected with an exogenous nucleic acid. The term "host cells" comprises according to the invention prokaryotic (e.g. E. coli) or eukaryotic cells (e.g. dendritic cells, B cells, CHO cells, COS cells, K562 cells, yeast cells and insect cells). Particular preference is given to mammalian cells such as cells from humans, mice, hamsters, pigs, goats, primates. The cells may be derived from a multiplicity of tissue types and comprise primary cells and cell lines. Specific examples comprise keratinocytes, peripheral blood leukocytes, stem cells of the bone marrow and embryonic stem cells. In further embodiments, the host cell is an antigen-presenting cell, in particular a dendritic cell, monocyte or a macrophage. A nucleic acid may be present in the host cell in the form of a single copy or of two or more copies and, in one embodiment is expressed in the host cell.

[0069] According to the invention, the term "expression" is used in its most general meaning and comprises the production of RNA or of RNA and protein. It also comprises partial expression of nucleic acids. Furthermore, expression may be carried out transiently or stably. Preferred expression systems in mammalian cells comprise pcDNA3.1 and pRc/CMV (Invitrogen, Carlsbad, Calif.), which contain a selective marker such as a gene imparting resistance to G418 (and thus enabling stably transfected cell lines to be selected) and the enhancer-promoter sequences of cytomegalovirus (CMV).

[0070] In those cases of the invention in which an HLA molecule presents a tumor-associated antigen or a part thereof, an expression vector may also comprise a nucleic acid sequence coding for said HLA molecule. The nucleic acid sequence coding for the HLA molecule may be present on the same expression vector as the nucleic acid coding for the tumor-associated antigen or the part thereof, or both nucleic acids may be present on different expression vectors. In the latter case, the two expression vectors may be cotransfected into a cell. If a host cell expresses neither the tumor-associated antigen or the part thereof nor the HLA molecule, both nucleic acids coding therefor are transfected into the cell either on the same expression vector or on different expression vectors. If the cell already expresses the HLA molecule, only the nucleic acid sequence coding for the tumor-associated antigen or the part thereof can be transfected into the cell.

[0071] The invention also comprises kits for amplification of a nucleic acid coding for a tumor-associated antigen. Such kits comprise, for example, a pair of amplification primers which hybridize to the nucleic acid coding for the tumor-associated antigen. The primers preferably comprise a sequence of 6-50, in particular 10-30, 15-30 and 20-30 contiguous nucleotides of the nucleic acid and are nonoverlapping, in order to avoid the formation of primer dimers. One of the primers will hybridize to one strand of the nucleic acid coding for the tumor-associated antigen, and the other primer will hybridize to the complementary strand in an arrangement which allows amplification of the nucleic acid coding for the tumor-associated antigen.

[0072] "Antisense" molecules or "antisense" nucleic acids may be used for regulating, in particular reducing, expression of a nucleic acid. The term "antisense molecule" or "antisense nucleic acid" refers according to the invention to an oligonucleotide which is an oligoribonucleotide, oligodeoxyribonucleotide, modified oligoribonucleotide or modified oligodeoxyribonucleotide and which hybridizes under physiological conditions to DNA comprising a particular gene or to mRNA of said gene, thereby inhibiting transcription of said gene and/or translation of said mRNA. According to the invention, the "antisense molecule" also comprises a construct which contains a nucleic acid or a part thereof in reverse orientation with respect to its natural promoter. An antisense transcript of a nucleic acid or of a part thereof may form a duplex with the naturally occurring mRNA specifying the enzyme and thus prevent accumulation of or translation of the mRNA into the active enzyme. Another possibility is the use of ribozymes for inactivating a nucleic acid. Antisense oligonucleotides preferred according to the invention have a sequence of 6-50, in particular 10-30, 15-30 and 20-30, contiguous nucleotides of the target nucleic acid and preferably are fully complementary to the target nucleic acid or to a part thereof.

[0073] In preferred embodiments, the antisense oligonucleotide hybridizes with an N-terminal or 5' upstream site such as a translation initiation site, transcription initiation site or promoter site. In further embodiments, the antisense oligonucleotide hybridizes with a 3'untranslated region or mRNA splicing site.

[0074] In one embodiment, an oligonucleotide of the invention consists of ribonucleotides, deoxyribonucleotides or a combination thereof, with the 5' end of one nucleotide and the 3' end of another nucleotide being linked to one another by a phosphodiester bond. These oligonucleotides may be synthesized in the conventional manner or produced recombinantly.

[0075] In preferred embodiments, an oligonucleotide of the invention is a "modified" oligonucleotide. Here, the oligonucleotide may be modified in very different ways, without impairing its ability to bind its target, in order to increase, for example, its stability or therapeutic efficacy. According to the invention, the term "modified oligonucleotide" means an oligonucleotide in which (i) at least two of its nucleotides are linked to one another by a synthetic internucleoside bond (i.e. an internucleoside bond which is not a phosphodiester bond) and/or (ii) a chemical group which is usually not found in nucleic acids is covalently linked to the oligonucleotide. Preferred synthetic internucleoside bonds are phosphorothioates, alkyl phosphonates, phosphorodithioates, phosphate esters, alkyl phosphonothioates, phosphoramidates, carbamates, carbonates, phosphate triesters, acetamidates, carboxymethyl esters and peptides.

[0076] The term "modified oligonucleotide" also comprises oligonucleotides having a covalently modified base and/or sugar. "Modified oligonucleotides" comprise, for example, oligonucleotides with sugar residues which are covalently bound to low molecular weight organic groups other than a hydroxyl group at the 3' position and a phosphate group at the 5' position. Modified oligonucleotides may comprise, for example, a 2'-O-alkylated ribose residue or another sugar instead of ribose, such as arabinose.

[0077] Preferably, the proteins and polypeptides described according to the invention have been isolated. The terms "isolated protein" or "isolated polypeptide" mean that the protein or polypeptide has been separated from its natural environment. An isolated protein or polypeptide may be in an essentially purified state. The term "essentially purified" means that the protein or polypeptide is essentially free of other substances with which it is associated in nature or in vivo.

[0078] Such proteins and polypeptides may be used, for example, in producing antibodies and in an immunological or diagnostic assay or as therapeutics. Proteins and polypeptides described according to the invention may be isolated from biological samples such as tissue or cell homogenates and may also be expressed recombinantly in a multiplicity of pro- or eukaryotic expression systems.

[0079] For the purposes of the present invention, "derivatives" of a protein or polypeptide or of an amino acid sequence comprise amino acid insertion variants, amino acid deletion variants and/or amino acid substitution variants.

[0080] Amino acid insertion variants comprise amino- and/or carboxy-terminal fusions and also insertions of single or two or more amino acids in a particular amino acid sequence. In the case of amino acid sequence variants having an insertion, one or more amino acid residues are inserted into a particular site in an amino acid sequence, although random insertion with appropriate screening of the resulting product is also possible. Amino acid deletion variants are characterized by the removal of one or more amino acids from the sequence. Amino acid substitution variants are characterized by at least one residue in the sequence being removed and another residue being inserted in its place. Preference is given to the modifications being in positions in the amino acid sequence which are not conserved between homologous proteins or polypeptides. Preference is given to replacing amino acids with other ones having similar properties such as hydrophobicity, hydrophilicity, electronegativity, volume of the side chain and the like (conservative substitution). Conservative substitutions, for example, relate to the exchange of one amino acid with another amino acid listed below in the same group as the amino acid to be substituted: [0081] 1. small aliphatic, nonpolar or slightly polar residues: Ala, Ser, Thr (Pro, Gly) [0082] 2. negatively charged residues and their amides: Asn, Asp, Glu, Gln [0083] 3. positively charged residues: His, Arg, Lys [0084] 4. large aliphatic, nonpolar residues: Met, Leu, Ile, Val (Cys) [0085] 5. large aromatic residues: Phe, Tyr, Trp.

[0086] Owing to their particular part in protein architecture, three residues are shown in brackets. Gly is the only residue without a side chain and thus imparts flexibility to the chain. Pro has an unusual geometry which greatly restricts the chain. Cys can form a disulfide bridge.

[0087] The amino acid variants described above may be readily prepared with the aid of known peptide synthesis techniques such as, for example, by solid phase synthesis (Merrifield, 1964) and similar methods or by recombinant DNA manipulation. Techniques for introducing substitution mutations at predetermined sites into DNA which has a known or partially known sequence are well known and comprise M13 mutagenesis, for example. The manipulation c. DNA sequences for preparing proteins having substitutions, insertions or deletions, is described in detail in Sambrook et al. (1989), for example.

[0088] According to the invention, "derivatives" of proteins or polypeptides also comprise single or multiple substitutions, deletions and/or additions of any molecules associated with the enzyme, such as carbohydrates, lipids and/or proteins or polypeptides. The term "derivative" also extends to all functional chemical equivalents of said proteins or polypeptides. According to the invention, a part or fragment of a tumor-associated antigen has a functional property of the polypeptide from which it has been derived. Such functional properties comprise the interaction with antibodies, the interaction with other polypeptides or proteins, the selective binding of nucleic acids and an enzymatic activity. A particular property is the ability to form a complex with HLA and, where appropriate, generate an immune response. This immune response may be based on stimulating cytotoxic or T helper cells. A part or fragment of a tumor-associated antigen of the invention preferably comprises a sequence of at least 6, in particular at least 8, at least 10, at least 12, at least 15, at least 20, at least 30 or at least 50, consecutive amino acids of the tumor-associated antigen.

[0089] A part or a fragment of a nucleic acid coding for a tumor-associated antigen relates according to the invention to the part of the nucleic acid, which codes at least for the tumor-associated antigen and/or for a part or a fragment of said tumor-associated antigen, as defined above.

[0090] The isolation and identification of genes coding for tumor-associated antigens also make possible the diagnosis of a disease characterized by expression of one or more tumor-associated antigens. These methods comprise determining one or more nucleic acids which code for a tumor-associated antigen and/or determining the encoded tumor-associated antigens and/or peptides derived therefrom. The nucleic acids may be determined in the conventional manner, including by polymerase chain reaction or hybridization with a labeled probe. Tumor-associated antigens or peptides derived therefrom may be determined by screening patient antisera with respect to recognizing the antigen and/or the peptides. They may also be determined by screening T cells of the patient for specificities for the corresponding tumor-associated antigen.

[0091] The present invention also enables proteins binding to tumor-associated antigens described herein to be isolated, including antibodies and cellular binding partners of said tumor-associated antigens.

[0092] According to the invention, particular embodiments ought to involve providing "dominant negative" polypeptides derived from tumor-associated antigens. A dominant negative polypeptide is an inactive protein variant which, by way of interacting with the cellular machinery, displaces an active protein from its interaction with the cellular machinery or which competes with the active protein, thereby reducing the effect of said active protein. For example, a dominant negative receptor which binds to a ligand but does not generate any signal as response to binding to the ligand can reduce the biological effect of said ligand. Similarly, a dominant negative catalytically inactive kinase which usually interacts with target proteins but does not phosphorylate said target proteins may reduce phosphorylation of said target proteins as response to a cellular signal. Similarly, a dominant negative transcription factor which binds to a promoter site in the control region of a gene but does not increase transcription of said gene may reduce the effect of a normal transcription factor by occupying promoter binding sites, without increasing transcription.

[0093] The result of expression of a dominant negative polypeptide in a cell is a reduction in the function of active proteins. The skilled worker may prepare dominant negative variants of a protein, for example, b, conventional mutagenesis methods and by evaluating the dominant negative effect of the variant polypeptide.

[0094] The invention also comprises substances such as polypeptides which bind to tumor-associated antigens. Such binding substances may be used, for example, in screening assays for detecting tumor-associated antigens and complexes of tumor-associated antigens with their binding partners and in a purification of said tumor-associated antigens and of complexes thereof with their binding partners. Such substances may also be used for inhibiting the activity of tumor-associated antigens, for example by binding to such antigens.

[0095] The invention therefore comprises binding substances such as, for example, antibodies or antibody fragments, which are capable of selectively binding to tumor-associated antigens. Antibodies comprise polyclonal and monoclonal antibodies which are produced in the conventional manner.

[0096] It is known that only a small part of an antibody molecule, the paratope, is involved in binding of the antibody to its epitope (cf. Clark, W. R. (1986), The Experimental Foundations of Modern Immunology, Wiley & Sons, Inc., New York; Roitt, I. (1991), Essential Immunology, 7th Edition, Blackwell Scientific Publications, Oxford). The pFc' and Fc regions are, for example, effectors of the complement cascade but are not involved in antigen binding. An antibody from which the pFc' region has been enzymatically removed or which has been produced without the pFc' region, referred to as F(ab').sub.2 fragment, carries both antigen binding sites of a complete antibody. Similarly, an antibody from which the Fc region has been enzymatically removed or which has been produced without said Fc region, referred to Fab fragment, carries one antigen binding site of an intact antibody molecule. Furthermore, Fab fragments consist of a covalently bound light chain of an antibody and part of the heavy chain of said antibody, referred to as Fd. The Fd fragments are the main determinants of antibody specificity (a single Fd fragment can be associated with up to ten different light chains, without altering the specificity of the antibody) and Ed fragments, when isolated, retain the ability to bind to an epitope.

[0097] Located within the antigen-binding part of an antibody are complementary-determining regions (CDRs) which interact directly with the antigen epitope and framework regions (FRs) which maintain the tertiary structure of the paratope. Both the Fd fragment of the heavy chain and the light chain of IgG immunoglobulins contain four framework regions (FR1 to FR4) which are separated in each case by three complementary-determining regions (CDR1 to CDR3). The CDRs and, in particular, the CDR3 regions and, still more particularly, the CDR3 region of the heavy chain are responsible to a large extent for antibody specificity.

[0098] Non-CDR regions of a mammalian antibody are known to be able to be replaced by similar regions of antibodies with the same or a different specificity, with the specificity for the epitope of the original antibody being retained. This made possible the development of "humanized" antibodies in which nonhuman CDRs are covalently linked to human FR and/or Fc/pFc' regions to produce a functional antibody.

[0099] WO 92/04381 for example, describes production and use of humanized murine RSV antibodies in which at least part of the murine FR regions have been replaced with FR regions of a human origin. Antibodies of this kind, including fragments of intact antibodies with antigen-binding capability, are often referred to as "chimeric" antibodies.

[0100] The invention also provides F(ab').sub.2, Fab, Fv, and Fd fragments of antibodies, chimeric antibodies, in which the Fc and/or FR and/or CDR1 and/or CDR2 and/or light chain-CDR3 regions have been replaced with homologous human or nonhuman sequences, chimeric F(ab').sub.2-fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain-CDR3 regions have been replaced with homologous human or nonhuman sequences, chimeric Fab-fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain-CDR3 regions have been replaced with homologous human or nonhuman sequences, and chimeric Fd-fragment antibodies in which the FR and/or CDR1 and/or CDR2 regions have been replaced with homologous human or nonhuman sequences. The invention also comprises "single-chain" antibodies.

[0101] The invention also comprises polypeptides which bind specifically to tumor-associated antigens. Polypeptide binding substances of this kind may be provided, for example, by degenerate peptide libraries which may be prepared simply in solution in an immobilized form or as phage-display libraries. It is likewise possible to prepare combinatorial libraries of peptides with one or more amino acids. Libraries of peptoids and nonpeptidic synthetic residues may also be prepared.

[0102] Phage display may be particularly effective in identifying binding peptides of the invention. In this connection, for example, a phage library is prepared (using, for example, the M13, fd or lambda phages) which presents inserts of from 4 to about 80 amino acid residues in length. Phages are then selected which carry inserts which bind to the tumor-associated antigen. This process may be repeated via two or more cycles of a reselection of phages binding to the tumor-associated antigen. Repeated rounds result in a concentration of phages carrying particular sequences. An analysis of DNA sequences may be carried out in order to identify the sequences of the expressed polypeptides. The smallest linear portion of the sequence binding to the tumor-associated antigen may be determined. The "two-hybrid system" of yeast may also be used for identifying polypeptides which bind to a tumor-associated antigen. Tumor-associated antigens described according to the invention or fragments thereof may be used for screening peptide libraries, including phage-display libraries, in order to identify and select peptide binding partners of the tumor-associated antigens. Such molecules may be used, for example, for screening assays, purification protocols, for interference with the function of the tumor-associated antigen and for other purposes known to the skilled worker.

[0103] The antibodies described above and other binding molecules may be used, for example, for identifying tissue which expresses a tumor-associated antigen. Antibodies may also be coupled to specific diagnostic substances for displaying cells and tissues expressing tumor-associated antigens. They may also be coupled to therapeutically useful substances. Diagnostic substances comprise, in a nonlimiting manner, barium sulfate, iocetamic acid, iopanoic acid, calcium ipodate, sodium diatrizoate, meglumine diatrizoate, metrizamide, sodium tyropanoate and radio diagnostic, including positron emitters such as fluorine-18 and carbon-11, gamma emitters such as iodine-123, technetium-99m, iodine-131 and indium-111, nuclides for nuclear magnetic resonance, such as fluorine and gadolinium. According to the invention, the term "therapeutically useful substance" means any therapeutic molecule which, as desired, is selectively guided to a cell which expresses one or more tumor-associated antigens, including anticancer agents, radioactive iodine-labeled compounds, toxins, cytostatic or cytolytic drugs, etc. anticancer agents comprise, for example, aminoglutethimide, azathioprine, bleomycin sulfate, busulfan, carmustine, chlorambucil, cisplatin, cyclophosphamide, cyclosporine, cytarabidine, dacarbazine, dactinomycin, daunorubin, doxorubicin, taxol, etoposide, fluorouracil, interferon-.alpha., lomustine, mercaptopurine, methotrexate, mitotane, procarbazine HCl, thioguanine, vinblastine sulfate and vincristine sulfate. Other anticancer agents are described, for example, in Goodman and Gilman, "The Pharmacological Basis of Therapeutics", 8th Edition, 1990, McGraw-Hill, Inc., in particular Chapter 52 (Antineoplastic Agents (Paul Calabresi and Bruce A. Chabner). Toxins may be proteins such as pokeweed antiviral protein, cholera toxin, pertussis toxin, ricin, gelonin, abrin, diphtheria exotoxin or Pseudomonas exotoxin. Toxin residues may also be high energy-emitting radionuclides such as cobalt-60.

[0104] The term "patient" means according to the invention a human being, a nonhuman primate or another animal, in particular a mammal such as a cow, horse, pig, sheep, goat, dog, cat or a rodent such as a mouse and rat. In a particularly preferred embodiment, the patient is a human being.

[0105] According to the invention, the term "disease" refers to any pathological state in which tumor-associated antigens are expressed or abnormally expressed. "Abnormal expression" means according to the invention that expression is altered, preferably increased, compared to the state in a healthy individual. An increase in expression refers to an increase by at least 10%, in particular at least 20%, at least 50% or at least 100%. In one embodiment, the tumor-associated antigen is expressed only in tissue of a diseased individual, while expression in a healthy individual is repressed. One example of such a disease is cancer, in particular seminomas, melanomas, teratomas, gliomas, colorectal cancer, breast cancer, prostate cancer, cancer of the uterus, ovarian cancer and lung cancer.

[0106] According to the invention, a biological sample may be a tissue sample and/or a cellular sample and may be obtained in the conventional manner such as by tissue biopsy, including punch biopsy, and by taking blood, bronchial aspirate, urine, feces or other body fluids, for use in the various methods described herein.

[0107] According to the invention, the term "immunoreactive cell" means a cell which can mature into an immune cell (such as B cell, T helper cell, or cytolytic T cell) with suitable stimulation. Immunoreactive cells comprise CD34.sup.+ hematopoietic stem cells, immature and mature T cells and immature and mature B cells. If production of cytolytic or T helper cells recognizing a tumor-associated antigen is desired, the immunoreactive cell is contacted with a cell expressing a tumor-associated antigen under conditions which favor production, differentiation and/or selection of cytolytic T cells and of T helper cells. The differentiation of T cell precursors into a cytolytic T cell, when exposed to an antigen, is similar to clonal selection of the immune system.

[0108] Some therapeutic methods are based on a reaction of the immune system of a patient, which results in a lysis of antigen-presenting cells such as cancer cells which present one or more tumor-associated antigens. In this connection, for example autologous cytotoxic T lymphocytes specific for a complex of a tumor-associated antigen and an MHC molecule are administered to a patient having a cellular abnormality. The production of such cytotoxic T lymphocytes in vitro is known. An example of a method of differentiating T cells can be found in WO-A-9633265. Generally, a sample containing cells such as blood cells is taken from the patient and the cells are contacted with a cell which presents the complex and which can cause propagation of cytotoxic T lymphocytes (e.g. dendritic cells). The target cell may be a transfected cell such as a COS cell. These transfected cells present the desired complex on their surface and, when contacted with cytotoxic T lymphocytes, stimulate propagation of the latter. The clonally expanded autologous cytotoxic T lymphocytes are then administered to the patient.

[0109] In another method of selecting antigen-specific cytotoxic T lymphocytes, fluorogenic tetramers of MHC class I molecule/peptide complexes are used for detecting specific clones of cytotoxic T lymphocytes (Altman et al., Science 274:94-96, 1996; Dunbar et al., Curr. Biol. 8:413-416, 1998). Soluble MHC class I molecules are folded in vitro in the presence of .beta..sub.2 microglobulin and a peptide antigen binding to said class I molecule. The MHC/peptide complexes are purified and then labeled with biotin. Tetzamers are formed by mixing the biotinylated peptide-MHC complexes with labeled avidin (e.g. phycoerythrin) in a molar ratio of 4:1. Tetramers are then contacted with cytotoxic T lymphocytes such as peripheral blood or lymph nodes. The tetramers bind to cytotoxic T lymphocytes which recognize the peptide antigen/MHC class I complex. Cells which are bound to the tetramers may be sorted by fluorescence-controlled cell sorting to isolate reactive cytotoxic T lymphocytes. The isolated cytotoxic T lymphocytes may then be propagated in vitro.

[0110] In a therapeutic method referred to as adoptive transfer (Greenberg, J. Immunol. 136(5):1917, 1986; Riddel et al., Science 257:238, 1992; Lynch et al., Eur. J. Immunol. 21:1403-1410, 1991; Kast et al., Cell 59:603-614, 1989), cells presenting the desired complex (e.g. dendritic cells) are combined with cytotoxic T lymphocytes of the patient to be treated, resulting in a propagation of specific cytotoxic T lymphocytes. The propagated cytotoxic T lymphocytes are then administered to a patient having a cellular anomaly characterized by particular abnormal cells presenting the specific complex. The cytotoxic T lymphocytes then lyse the abnormal cells, thereby achieving a desired therapeutic effect.

[0111] Often, of the T cell repertoire of a patient, only T cells with low affinity for a specific complex of this kind can be propagated, since those with high affinity have been extinguished due to development of tolerance. An alternative here may be a transfer of the T cell receptor itself. For this too, cells presenting the desired complex (e.g. dendritic cells) are combined with cytotoxic T lymphocytes of healthy individuals. This results in propagation of specific cytotoxic T lymphocytes with high affinity if the donor had no previous contact with the specific complex. The high affinity T cell receptor of these propagated specific T lymphocytes is cloned and can be transduced via gene transfer, for example using retroviral vectors, into T cells of other patients, as desired. Adoptive transfer is then carried out using these genetically altered T lymphocytes (Stanislawski et al., Nat Immunol. 2:962-70, 2001; Kessels et al., Nat Immunol. 2:957-61, 2001).

[0112] The therapeutic aspects above start out from the fact that at least some of the abnormal cells of the patient present a complex of a tumor-associated antigen and an HLA molecule. Such cells may be identified in a manner known per se. As soon as cells presenting the complex have been identified, they may be combined with a sample from the patient, which contains cytotoxic T lymphocytes. If the cytotoxic T lymphocytes lyse the cells presenting the complex, it can be assumed that a tumor-associated antigen is presented.

[0113] Adoptive transfer is not the only form of therapy which can be applied according to the invention. Cytotoxic T lymphocytes may also be generated in vivo in a manner known per se. One method uses nonproliferative cells expressing the complex. The cells used here will be those which usually express the complex, such as irradiated tumor cells or cells transfected with one or both genes necessary for presentation of the complex (i.e. the antigenic peptide and the presenting HLA molecule). Various cell types may be used. Furthermore, it is possible to use vectors which carry one or both of the genes of interest. Particular preference is given to viral or bacterial vectors. For example, nucleic acids coding for a tumor-associated antigen or for a part thereof may be functionally linked to promoter and enhancer sequences which control expression of said tumor-associated antigen or a fragment thereof in particular tissues or cell types. The nucleic acid may be incorporated into an expression vector. Expression vectors may be nonmodified extrachromosomal nucleic acids, plasmids or viral genomes into which exogenous nucleic acids may be inserted. Nucleic acids coding for a tumor-associated antigen may also be inserted into a retroviral genome, thereby enabling the nucleic acid to be integrated into the genome of the target tissue or target cell. In these systems, a microorganism such as vaccinia virus, pox virus, Herpes simplex virus, retrovirus or adenovirus carries the gene of interest and de facto "infects" host cells. Another preferred form is the introduction of the tumor-associated antigen in the form of recombinant RNA which may be introduced into cells by liposomal transfer or by electroporation, for example. The resulting cells present the complex of interest and are recognized by autologous cytotoxic T lymphocytes which then propagate.

[0114] A similar effect can be achieved by combining the tumor-associated antigen or a fragment thereof with an adjuvant in order to make incorporation into antigen-presenting cells in vivo possible. The tumor-associated antigen or a fragment thereof may be represented as protein, as DNA (e.g. within a vector) or as RNA. The tumor-associated antigen is processed to produce a peptide partner for the HLA molecule, while a fragment thereof may be presented without the need for further processing. The latter is the case in particular, if these can bind to HLA molecules. Preference is given to administration forms in which the complete antigen is processed in vivo by a dendritic cell, since this may also produce T helper cell responses which are needed for an effective immune response (Ossendorp et al., Immunol Lett. 74:75-9, 2000; Ossendorp et al., J. Exp. Med. 187:693-702, 1998). In general, it is possible to administer an effective amount of the tumor-associated antigen to a patient by intradermal injection, for example. However, injection may also be carried out intranodally into a lymph node (Maloy et al., Proc Natl Acad Sci USA 98:3299-303, 2001). It may also be carried out in combination with reagents which facilitate uptake into dendritic cells. In vivo preferred tumor-associated antigens comprise those which react with allogenic cancer antisera or with T cells of many cancer patients. Of particular interest, however, are those against which no spontaneous immune responses pre-exist. Evidently, it is possible to induce against these immune responses which can lyse tumors (Keogh et al., J. Immunol. 167:787-96, 2001; Appella et al., Biomed Pept Proteins Nucleic Acids 1:177-84, 1995; Wentworth et al., Mol Immunol. 32:603-12, 1995).

[0115] The pharmaceutical compositions described according to the invention may also be used as vaccines for immunization. According to the invention, the terms "immunization" or "vaccination" mean an increase in or activation of an immune response to an antigen. It is possible to use animal models for testing an immunizing effect on cancer by using a tumor-associated antigen or a nucleic acid coding therefor. For example, human cancer cells may be introduced into a mouse to generate a tumor, and one or more nucleic acids coding for tumor-associated antigens may be administered. The effect on the cancer cells (for example reduction in tumor size) may be measured as a measure for the effectiveness of an immunization by the nucleic acid.

[0116] As part of the composition for an immunization, one or more tumor-associated antigens or stimulating fragments thereof are administered together with one or more adjuvants for inducing an immune response or for increasing an immune response. An adjuvant is a substance which is incorporated into the antigen or administered together with the latter and which enhances the immune response. Adjuvants may enhance the immune response by providing an antigen reservoir (extracellularly or in macrophages), activating macrophages and stimulating particular lymphocytes. Adjuvants are known and comprise in a nonlimiting way monophosphoryl lipid A (MPL, SmithKline Beecham), saponin such as QS21 (SmithKline Beecham), DQS21 (SmithKline Beecham; WO 96/33739), QS7, QS17, QS18 and QS-L1 (So et al., Mol. Cells 7:178-186, 1997), incomplete Freund's adjuvant, complete Freund's adjuvant, vitamin E, montanide, alum, CpG oligonucleotides (cf. Kreig et al., Nature 374:546-9, 1995) and various water-in-oil emulsions prepared from biologically degradable oils such as squalene and/or tocopherol. Preferably, the peptides are administered in a mixture with DQS21/MPL. The ratio of DQS21 to MPL is typically about 1:10 to 10:1, preferably about 1:5 to 5:1 and in particular about 1:1. For administration to humans, a vaccine formulation typically contains DQS21 and MPL in a range from about 1 .mu.g to about 100 .mu.g.

[0117] Other substances which stimulate an immune response of the patient may also be administered. It is possible, for example, to use cytokines in a vaccination, owing to their regulatory properties on lymphocytes. Such cytokines comprise, for example, interleukin-12 (IL-12) which was shown to increase the protective actions of vaccines (cf. Science 268:1432-1434, 1995), GM-CSF and IL-18.

[0118] There are a number of compounds which enhance an immune response and which therefore may be used in a vaccination. Said compounds comprise costimulating molecules provided in the form of proteins or nucleic acids. Examples of such costimulating molecules are B7-1 and B7-2 (CD80 and CD86, respectively) which are expressed on dendritic cells (DC) and interact with the CD28 molecule expressed on the T cells. This interaction provides a costimulation (signal 2) for an antigen/MHC/TCR-stimulated (signal 1) T cell, thereby enhancing propagation of said T cell and the effector function. B7 also interacts with CTLA4 (CD152) on T cells, and studies involving CTLA4 and B7 ligands demonstrate that B7-CTLA4 interaction can enhance antitumor immunity and CTL propagation (Zheng, P. et al., Proc. Natl. Acad. Sci. USA 95(11):6284-6289 (1998)).

[0119] B7 is typically not expressed on tumor cells so that these are no effective antigen-presenting cells (APCs) far T cells. Induction of B7 expression would enable rumor cells to stimulate more effectively propagation of cytotoxic T lymphocytes and an effector function. Costimulation by a combination of B7/IL-6/IL-12 revealed induction of IFN-gamma and Th1-cytokine profile in a T cell population, resulting in further enhanced T cell activity (Gajewski et al., J. Immunol. 154:5637-5648 (1995)).

[0120] A complete activation of cytotoxic T lymphocytes and a complete effector function require an involvement of T helper cells via interaction between the CD40 ligand on said T helper cells and the CD40 molecule expressed by dendritic cells (Ridge et al., Nature 393:474 (1998), Bennett et al., Nature 393:478 (1998), Schonberger et al., Nature 393:480 (1998)). The mechanism of this costimulating signal probably relates to the increase in B7 production and associated IL-6/IL-12 production by said dendritic cells (antigen-presenting cells). CD40-CD40L interaction thus complements the interaction of signal 1 (antigen/MHC-TCR) and signal 2 (B7-CD28).

[0121] The use of anti-CD40 antibodies for stimulating dendritic cells would be expected to directly enhance a response to tumor antigens which are usually outside the range of an inflammatory response or which are presented by nonprofessional antigen-presenting cells (tumor cells). In these situations, T helper and B7-costimulating signals are not provided. This mechanism could be used in connection with therapies based on antigen-pulsed dendritic cells or in situations in which T helper epitopes have not been defined in known TRA precursors.

[0122] The invention also provides for administration of nucleic acids, polypeptides or peptides. Polypeptides and peptides may be administered in a manner known per se. In one embodiment, nucleic acids are administered by ex vivo methods, i.e. by removing cells from a patient, genetic modification of said cells in order to incorporate a tumor-associated antigen and reintroduction of the altered cells into the patient. This generally comprises introducing a functional copy of a gene into the cells of a patient in vitro and reintroducing the genetically altered cells into the patient. The functional copy of the gene is under the functional control of regulatory elements which allow the gene to be expressed in the genetically altered cells. Transfection and transduction methods are known to the skilled worker. The invention also provides for administering nucleic acids in vivo by using vectors such as viruses and target-controlled liposomes.

[0123] In a preferred embodiment, a viral vector for administering a nucleic acid coding for a tumor-associated antigen is selected from the group consisting of adenoviruses, adeno-associated viruses, pox viruses, including vaccinia virus and attenuated pox viruses, Semliki Forest virus, retroviruses, Sindbis virus and Ty virus-like particles. Particular preference is given to adenoviruses and retroviruses. The retroviruses are typically replication-deficient (i.e. they are incapable of generating infectious particles).

[0124] Various methods may be used in order to introduce according to the invention nucleic acids into cells in vitro or in vivo. Methods of this kind comprise transfection of nucleic acid CaPO.sub.4 precipitates, transfection of nucleic acids associated with DEAE, transfection or infection with the above viruses carrying the nucleic acids of interest, liposome-mediated transfection, and the like. In particular embodiments, preference is given to directing the nucleic acid to particular cells. In such embodiments, a carrier used for administering a nucleic acid to a cell (e.g. a retrovirus or a liposome) may have a bound target control molecule. For example, a molecule such as an antibody specific for a surface membrane protein on the target cell or a ligand for a receptor on the target cell may be incorporated into or attached to the nucleic acid carrier. Preferred antibodies comprise antibodies which bind selectively a tumor-associated antigen. If administration of a nucleic acid via liposomes is desired, proteins binding to a surface membrane protein associated with endocytosis may be incorporated into the liposome formulation in order to make target control and/or uptake possible. Such proteins comprise capsid proteins or fragments thereof which are specific for a particular cell type, antibodies to proteins which are internalized, proteins addressing an intracellular site, and the like.

[0125] The therapeutic compositions of the invention may be administered in pharmaceutically compatible preparations. Such preparations may usually contain pharmaceutically compatible concentrations of salts buffer substances, preservatives, carriers, supplementing immunity-enhancing substances such as adjuvants, CpG and cytokines and, where appropriate, other therapeutically active compounds.

[0126] The therapeutically active compounds of the invention may be administered via any conventional route, including by injection or infusion. The administration may be carried out, for example, orally, intravenously, intraperitonealy, intramuscularly, subcutaneously or transdermally. Preferably, antibodies are therapeutically administered by way of a lung aerosol. Antisense nucleic acids are preferably administered by slow intravenous administration.

[0127] The compositions of the invention are administered in effective amounts. An "effective amount" refers to the amount which achieves a desired reaction or a desired effect alone or together with further doses. In the case of treatment of a particular disease or of a particular condition characterized by expression of one or more tumor-associated antigens, the desired reaction relates to inhibition of the course of the disease. This comprises slowing down the progress of the disease and, in particular, interrupting the progress of the disease. The desired reaction in a treatment of a disease or of a condition may also be delay of the onset or a prevention of the onset of said disease or said condition.

[0128] An effective amount of a composition of the invention will depend on the condition to be treated, the severeness of the disease, the individual parameters of the patient, including age, physiological condition, size and weight, the duration of treatment, the type of an accompanying therapy (if present), the specific route of administration and similar factors.

[0129] The pharmaceutical compositions of the invention are preferably sterile and contain an effective amount of the therapeutically active substance to generate the desired reaction or the desired effect.

[0130] The doses administered of the compositions of the invention may depend on various parameters such as the type of administration, the condition of the patient, the desired period of administration, etc. In the case that a reaction in a patient is insufficient with an initial dose, higher doses (or effectively higher doses achieved by a different, more localized route of administration) may be used.

[0131] Generally, doses of the tumor-associated antigen of from 1 ng to 1 mg, preferably from 10 ng to 100 .mu.g, are formulated and administered for a treatment or for generating or increasing an immune response. If the administration of nucleic acids (DNA and RNA) coding for tumor-associated antigens is desired, doses of from 1 ng to 0.1 mg are formulated and administered.

[0132] The pharmaceutical compositions of the invention are generally administered in pharmaceutically compatible amounts and in pharmaceutically compatible compositions. The term "pharmaceutically compatible" refers to a nontoxic material which does not interact with the action of the active component of the pharmaceutical composition. Preparations of this kind may usually contain salts, buffer substances, preservatives, carriers and, where appropriate, other therapeutically active compounds. When used in medicine, the salts should be pharmaceutically compatible. However, salts which are not pharmaceutically compatible may used for preparing pharmaceutically compatible salts and are included in the invention. Pharmacologically and pharmaceutically compatible salts of this kind comprise in a nonlimiting way those prepared from the following acids: hydrochloric, hydrobromic, sulfuric, nitric, phosphoric, maleic, acetic, salicylic, citric, formic, malonic, succinic acids, and the like. Pharmaceutically compatible salts may also be prepared as alkali metal salts or alkaline earth metal salts, such as sodium salts, potassium salts or calcium salts.

[0133] A pharmaceutical composition of the invention may comprise a pharmaceutically compatible carrier. According to the invention, the term "pharmaceutically compatible carrier" refers to one or more compatible solid or liquid fillers, diluents or encapsulating substances, which are suitable for administration to humans. The term "carrier" refers to an organic or inorganic component, of a natural or synthetic nature, in which the active component is combined in order to facilitate application. The components of the pharmaceutical composition of the invention are usually such that no interaction occurs which substantially impairs the desired pharmaceutical efficacy.

[0134] The pharmaceutical compositions of the invention may contain suitable buffer substances such as acetic acid in a salt, citric acid in a salt, boric acid in a salt and phosphoric acid in a salt.

[0135] The pharmaceutical compositions may, where appropriate, also contain suitable preservatives such as benzalkonium chloride, chlorobutanol, paraben and thimerosal.

[0136] The pharmaceutical compositions are usually provided in a uniform dosage form and may be prepared in a manner known per se. Pharmaceutical compositions of the invention may be in the form of capsules, tablets, lozenges, suspensions, syrups, elixir or in the form of an emulsion, for example.

[0137] Compositions suitable for parenteral administration usually comprise a sterile aqueous or nonaqueous preparation of the active compound, which is preferably isotonic to the blood of the recipient. Examples of compatible carriers and solvents are Ringer solution and isotonic sodium chloride solution. In addition, usually sterile, fixed oils are used as solution or suspension medium.

[0138] The present invention is described in detail by the figures and examples below, which are used only for illustration purposes and are not meant to be limiting. Owing to the description and the examples, further embodiments which are likewise included in the invention are accessible to the skilled worker.

FIGURES

[0139] FIG. 1: Diagrammatic representation of the cloning of eCT. The strategy comprises identifying candidate genes (GOI="Genes of interest") in databases and testing said genes by means of RT-PCR.

[0140] FIG. 2: Splicing of LDH C. Alternative splicing events result in the absence of exon 3 (SEQ ID NO:2), of the two exons 3 and 4 (SEQ ID NO:3), of the exons 3, 6 and 7 (SEQ ID NO:4) and of exon 7 (SEQ ID NO:5). ORF=open reading frame, aa=amino acid.

[0141] FIG. 3: Alignment of possible LDH-C proteins. SEQ ID NO:8 and SEQ ID NO:10 are truncated portions of the prototype protein (SEQ ID NO:6). The protein sequences of SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:12 and SEQ ID NO:13 are additionally altered and contain only tumor-specific epitopes (printed in bold type). The catalytic centre is framed.

[0142] FIG. 4: Quantification of LDH C in various tissues by means of real time PCR. No transcripts were detected in normal tissues other than testis, but significant levels of expression were detected in tumors.

[0143] FIG. 5: Exon composition of TPTE variants. According to the invention, splice variants were identified (SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57) which are expressed in testicular tissues and in tumors and which have frame shifts and thus altered sequence regions.

[0144] FIG. 6: Alignment of the possible TPTE proteins. Alternative splicing events result in alterations of the encoded proteins, with the reading frame being retained in principle. The putative transmembrane domains are printed in bold type, the catalytic domain is framed.

[0145] FIG. 7: Alignment of TSBP variants at the nucleotide level. The differences in the nucleotide sequences of the TSBP variants found according to the invention (SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33) to the known sequence (NM_006781, SEQ ID NO: 29) are printed in bold type.

[0146] FIG. 8: Alignment of TSBP variants at the protein level. In the proteins encoded by the TSBP variants found according to the invention (SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36), frame shifts cause substantial differences to the previously described protein (SEQ ID NO:30, NM 006781) and are indicated by bold type.

[0147] FIG. 9: RT-PCR for MS4A12. Expression was detected in the tissues tested only in testis, colon and colorectal carcinomas (colon ca's). In one of the 6 liver tissue samples shown, a positive detection was carried out for MS4A12, since this sample has been infiltrated by a colon carcinoma metastasis. Later studies also demonstrated distinct expression in colon carcinoma metastases.

[0148] FIG. 10: RT-PC for BRCO1. BRCO1 is distinctly overexpressed in breast tumors in comparison with expression in normal mammary gland tissue.

[0149] FIG. 11: RT-PCR for MORC, TPX1, LDHC, SGY-1. A study of various normal tissues reveals expression only in testis (1 skin, 2 small intestine, 3 colon, 4 liver, lung, 6 stomach, 7 breast, 8 kidney, 9 ovary, prostate, 11 thyroid, 12 leukocytes, 13 thymus, 14 negative control, 15 testis). The examination of tumors (1-17 lung tumors, 18-29 melanomas, 30 negative control, 31 testis) reveals ectopic expression in said tumors with different frequencies for the individual eCT.

[0150] FIG. 12: Mitochondrial localization of LDHC in the MCF-7 breast cancer cell line. MCF-7 cells were transiently transfected with an LDHC expression plasmid. The antigen was detected with LDHC-specific antibodies and showed distinct colocalization with the mitochondrial respiratory chain enzyme cytochrome C-oxidase.

[0151] FIG. 13: Predicted topology of TPTE and subcellular localization on the cell surface of MCF-7 cells

[0152] The diagram on the left-hand side depicts the 4 putative TPTE transmembrane domains (arrows). MCF-7 cells were transiently transfected with a TPTE expression plasmid. The antigen was detected using TPTE-specific antibodies and showed distinct colocalization with MHC I molecules located on the cell surface.

[0153] FIG. 14: MS4A12 localization on the cell membrane.

[0154] Tumor cells were transiently transfected with a GFP-tagged MS4A12 construct and showed complete colocalization with plasma membrane markers in confocal immunofluorescence microscopy.

EXAMPLES

Material and Methods

[0155] The terms "in silico", "electronic" and "virtual cloning" refer solely to the utilization of methods based on databases, which may also be used to simulate laboratory experimental processes.

[0156] Unless expressly defined otherwise, all other terms and expressions are used so as to be understood by the skilled worker. The techniques and methods mentioned are carried out in a manner known per se and are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. All methods including the use of kits and reagents are carried out according to the manufacturers' information.

Datamining-Based Strategy for Determining eCT (Electronically Cloned Cancer/Testis Genes)

[0157] Two in silico strategies, namely GenBank keyword search and the cDNAxProfiler, were combined (FIG. 1). Utilizing the NCBI ENTREZ Search and Retrieval System (http://www.ncbi.nlm.nih.gov/Entrez), a GenBank search was carried out for candidate genes annotated as being specifically expressed in testicular tissue (Wheeler et al., Nucleic Acids Research 28:10-14, 2000). Carrying out queries with the keywords "testis-specific gene", "sperm-specific gene", "spermatogonia-specific gene", candidate genes (GOI, genes of interest) were extracted from the databases. The search was restricted to part of the total information of these databases by using the limits "homo sapiens", for the organism, and "mRNA", for the type of molecule.

[0158] The list of the GOI found was curated by determining different names for the same sequence and eliminating such redundancies.

[0159] All candidate genes obtained by the keyword search were in turn studied with respect to their tissue distribution by the "electronic Northern" (eNorthern) method. The eNorthern is based on aligning the sequence of a GOI with an EST (expressed sequence tag) database (Adams et al., Science 252:1651, 1991) (http://www.ncbi.nlm.nih.gov/BLAST). The tissue origin of each EST which is found to be homologous to the GOI can be determined and in this way the sum of all ESTs produces a preliminary assessment of the tissue distribution of the GOI. Further studies were carried out only with those GOI which had no homologies to EST from nontesticular normal tissues with the exception of placenta and fetal tissue. This evaluation also took into account that the public domain contains wrongly annotated cDNA libraries (Scheurle et al., Cancer Res. 60:4037-4043, 2000) (www.fau.edu/cmbb/publications/cancergenes6.htm).

[0160] The second datamining method utilized was the cDNA xProfiler of the NCBI Cancer Genome Anatomy Project (http://cgap.nci.nih.gov/Tissues/xProfiler) (Hillier et al., Genome Research 6:807-828, 1996; Pennisi, Science 276:1023-1024, 1997). This allows pools of transcriptomes deposited in databases to be related to one another by logical operators. We have defined a pool A to which all expression libraries prepared from testis were assigned, excluding mixed libraries. All cDNA libraries prepared from normal tissues other than testis, ovary or fetal tissue were assigned to pool B. Generally, all cDNA libraries were utilized independently of underlying preparation methods, but only those with a size>1000 were admitted. Pool B was digitally subtracted from pool A by means of the BUT NOT operator. The set of GOI found in this manner was also subjected to eNorthern studies and validated by a literature research.

[0161] This combined datamining includes all of the about 13 000 full-length genes in the public domain and predicts out of these genes a total of 140 genes having potential testis-specific expression. Among the latter were 25 previously known genes of the CT gene class, underlining the efficiency of our strategy.

[0162] All other genes were first evaluated in normal tissues by means of specific RT-PCR. All GOI which had proved to be expressed in nontesticular normal tissues had to be regarded as false-positives and were excluded from further studies. The remaining ones were studied in a large panel of a wide variety of tumor tissues. The antigens depicted below proved here to be ectopically activated in tumor cells.

[0163] RNA Extraction, Preparation of Poly-d (T) Primed eDNA and RT-PCR Analysis

[0164] Total RNA was extracted from native tissue material by using guanidium isothiocyanate as chaotropic agent (Chomczynski & Sacchi, Anal. Biochem. 162:156-9, 1987). After extraction with acidic phenol and precipitation with isopropanol, said RNA was dissolved in DEPC-treated water.

[0165] First strand cDNA synthesis from 2-4 .mu.g of total RNA was carried out in a 20 .mu.l reaction mixture by means of Superscript II (Invitrogen), according to the manufacturer's information. The primer used was a dT(18) oligonucleotide. Integrity and quality of the cDNA were checked by amplification of p53 in a 30 cycle PCR (sense CGTGAGCGCTTCGAGATGTTCCG, antisense CCTAACCAGCTGCCCAACTGTAG, hybridization temperature 67.degree. C.).

[0166] An archive of first strand cDNA was prepared from a number of normal tissues and tumor entities. For expression studies, 0.5 .mu.l of these cDNAs was amplified in a 30 .mu.l reaction mixture, using GOI-specific primers (see below) and 1 U of HotStarTaq DNA polymerase (Qiagen). Each reaction mixture contained 0.3 mM dNTPs, 0.3 .mu.M of each primer and 3 .mu.l of 10.times.reaction buffer. The primers were selected so as to be located in two different exons, and elimination of the interference by contaminating genomic DNA as the reason for false-positive results was confirmed by testing nonreverse-transcribed DNA as template. After 15 minutes at 95.degree. C. to activate the HotStarTaq DNA polymerase, 35 cycles of PCR were carried out (1 min at 94.degree. C., 1 min at the particular hybridization temperature, 2 min at 72.degree. C. and final elongation at 72.degree. C. for 6 min).

[0167] 20 .mu.l of this reaction were fractionated and analyzed on an ethidium bromide-stained agarose gel.

[0168] The following primers were used for expression analysis of the corresponding antigens at the hybridization temperature indicated.

TABLE-US-00001 LDH-C (67.degree. C.) sense TGCCGTAGGCATGGCTTGTGC, antisense CAACATCTGAGACACCATTCC TFT (64.degree. C.) sense TGGATGTCACTCTCATCCTTG, antisense CCATAGTTCCTGTTCTATCTG TSBP (63.degree. C.) sense TCTAGCACTGTCTCGATCAAG, antisense TGTCCTCTTGGTACATCTGAC MS4A12 (66.degree.) sense CTGTGTCAGCATCCAAGGAGC, antisense TTCACCTTTGCCAGCATGTAG BRCO1 (60.degree. C.) sense CTTGCTCTGAGTCATCAGATG, antisense CACAGAATATGAGCCATACAG TPX1 (65.degree. C.) sense TTTTGTCTATGGTGTAGGACC, antisense GGAATGGCAATGATGTTACAG

Preparation of Random Hexamer-Primed cDNA and Quantitative Real Time PCR

[0169] LDHC expression was quantified by means of real time PCR.

[0170] The principle of quantitative real time PCR using the ABI PRISM Sequence Detection System (PE Biosystems, USA) utilizes the 5'-3' exonuclease activity of Taq DNA polymerase for direct and specific detection of PCR products via release of fluorescence reporter dyes. In addition to sense and antisense primers, the PCR employs a doubly fluorescently labeled probe (TaqMan probe) which hybridizes to a sequence of the PCR product. The probe is labeled 5' with a reporter dye (e.g. FAM) and 3' with a quencher dye (e.g. TAMRA). If the probe is intact, the spatial proximity of reporter to quencher suppresses the emission of reporter fluorescence. If the probe hybridizes to the PCR product during the PCR, said probe is cleaved by the 5'-3' exonuclease activity of Taq DNA polymerase and suppression of the reporter fluorescence is removed. The increase in reporter fluorescence as a consequence of the amplification of the target, is measured after each PCR cycle and utilized for quantification. Expression of the target gene is quantified absolutely or relative to expression of a control gene with constant expression in the tissues to be studied. LDHC expression was calculated by means of the .DELTA..DELTA.-C.sub.t method (PE Biosystems, USA), after normalizing the samples to 18s RNA as "housekeeping" gene. The reactions were carried out in duplex mixtures and determined in duplicate. cDNA was synthesized using the High Capacity cDNA Archive Kit (PE Biosystems, USA) and hexamer primers according to the manufacturer's information. In each case 5 .mu.l of the diluted cDNA were used for the PCR in a total volume of 25 .mu.l: sense primer (GGTGTCACTTCTGTGCCTTCCT) 300 nM; antisense primer (CGGCACCAGTTCCAACAATAG) 300 nM; TaqMan probe (CAAAGGTTCTCCAAATGT) 250 nM; sense primer 18s RNA 50 nM; antisense primer 18s RNA 50 nM; 18s RNA sample 250 nM; 12.5 .mu.l TaqMan Universal PCR Master Mix; initial denaturation 95.degree. C. (10 min); 95.degree. C. (15 sec); 60.degree. C. (1 min); 40 cycles. Due to amplification of a 128 bp product beyond the border of exon 1 and exon 2, all LDHC splice variants described were included in the quantification.

Cloning and Sequence Analysis

[0171] Full length genes and gene fragments were cloned by common methods. The sequence was determined by amplifying corresponding antigens by means of the pfu proofreading polymerase (Stratagene). After completion of the PCR, adenosine was ligated by means of HotStarTaq DNA polymerase to the ends of the amplicon in order to clone the fragments into the TOPO-TA vector according to the manufacturer's information. A commercial service carried out the sequencing. The sequences were analyzed by means of common prediction programs and algorithms.

Example 1: Identification of LDH C as a New Tumor Antigen

[0172] LDH C (SEQ ID NO:1) and its translation product (SEQ ID NO:6) have been described as testis-specific isoenzyme of the lactate dehydrogenase family. The sequence has been published in GenBank under accession number NM_017448. The enzyme forms a homotetramer having a molecular weight of 140 kDa (Goldberg, E. et al., Contraception 64(2):93-8, 2001; Cooker et al., Biol. Reprod. 48(6):1309-19, 1993; Gupta, G. S., Crit. Rev. Biochem. Mol. Biol. 34(6):361-85, 1999).

[0173] RT-PCR studies for expression analysis using a primer pair (5'-TGCCGTAGGCATGGCTTGTGC-3', 5'-CAACATCTGAGACACCATTCC-3') which does not cross-amplify the related and ubiquitously expressed isoenzymes LDH A and LDH B and which is based on the LDH C prototype sequence NM_017448 which has previously been described as being testis-specific, confirmed according to the invention the lack of expression in all normal tissues tested, but demonstrated that the stringent transcriptional repression of this antigen in somatic cells has been removed in the case of tumors; cf. Table 1. As has been described classically for CT genes, LDH C is expressed in a number of tumor entities.

TABLE-US-00002 TABLE 1 Expression of LDHC in tumors Tested in Tissue total Positive % Melanoma 16 7 44 Mammary carcinomas 20 7 35 Colorectal tumors 20 3 15 Prostate carcinomas 8 3 38 Bronchial carcinomas 17 8 47 Kidney cell carcinomas 7 4 57 Ovarian carcinomas 7 3 43 Thyroid carcinomas 4 1 25 Cervical carcinomas 6 5 83 Melanoma cell lines 8 5 63 Bronchial carcinoma cell 6 2 33 lines

[0174] The expected size of the amplification product is 824 bp, using the PCR primers mentioned above. According to the invention, however, amplification of multiple additional bands was observed in tumors, but not in testis. Since this is indicative for the presence of alternative splice variants, the complete open reading frame was amplified using LDH-C-specific primers (5'-TAGCGCCTCAACTGTCGTTGG-3', 5'-CAACATCTGAGACACCATTCC-3') and independent full-length clones were sequenced. Alignments with the prototype ORF of the LDH C sequence described (SEQ ID NO:1) and the genomic sequence on chromosome 11 confirm additional splice variants (SEQ ID NO:2-5). The alternative splicing events result in the absence of exon 3 (SEQ ID NO:2), of the two exons 3 and 4 (SEQ ID NO:3), of the exons 3, 6 and 7 (SEQ ID NO:4) or of exon 7 (SEQ ID NO:5) (cf. FIG. 2).

[0175] These new splice variants are generated exclusively in tumors, but not in testis. Alternative splicing causes alterations in the reading frame and results in new possible ORFs encoding the amino acid sequences depicted in SEQ ID NO:7-13 (ORF for SEQ ID NO:7: nucleotide position 59-214 of SEQ ID NO:2 and, respectively, SEQ ID NO:4 ORF for SEQ ID NO:8: nucleotide position 289-939 of SEQ ID NO:2; ORF for SEQ ID NO:9: nucleotide position 59-196 of SEQ ID NO:3; ORF for SEQ ID NO:10: nucleotide position 535-765 of SEQ ID NO:3; ORF for SEQ ID NO:11: nucleotide position 289-618 of SEQ ID NO:4; ORF for SEQ ID NO:12: nucleotide position 497-697 of SEQ ID NO:4; ORF for SEQ ID NO:13: nucleotide position 59-784 of SEQ ID NO:5) (FIG. 2, 3). Apart from premature termination, utilization of alternative start codons is also possible so that the encoded proteins may be truncated both N-terminally and C-terminally.

[0176] While SEQ ID NO:8 and SEQ ID NO:10 represent truncated portions of the prototype protein, the protein sequence of SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:12 and SEQ ID NO:13 are additionally altered and contain only tumor-specific epitopes (printed in bold type in FIG. 3). Peptide regions which could result in tumor-specific epitopes are as follows (the strictly tumor-specific portion produced by frame shifts is underlined):

TABLE-US-00003 SEQ ID NO: 14: (of SEQ ID NO: 7) GAVGMACAISILLKITVYLQTPE SEQ ID NO: 15: (of SEQ ID NO: 9) GAVGMACAISILLKWIF SEQ ID NO: 16: (of SEQ ID NO: 11) GWIIGEHGDSSGIIWNKRRTLSQYPLCLGAEWCLCCEN SEQ ID NO: 17: (of SEQ ID NO: 12) MVGLLENMVILVGLYGIKEELFL SEQ ID NO:18: (of SEQ ID NO: 13) EHWKNIHKQVIQRDYME

[0177] These regions may potentially contain epitopes which can be recognized on MHC I or MHC II molecules by T lymphocytes and which result in a strictly tumor-specific response.

[0178] Not all of the predicted proteins have the catalytic lactate dehydrogenase domain for NADH-dependent metabolization of pyruvate to lactate, which represents the last step of anaerobic glycolysis. This domain would be required for the enzymatic function as lactate dehydrogenase (framed in FIG. 3). Further analyses, for example using algorithms such as TMpred and pSORT (Nakai & Kanehisa, 1992), predict different subcellular localizations for the putative proteins.

[0179] According to the invention, the level of expression was quantified by real time PCR using a specific primer-sample set. The amplicon is present in the junction between exon 1 and exon 2 and thus detects all variants (SEQ ID NO:1-5). These studies too, do not detect any transcripts in normal tissues except testis. They confirm significant levels of expression in tumors (FIG. 4).

[0180] LDHC-specific polyclonal antibodies were produced according to the invention by selecting a peptide from the extreme N-terminal region MSTVKEQLIEKLIEDDENSQ (SEQ ID NO:80). LDHC-specific antibodies were produced in rabbits with the aid of this peptide. Subsequent studies on protein expression confirmed selective LDHC expression in testis and in various tumors. In addition, immunohistological studies in accordance with the invention revealed a distinct colocalization of LDHC with cytochrome C oxidase in mitochondria. This indicates that LDHC plays an important part in the respiratory chain of tumors.

Example 2: Identification of TPTE as a New Tumor Antigen

[0181] The sequences of the TPTE transcript (SEQ ID NO:19) and of its translation product (SEQ ID NO:22) have been published in GenBank under accession number NM_013315 (Walker, S. M. et al., Biochem. J. 360(Pt 2):277-83, 2001; Guipponi M. et al., Hum. Genet. 107(2):127-31, 2000; Chen H. et al., Hum. Genet. 105(5):399-409, 1999). TPTE has been described as a gene coding for a possible transmembrane tyrosinephosphatase, with testis-specific expression located in the pericentromeric region of chromosomes 21, 13, 15, 22 and Y (Chen, H. et al., Hum. Genet. 105:399-409, 1999). Alignment studies in accordance with the invention additionally reveal homologous genomic sequences on chromosomes 3 and 7.

[0182] According to the invention, PCR primers (5'-TGGATGTCACTCTCATCCTTG-3' and 5'-CCATAGTTCCTGTTCTATCTG-3') were generated based on the sequence of TPTE (SEQ ID NO:19) and used for RT-PCR analyses (95.degree. 15 min; 94.degree. 1 min; 63.degree. 1 min; 72.degree. 1 min; 35 cycles) in a number of human tissues. Expression in normal tissues was shown to be limited to testis. As described for the other eCT, TPTE variants were shown according to the invention to be ectopically activated in a number of tumor tissues; cf. Table 2. According to the invention, further TPTE splice variants were identified (SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57) which are expressed in testicular tissue and in tumors and which have frame shifts and thus altered sequence regions (FIG. 5).

TABLE-US-00004 TABLE 2 Expression of TPTE in tumors Tested Tissue in total Positive % Melanoma 18 9 50 Mammary carcinomas 20 4 20 Colorectal tumors 20 0 0 Prostate carcinomas 8 3 38 Bronchial carcinomas 23 9 39 Kidney cell carcinomas 7 0 0 Ovarian carcinomas 7 2 29 Thyroid carcinomas 4 0 0 Cervical carcinomas 6 1 17 Melanoma cell lines 8 4 50 Bronchial carcinoma cell 6 2 33 lines Mammalian carcinoma cell 5 4 80 lines

[0183] The TPTE genomic sequence consists of 24 exons (accession number NT_029430). The transcript depicted in SEQ ID NO:19 contains all of these exons. The splice variant depicted in SEQ ID NO:20 is produced by splicing out exon 7. The splice variant depicted in SEQ ID NO:21 shows partial incorporation of an intron downstream of exon 15. As the variants SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57 indicate, it is alternatively also possible to splice out exons 18, 19, 20 and 21.

[0184] These alternative splicing events result in alterations of the encoded protein, with the reading frame being retained in principle (FIG. 6). For example, the translation product encoded by the sequence depicted in SEQ ID NO:20 (SEQ ID NO:23) has a deletion of 13 amino acids in comparison to the sequence depicted in SEQ ID NO:22. The translation product encoded by the sequence depicted in SEQ ID NO:21 (SEQ ID NO:24) carries an additional insertion in the central region of the molecule and thereby differs from the other variants by 14 amino acids.

[0185] The translation products of the variants SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, namely the proteins SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, are likewise altered.

[0186] Analyses for predicting the functional domains reveal the presence of a tyrosinephosphatase domain for SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:58, SED ID NO:60 but not for SEQ ID NO:59, SEQ ID NO:61. For all variants, 3-4 transmembrane domains are predicted (FIG. 6).

[0187] Analysis of TPTE antigen expression, using specific antibodies, confirmed selective expression in testis and in a number of different tumors. Colocalization studies moreover revealed that according to the invention TPTE is located together with class I immunoglobulins on the cell surface of tumor cells. Previously, TPTE had been described only as a Golgi-associated protein. Owing to TPTE expression on the cell surface of tumor cells, this tumor antigen is suitable according to the invention as an outstanding target for developing diagnostic and therapeutic monoclonal antibodies. Owing to the predicted membrane topology of TPTE, the extracellulary exposed regions are particularly suitable for this purpose according to the invention. According to the invention, this comprises the peptides FTDSKLYIPLEYRS (SEQ ID NO:81) and FDIKLLRNIPRWT (SEQ ID NO: 82). In addition, TPTE was shown to promote the migration of tumor cells. To this end, tumor cells which had been transfected with TPTE under the control of a eukaryotic promoter and control cells were studied in "Boyden chamber" migration experiments, as to whether they exhibit directed migration. TPTE-transfected cells here had according to the invention markedly (3-fold) increased migration in 4 independent experiments. These functional data indicate that TPTE plays an important part in the metastasizing of tumors. Thus, processes which inhibit according to the invention endogenous TPTE activity in tumor cells, for example by using antisense RNA, different methods of RNA interference (RNAi) by means of expression vectors or retroviruses, and by using small molecules, could result in reduced metastasizing and thus be very important therapeutically. A causal connection between the activity of a phosphatase in tumors and increased migration and increased formation of metastases was established recently for the PTEN tyrosinephosphastase (Iijima and Devreotes Cell 109:599-610, 2002).

Example 3: Identification of TSBP as a New Tumor Antigen

[0188] The electronic cloning method employed according to the invention produced TSBP (SEQ ID NO:29) and the protein derived therefrom (SEQ ID NO:30). The gene has been described previously as being testis-specifically regulated (accession number NM_006781). The gene was predicted to encode a basic protein and to be located on chromosome 6 close to a sequence coding for an MHC complex (C6orf10) (Stammers M. et al., Immunogenetics 51(4-5):373-82, 2000). According to the invention, the previously described sequence was shown to be incorrect. The sequence of the invention is substantially different from the known sequence. According to the invention, 3 different splicing variants were cloned. The differences in the nucleotide sequences of the TSBP variants found according to the invention (SEQ ID NO:31, SEQ ID NO: 32, SEQ ID NO:33) to the known sequence (NM_006781, SEQ ID NO:29) are depicted in FIG. 7 (differences depicted in bold type). They result in frame shifts so that the proteins encoded by the TSBP variants found according to the invention (SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36) differ substantially from the previously described protein (SEQ ID NO:30) (FIG. 8).

[0189] It was confirmed according to the invention that this antigen is strictly transcriptionally repressed in normal tissues (PCR primers 5'-TCTAGCACTGTCTCGATCAAG-3' and 5'-TGTCCTCTTGGTACATCTGAC-3'). However, in 25 normal tissues studied, TSBP was expressed, apart from in testis, also in normal lymph node tissue. According to the invention, ectopic activation of TSBP in tumors was also detected, and it therefore qualifies as a tumor marker or tumor-associated antigen (Table 3).

[0190] Although TSBP expression is found in primary tumor tissue, it is not found in permanent cell lines of corresponding tumor entities. Moreover, the gene is in the direct neighborhood of Notch 4 which is specifically expressed in arteries and involved in vascular morphogenesis. These are significant indications of this being a marker for specific endothelial cells. TSBP may therefore serve as a potential marker for tumor endothelia and for neovascular targeting.

[0191] Consequently, the TSBP promoter may be cloned to another genetic product whose selective expression in lymph nodes is desired.

[0192] Analysis of TSBP antigen expression, using specific antibodies, confirmed the selective localization of the protein in testis and lymph nodes and also in melanomas and bronchial carcinomas. In addition, immunohistological studies using GFP-tagged TSBP revealed a distinct perinucleic accumulation.

TABLE-US-00005 TABLE 3 Expression of TSBP in tumors Tested Tissue in total Positive % Melanoma 12 2 16 Mammary carcinomas 15 0 -- Colorectal tumors 15 0 -- Prostate carcinomas 8 0 -- Bronchial carcinomas 7 17 41 Kidney cell carcinomas 7 0 -- Ovarian carcinomas 7 0 -- Thyroid carcinomas 4 0 -- Cervical carcinomas 6 0 -- Melanoma cell lines 8 0 -- Bronchial carcinoma cell 6 0 -- lines

Example 4: Identification of MS4A12 as a New Tumor Antigen

[0193] MS4A12 (SEQ ID NO:37, accession number NM_017716) and its translation product (SEQ ID NO:38) have been described previously as members of a multigene family related to the B cell-specific antigen CD20, the hematopoietic cell-specific protein HTm4 and the P chain of the high affinity IgE receptor. All family members are characterized by at least four potential transmembrane domains and both the C and the N-terminus are cytoplasmic (Liang Y. et al., Immunogenetics 53(5):357-68, 2001; Liang Y. & Tedder, Genomics 72(2):119-27, 2001). According to the invention, RT-PCR studies on MS4A12 were carried out. The primers were selected based on the published MS4A12 sequence (NM_017716) (sense: CTGTGTCAGCATCCAAGGAGC, antisense: TTCACCTTTGCCAGCATGTAG). In the tissues tested, expression was detected only in testis, colon (6/8) and colorectal carcinomas (colon-Ca's) (16/20) and in colonic metastases (12/15) (FIG. 9).

[0194] The high incidence in colonic metastases makes TSBP an attractive diagnostic and therapeutic target. According to the invention, the predicted extracellular region comprising the protein sequence GVAGQDYWAVLSGKG (SEQ ID NO:83) is particularly suitable for producing monoclonal antibodies and small chemical inhibitors. According to the invention, the intracellular localization of the MS4A12 protein on the cell membrane was also confirmed by fluorescence superposition using plasma membrane markers in confocal immunofluorescence.

TABLE-US-00006 TABLE 4 Expression of MS4A12 in normal tissues and colorectal carcinomas and metastasis Ileum + Colon + Liver - Lung - Lymph nodes - Stomach - Spleen - Adrenal gland - Kidney - Esophagus - Ovary - Rectum + Testis + Thymus - Skin - Mamma - Pancreas - PBMC - PBMC act. - Prostate - Thyroid - Tube - Uterus - Cerebrum - Cerebellum - Colorectal tumors 16/20 Colorectal tumors 12/15 metastases

[0195] Thus, MS4A12 is a cell membrane-located differentiation antigen for normal colon epithelia, which is also expressed in colorectal tumors and metastases.

Example 5: Identification of BRCO1 as a New Tumor Antigen

[0196] BRCO1 and its translation product have not been described previously. The datamining method of the invention produced the EST (expressed sequence tag) AI668620. RT-PCR studies using specific primers (sense: CTTGCTCTGAGTCATCAGATG, antisense: CACAGAATATGAGCCATACAG) were carried for expression analysis. According to the invention, specific expression was found in testicular tissue and additionally in normal mammary gland (Table 5). In all other tissues, this antigen is transcriptionally repressed. It is likewise detected in mammary gland tumors (20 out of 20). BRCO1 is distinctly overexpressed in breast tumors in comparison with expression in normal mammary gland tissue (FIG. 10). Utilizing EST contigs (the following ESTs were incorporated: AW137203, BF327792, BF327797, BE069044, BF330665), more than 1500 bp of this transcript were cloned according to the invention by electronic full-length cloning (SEQ ID NO:39). The sequence maps to chromosome 10p11-12. In the same region, in immediate proximity, the gene for a mammary differentiation antigen, NY-BR-1, has been described previously (NM_052997; Jager, D. et al., Cancer Res. 61(5):2055-61, 2001).

TABLE-US-00007 TABLE 5 Expression of BRCO1 in normal tissues and breast tumors Ileum - Colon - Liver - Lung - Lymph nodes - Stomach - Spleen - Adrenal gland - Kidney - Esophagus - Ovary - Rectum - Testis + Thymus - Skin - Mamma + Pancreas - PBMC - PBMC act. - Prostate - Thyroid - Tube - Uterus - Cerebrum - Cerebellum - Mammary carcinomas ++ (20/20)

[0197] Matched pair (mammary carcinoma and adjacent normal tissue) studies revealed BRCO1 overexpression in 70% of the mammary carcinomas in comparison with the normal tissue.

[0198] Thus, BRCO1 is a new differentiation antigen for normal mammary gland epithelia, which is overexpressed in breast tumors.

Example 6: Identification of TPX1 as a New Tumor Antigen

[0199] The sequence of TPX1 (Acc. No. NM_003296; SEQ ID NO: 40) and of its translation product (SEQ ID NO:41, are known. The antigen has been described previously only as being testis-specific, that is as an element of the outer fibers and of the acrosome of sperms. Previously, an involvement as adhesion molecule in the attachment of sperms to Sertoli cells has been attributed to said antigen (O'Bryan, M. K. et al., Mol. Reprod. Dev. 58(1):116-25, 2001; Maeda, T. et al., Dev. Growth Differ. 41(6):715-22, 1999). The invention reveals, for the first time, aberrant expression of TPX1 in solid tumors (Table 6). Owing to the marked amino acid homology between TPX1 and the neutrophile-specific matrix glycoprotein SGP 28 (Kjeldsen et al., FEBS Lett 380:246-259, 1996), TPX1-specific protein sequences comprising the peptide SREVTTNAQR (SEQ ID NO:84) are suitable according to the invention for preparing diagnostic and therapeutic molecules.

TABLE-US-00008 TABLE 6 Expression of TPX1 in tumors Tested in Tissue total Positive % Melanoma 16 1 6 Mammary carcinomas 20 3 15 Colorectal tumors 20 0 0 Prostate carcinomas 8 3 37 Bronchial carcinomas 17 2 11 Kidney cell carcinomas 7 1 14 Ovarian carcinomas 7 1 14 Thyroid carcinomas 4 0 0 Cervical carcinomas 6 1 16 Melanoma cell lines 8 2 25 Bronchial carcinoma cell lines 6 1 16

Example 7: Identification of BRCO2 as a New Tumor Genetic Product

[0200] BROC2 and its translation product have not been described previously. The method of the invention produced the ESTs (expressed sequence tag) BE069341, BF330573 and AA601511. RT-PCR studies using specific primers (sense: AGACATGGCTCAGATGTGCAG, antisense: GGAAATTAGCAAGGCTCTCGC) were carried out for expression analysis. According to the invention, specific expression was found in testicular tissue and additionally in normal mammary gland (Table 7). In all other tissues, this genetic product is transciptionally repressed. It is likewise detected in mammary gland tumors. Utilizing EST contigs (the following ESTs were incorporated: BF330573, AL044891 and AA601511), 1300 bp of this transcript were cloned according to the invention by electronic full-length cloning (SEQ ID 62). The sequence maps to chromosome 10p11-12. In the same region, in immediate proximity, the gene for a mammary differentiation genetic product, NY-BR-1, has been described previously (NM_052997; Jager, D. et al., Cancer Res. 61(5):2055-61, 2001), and here the BRCO1 described above under Example 6 is located. Further genetic analyses revealed according to the invention that the sequence listed under SEQ ID NO:62 represents the 3' untranslated region of the NY-BR-1 gene, which has not been described previously.

TABLE-US-00009 TABLE 7 Expression of BRCO2 in normal tissues and breast tumors Tissue Expression Testis + Mamma + Skin - Liver - Prostate - Thymus - Brain - Lung - Lymph nodes - Spleen - Adrenal gland - Ovary - Leukocytes - Colon - Esophagus - Uterus - Skeleton muscle - Epididymis - Bladder - Kidney - Mammary carcinoma +

[0201] BRCO2 is a new differentiation genetic product for normal mammary gland epithelia, which is also expressed in breast tumors.

Example 8: Identification of PCSC as a New Tumor Genetic Product

[0202] PCSC (SEQ ID NO:63) and its translation product have not been described previously. The datamining method of the invention produced the EST (expressed sequence tag) BF064073. RT-PCR studies using specific primers (sense: TCAGGTATTCCCTGCTCTTAC, antisense: TGGGCAATTCTCTCAGGCTTG) were carried out for expression analysis. According to the invention, specific expression was found in normal colon, and additionally in colon carcinomas (Table 5). In all other tissues, this genetic product is transcriptionally repressed. PCSC codes for two putative ORFs (SEQ ID 64 and SEQ ID 65). Sequence analysis of SEQ ID 64 revealed a structural homology to CXC cytokines. In addition, 4 alternative PCSC cDNA fragments were cloned (SEQ ID NO:85-88). In each case, according to the invention, each cDNA contains 3 putative ORFs which code for the polypeptides depicted in SEQ ID NO:89-100.

TABLE-US-00010 TABLE 8 Expression of PCSC in normal tissues and colorectal carcinomas Ileum + Colon + Liver - Lung - Lymph nodes - Stomach - Spleen - Adrenal gland - Kidney - Esophagus - Ovary - Rectum + Testis - Thymus - Skin - Mamma - Pancreas - PBMC - PBMC act. - Prostate - Thyroid - Tube - Uterus - Cerebrum - Cerebellum - Colorectal tumors 19/20 Colorectal tumors 15/15 metastases

[0203] Thus, PCSC is a differentiation antigen for normal colon epithelia which is also expressed in colorectal tumors and in all colon metastases studied. PCSC expression detected in all colorectal metastases according to the invention renders this tumor antigen a very interesting target for prophylaxis and treatment of metastasizing colon tumors.

Example 9: Identification of SGY-1 as a New Tumor Antigen

[0204] The sequences of the SGY-1 transcript (SEQ ID NO:70) and of its translation product (SEQ ID NO:71) have been published in GenBank under accession number AF177398 (Krupnik et al., Gene 238, 301-313, 1999). Soggy-1 has previously been described as a member of the Dickkopf protein family which act as inhibitors and antagonists of the Wnt family of proteins. The Wnt proteins in turn have important functions in embryonic development. Based on the sequence of SGY-1 (SEQ ID NO:70), PCR primers (5'-CTCCTATCCATGATGCTGACG-3' and 5'-CCTGAGGATGTACAGTAAGTG-3') were generated according to the invention and used for RT-PCR analyses (95.degree. 15 min; 94.degree. 1 min; 63.degree. 1 min; 72.degree. 1 min; 35 cycles) in a number of human tissues. Expression in normal tissues was shown to be limited to testis. As described for the other eCT, SGY-1 was shown according to the invention to be ectopically activated in a number of tumor tissues; cf. Table 9.

TABLE-US-00011 TABLE 9 Expression of SGY-1 in tumors Tested Tissue in total Positive % Melanoma 16 4 25 Mammary carcinomas 20 4 20 Colorectal tumors 20 0 0 Prostate carcinomas 8 1 13 Bronchial carcinomas 32 3 18 Kidney cell carcinomas 7 0 0 Ovarian carcinomas 7 4 57 Thyroid carcinomas 4 0 0 Cervical carcinomas 6 2 33 Melanoma cell lines 8 2 25 Bronchial carcinoma cell 6 2 33 lines Mammalian carcinoma cell lines

Example 10: Identification of MORC as a New Tumor Antigen

[0205] The sequences of the MORC transcript (SEQ ID NO:74) and of its translation product (SEQ ID NO:75) have been published in GenBank under the accession number XM_037008 (Inoue et al., Hum Mol Genet. July: 8(7):1201-7, 1999).

[0206] MORC has originally been described as being involved in spermatogenesis. Mutation of this protein in the mouse system results in underdevelopment of the gonads.

[0207] Based on the sequence of MORC (SEQ ID NO:74), PCR primers (5'-CTGAGTATCAGCTACCATCAG-3' and 5'-TCTGTAGTCCTTCACATATCG-3') were generated according to the invention and used for RT-PCR analyses (95.degree. 15 min; 94.degree. 1 min; 63.degree. 1 min; 72.degree. 1 min; 35 cycles) in a number of human tissues. Expression in normal tissues was shown to be limited to testis. As described for the other eCT, MORC was shown according to the invention to be ectopically activated in a number of tumor tissues: cf. Table 10.

TABLE-US-00012 TABLE 10 Expression of MORC in tumors Tested Tissue in total Positive % Melanoma 16 3 18 Mammary carcinomas 20 0 0 Colorectal tumors 20 0 0 Prostate carcinomas 8 0 0 Bronchial carcinomas 17 3 18 Kidney cell carcinomas 7 0 0 Ovarian carcinomas 7 1 14 Thyroid carcinomas 4 0 0 Cervical carcinomas 6 0 0 Melanoma cell lines 8 1 12 Bronchial carcinoma cell 6 1 17 lines

Sequence CWU 1

1

10011171DNAHomo sapiens 1ctgtcgttgg tgtatttttc tggtgtcact tctgtgcctt ccttcaaagg ttctccaaat 60gtcaactgtc aaggagcagc taattgagaa gctaattgag gatgatgaaa actcccagtg 120taaaattact attgttggaa ctggtgccgt aggcatggct tgtgctatta gtatcttact 180gaaggatttg gctgatgaac ttgcccttgt tgatgttgca ttggacaaac tgaagggaga 240aatgatggat cttcagcatg gcagtctttt ctttagtact tcaaagatta cttctggaaa 300agattacagt gtatctgcaa actccagaat agttattgtc acagcaggtg caaggcagca 360ggagggagaa actcgccttg ccctggtcca acgtaatgtg gctataatga aatcaatcat 420tcctgccata gtccattata gtcctgattg taaaattctt gttgtttcaa atccagtgga 480tattttgaca tatatagtct ggaagataag tggcttacct gtaactcgtg taattggaag 540tggttgtaat ctagactctg cccgtttccg ttacctaatt ggagaaaagt tgggtgtcca 600ccccacaagc tgccatggtt ggattattgg agaacatggt gattctagtg tgcccttatg 660gagtggggtg aatgttgctg gtgttgctct gaagactctg gaccctaaat taggaacgga 720ttcagataag gaacactgga aaaatatcca taaacaagtt attcaaagtg cctatgaaat 780tatcaagctg aaggggtata cctcttgggc tattggactg tctgtgatgg atctggtagg 840atccattttg aaaaatctta ggagagtgca cccagtttcc accatggtta agggattata 900tggaataaaa gaagaactct ttctcagtat cccttgtgtc ttggggcgga atggtgtctc 960agatgttgtg aaaattaact tgaattctga ggaggaggcc cttttcaaga agagtgcaga 1020aacactttgg aatattcaaa aggatctaat attttaaatt aaagccttct aatgttccac 1080tgtttggaga acagaagata gcaggctgtg tattttaaat tttgaaagta ttttcattga 1140tcttaaaaaa taaaaacaaa ttggagacct g 117121053DNAHomo sapiens 2ctgtcgttgg tgtatttttc tggtgtcact tctgtgcctt ccttcaaagg ttctccaaat 60gtcaactgtc aaggagcagc taattgagaa gctaattgag gatgatgaaa actcccagtg 120taaaattact attgttggaa ctggtgccgt aggcatggct tgtgctatta gtatcttact 180gaagattaca gtgtatctgc aaactccaga atagttattg tcacagcagg tgcaaggcag 240caggagggag aaactcgcct tgccctggtc caacgtaatg tggctataat gaaatcaatc 300attcctgcca tagtccatta tagtcctgat tgtaaaattc ttgttgtttc aaatccagtg 360gatattttga catatatagt ctggaagata agtggcttac ctgtaactcg tgtaattgga 420agtggttgta atctagactc tgcccgtttc cgttacctaa ttggagaaaa gttgggtgtc 480caccccacaa gctgccatgg ttggattatt ggagaacatg gtgattctag tgtgccctta 540tggagtgggg tgaatgttgc tggtgttgct ctgaagactc tggaccctaa attaggaacg 600gattcagata aggaacactg gaaaaatatc cataaacaag ttattcaaag tgcctatgaa 660attatcaagc tgaaggggta tacctcttgg gctattggac tgtctgtgat ggatctggta 720ggatccattt tgaaaaatct taggagagtg cacccagttt ccaccatggt taagggatta 780tatggaataa aagaagaact ctttctcagt atcccttgtg tcttggggcg gaatggtgtc 840tcagatgttg tgaaaattaa cttgaattct gaggaggagg cccttttcaa gaagagtgca 900gaaacacttt ggaatattca aaaggatcta atattttaaa ttaaagcctt ctaatgttcc 960actgtttgga gaacagaaga tagcaggctg tgtattttaa attttgaaag tattttcatt 1020gatcttaaaa aataaaaaca aattggagac ctg 10533879DNAHomo sapiens 3ctgtcgttgg tgtatttttc tggtgtcact tctgtgcctt ccttcaaagg ttctccaaat 60gtcaactgtc aaggagcagc taattgagaa gctaattgag gatgatgaaa actcccagtg 120taaaattact attgttggaa ctggtgccgt aggcatggct tgtgctatta gtatcttact 180gaagtggata ttttgacata tatagtctgg aagataagtg gcttacctgt aactcgtgta 240attggaagtg gttgtaatct agactctgcc cgtttccgtt acctaattgg agaaaagttg 300ggtgtccacc ccacaagctg ccatggttgg attattggag aacatggtga ttctagtgtg 360cccttatgga gtggggtgaa tgttgctggt gttgctctga agactctgga ccctaaatta 420ggaacggatt cagataagga acactggaaa aatatccata aacaagttat tcaaagtgcc 480tatgaaatta tcaagctgaa ggggtatacc tcttgggcta ttggactgtc tgtgatggat 540ctggtaggat ccattttgaa aaatcttagg agagtgcacc cagtttccac catggttaag 600ggattatatg gaataaaaga agaactcttt ctcagtatcc cttgtgtctt ggggcggaat 660ggtgtctcag atgttgtgaa aattaacttg aattctgagg aggaggccct tttcaagaag 720agtgcagaaa cactttggaa tattcaaaag gatctaatat tttaaattaa agccttctaa 780tgttccactg tttggagaac agaagatagc aggctgtgta ttttaaattt tgaaagtatt 840ttcattgatc ttaaaaaata aaaacaaatt ggagacctg 8794811DNAHomo sapiens 4ctgtcgttgg tgtatttttc tggtgtcact tctgtgcctt ccttcaaagg ttctccaaat 60gtcaactgtc aaggagcagc taattgagaa gctaattgag gatgatgaaa actcccagtg 120taaaattact attgttggaa ctggtgccgt aggcatggct tgtgctatta gtatcttact 180gaagattaca gtgtatctgc aaactccaga atagttattg tcacagcagg tgcaaggcag 240caggagggag aaactcgcct tgccctggtc caacgtaatg tggctataat gaaatcaatc 300attcctgcca tagtccatta tagtcctgat tgtaaaattc ttgttgtttc aaatccagtg 360gatattttga catatatagt ctggaagata agtggcttac ctgtaactcg tgtaattgga 420agtggttgta atctagactc tgcccgtttc cgttacctaa ttggagaaaa gttgggtgtc 480caccccacaa gctgccatgg ttggattatt ggagaacatg gtgattctag tgggattata 540tggaataaaa gaagaactct ttctcagtat cccttgtgtc ttggggcgga atggtgtctc 600agatgttgtg aaaattaact tgaattctga ggaggaggcc cttttcaaga agagtgcaga 660aacactttgg aatattcaaa aggatctaat attttaaatt aaagccttct aatgttccac 720tgtttggaga acagaagata gcaggctgtg tattttaaat tttgaaagta ttttcattga 780tcttaaaaaa taaaaacaaa ttggagacct g 81151047DNAHomo sapiens 5ctgtcgttgg tgtatttttc tggtgtcact tctgtgcctt ccttcaaagg ttctccaaat 60gtcaactgtc aaggagcagc taattgagaa gctaattgag gatgatgaaa actcccagtg 120taaaattact attgttggaa ctggtgccgt aggcatggct tgtgctatta gtatcttact 180gaaggatttg gctgatgaac ttgcccttgt tgatgttgca ttggacaaac tgaagggaga 240aatgatggat cttcagcatg gcagtctttt ctttagtact tcaaagatta cttctggaaa 300agattacagt gtatctgcaa actccagaat agttattgtc acagcaggtg caaggcagca 360ggagggagaa actcgccttg ccctggtcca acgtaatgtg gctataatga aatcaatcat 420tcctgccata gtccattata gtcctgattg taaaattctt gttgtttcaa atccagtgga 480tattttgaca tatatagtct ggaagataag tggcttacct gtaactcgtg taattggaag 540tggttgtaat ctagactctg cccgtttccg ttacctaatt ggagaaaagt tgggtgtcca 600ccccacaagc tgccatggtt ggattattgg agaacatggt gattctagtg tgcccttatg 660gagtggggtg aatgttgctg gtgttgctct gaagactctg gaccctaaat taggaacgga 720ttcagataag gaacactgga aaaatatcca taaacaagtt attcaaaggg attatatgga 780ataaaagaag aactctttct cagtatccct tgtgtcttgg ggcggaatgg tgtctcagat 840gttgtgaaaa ttaacttgaa ttctgaggag gaggcccttt tcaagaagag tgcagaaaca 900ctttggaata ttcaaaagga tctaatattt taaattaaag ccttctaatg ttccactgtt 960tggagaacag aagatagcag gctgtgtatt ttaaattttg aaagtatttt cattgatctt 1020aaaaaataaa aacaaattgg agacctg 10476332PRTHomo sapiens 6Met Ser Thr Val Lys Glu Gln Leu Ile Glu Lys Leu Ile Glu Asp Asp 1 5 10 15 Glu Asn Ser Gln Cys Lys Ile Thr Ile Val Gly Thr Gly Ala Val Gly 20 25 30 Met Ala Cys Ala Ile Ser Ile Leu Leu Lys Asp Leu Ala Asp Glu Leu 35 40 45 Ala Leu Val Asp Val Ala Leu Asp Lys Leu Lys Gly Glu Met Met Asp 50 55 60 Leu Gln His Gly Ser Leu Phe Phe Ser Thr Ser Lys Ile Thr Ser Gly 65 70 75 80 Lys Asp Tyr Ser Val Ser Ala Asn Ser Arg Ile Val Ile Val Thr Ala 85 90 95 Gly Ala Arg Gln Gln Glu Gly Glu Thr Arg Leu Ala Leu Val Gln Arg 100 105 110 Asn Val Ala Ile Met Lys Ser Ile Ile Pro Ala Ile Val His Tyr Ser 115 120 125 Pro Asp Cys Lys Ile Leu Val Val Ser Asn Pro Val Asp Ile Leu Thr 130 135 140 Tyr Ile Val Trp Lys Ile Ser Gly Leu Pro Val Thr Arg Val Ile Gly 145 150 155 160 Ser Gly Cys Asn Leu Asp Ser Ala Arg Phe Arg Tyr Leu Ile Gly Glu 165 170 175 Lys Leu Gly Val His Pro Thr Ser Cys His Gly Trp Ile Ile Gly Glu 180 185 190 His Gly Asp Ser Ser Val Pro Leu Trp Ser Gly Val Asn Val Ala Gly 195 200 205 Val Ala Leu Lys Thr Leu Asp Pro Lys Leu Gly Thr Asp Ser Asp Lys 210 215 220 Glu His Trp Lys Asn Ile His Lys Gln Val Ile Gln Ser Ala Tyr Glu 225 230 235 240 Ile Ile Lys Leu Lys Gly Tyr Thr Ser Trp Ala Ile Gly Leu Ser Val 245 250 255 Met Asp Leu Val Gly Ser Ile Leu Lys Asn Leu Arg Arg Val His Pro 260 265 270 Val Ser Thr Met Val Lys Gly Leu Tyr Gly Ile Lys Glu Glu Leu Phe 275 280 285 Leu Ser Ile Pro Cys Val Leu Gly Arg Asn Gly Val Ser Asp Val Val 290 295 300 Lys Ile Asn Leu Asn Ser Glu Glu Glu Ala Leu Phe Lys Lys Ser Ala 305 310 315 320 Glu Thr Leu Trp Asn Ile Gln Lys Asp Leu Ile Phe 325 330 751PRTHomo sapiens 7Met Ser Thr Val Lys Glu Gln Leu Ile Glu Lys Leu Ile Glu Asp Asp 1 5 10 15 Glu Asn Ser Gln Cys Lys Ile Thr Ile Val Gly Thr Gly Ala Val Gly 20 25 30 Met Ala Cys Ala Ile Ser Ile Leu Leu Lys Ile Thr Val Tyr Leu Gln 35 40 45 Thr Pro Glu 50 8216PRTHomo sapiens 8Met Lys Ser Ile Ile Pro Ala Ile Val His Tyr Ser Pro Asp Cys Lys 1 5 10 15 Ile Leu Val Val Ser Asn Pro Val Asp Ile Leu Thr Tyr Ile Val Trp 20 25 30 Lys Ile Ser Gly Leu Pro Val Thr Arg Val Ile Gly Ser Gly Cys Asn 35 40 45 Leu Asp Ser Ala Arg Phe Arg Tyr Leu Ile Gly Glu Lys Leu Gly Val 50 55 60 His Pro Thr Ser Cys His Gly Trp Ile Ile Gly Glu His Gly Asp Ser 65 70 75 80 Ser Val Pro Leu Trp Ser Gly Val Asn Val Ala Gly Val Ala Leu Lys 85 90 95 Thr Leu Asp Pro Lys Leu Gly Thr Asp Ser Asp Lys Glu His Trp Lys 100 105 110 Asn Ile His Lys Gln Val Ile Gln Ser Ala Tyr Glu Ile Ile Lys Leu 115 120 125 Lys Gly Tyr Thr Ser Trp Ala Ile Gly Leu Ser Val Met Asp Leu Val 130 135 140 Gly Ser Ile Leu Lys Asn Leu Arg Arg Val His Pro Val Ser Thr Met 145 150 155 160 Val Lys Gly Leu Tyr Gly Ile Lys Glu Glu Leu Phe Leu Ser Ile Pro 165 170 175 Cys Val Leu Gly Arg Asn Gly Val Ser Asp Val Val Lys Ile Asn Leu 180 185 190 Asn Ser Glu Glu Glu Ala Leu Phe Lys Lys Ser Ala Glu Thr Leu Trp 195 200 205 Asn Ile Gln Lys Asp Leu Ile Phe 210 215 945PRTHomo sapiens 9Met Ser Thr Val Lys Glu Gln Leu Ile Glu Lys Leu Ile Glu Asp Asp 1 5 10 15 Glu Asn Ser Gln Cys Lys Ile Thr Ile Val Gly Thr Gly Ala Val Gly 20 25 30 Met Ala Cys Ala Ile Ser Ile Leu Leu Lys Trp Ile Phe 35 40 45 1076PRTHomo sapiens 10Met Asp Leu Val Gly Ser Ile Leu Lys Asn Leu Arg Arg Val His Pro 1 5 10 15 Val Ser Thr Met Val Lys Gly Leu Tyr Gly Ile Lys Glu Glu Leu Phe 20 25 30 Leu Ser Ile Pro Cys Val Leu Gly Arg Asn Gly Val Ser Asp Val Val 35 40 45 Lys Ile Asn Leu Asn Ser Glu Glu Glu Ala Leu Phe Lys Lys Ser Ala 50 55 60 Glu Thr Leu Trp Asn Ile Gln Lys Asp Leu Ile Phe 65 70 75 11109PRTHomo sapiens 11Met Lys Ser Ile Ile Pro Ala Ile Val His Tyr Ser Pro Asp Cys Lys 1 5 10 15 Ile Leu Val Val Ser Asn Pro Val Asp Ile Leu Thr Tyr Ile Val Trp 20 25 30 Lys Ile Ser Gly Leu Pro Val Thr Arg Val Ile Gly Ser Gly Cys Asn 35 40 45 Leu Asp Ser Ala Arg Phe Arg Tyr Leu Ile Gly Glu Lys Leu Gly Val 50 55 60 His Pro Thr Ser Cys His Gly Trp Ile Ile Gly Glu His Gly Asp Ser 65 70 75 80 Ser Gly Ile Ile Trp Asn Lys Arg Arg Thr Leu Ser Gln Tyr Pro Leu 85 90 95 Cys Leu Gly Ala Glu Trp Cys Leu Arg Cys Cys Glu Asn 100 105 1266PRTHomo sapiens 12Met Val Gly Leu Leu Glu Asn Met Val Ile Leu Val Gly Leu Tyr Gly 1 5 10 15 Ile Lys Glu Glu Leu Phe Leu Ser Ile Pro Cys Val Leu Gly Arg Asn 20 25 30 Gly Val Ser Asp Val Val Lys Ile Asn Leu Asn Ser Glu Glu Glu Ala 35 40 45 Leu Phe Lys Lys Ser Ala Glu Thr Leu Trp Asn Ile Gln Lys Asp Leu 50 55 60 Ile Phe 65 13241PRTHomo sapiens 13Met Ser Thr Val Lys Glu Gln Leu Ile Glu Lys Leu Ile Glu Asp Asp 1 5 10 15 Glu Asn Ser Gln Cys Lys Ile Thr Ile Val Gly Thr Gly Ala Val Gly 20 25 30 Met Ala Cys Ala Ile Ser Ile Leu Leu Lys Asp Leu Ala Asp Glu Leu 35 40 45 Ala Leu Val Asp Val Ala Leu Asp Lys Leu Lys Gly Glu Met Met Asp 50 55 60 Leu Gln His Gly Ser Leu Phe Phe Ser Thr Ser Lys Ile Thr Ser Gly 65 70 75 80 Lys Asp Tyr Ser Val Ser Ala Asn Ser Arg Ile Val Ile Val Thr Ala 85 90 95 Gly Ala Arg Gln Gln Glu Gly Glu Thr Arg Leu Ala Leu Val Gln Arg 100 105 110 Asn Val Ala Ile Met Lys Ser Ile Ile Pro Ala Ile Val His Tyr Ser 115 120 125 Pro Asp Cys Lys Ile Leu Val Val Ser Asn Pro Val Asp Ile Leu Thr 130 135 140 Tyr Ile Val Trp Lys Ile Ser Gly Leu Pro Val Thr Arg Val Ile Gly 145 150 155 160 Ser Gly Cys Asn Leu Asp Ser Ala Arg Phe Arg Tyr Leu Ile Gly Glu 165 170 175 Lys Leu Gly Val His Pro Thr Ser Cys His Gly Trp Ile Ile Gly Glu 180 185 190 His Gly Asp Ser Ser Val Pro Leu Trp Ser Gly Val Asn Val Ala Gly 195 200 205 Val Ala Leu Lys Thr Leu Asp Pro Lys Leu Gly Thr Asp Ser Asp Lys 210 215 220 Glu His Trp Lys Asn Ile His Lys Gln Val Ile Gln Arg Asp Tyr Met 225 230 235 240 Glu 1423PRTHomo sapiens 14Gly Ala Val Gly Met Ala Cys Ala Ile Ser Ile Leu Leu Lys Ile Thr 1 5 10 15 Val Tyr Leu Gln Thr Pro Glu 20 1517PRTHomo sapiens 15Gly Ala Val Gly Met Ala Cys Ala Ile Ser Ile Leu Leu Lys Trp Ile 1 5 10 15 Phe 1639PRTHomo sapiens 16Gly Trp Ile Ile Gly Glu His Gly Asp Ser Ser Gly Ile Ile Trp Asn 1 5 10 15 Lys Arg Arg Thr Leu Ser Gln Tyr Pro Leu Cys Leu Gly Ala Glu Trp 20 25 30 Cys Leu Arg Cys Cys Glu Asn 35 1723PRTHomo sapiens 17Met Val Gly Leu Leu Glu Asn Met Val Ile Leu Val Gly Leu Tyr Gly 1 5 10 15 Ile Lys Glu Glu Leu Phe Leu 20 1817PRTHomo sapiens 18Glu His Trp Lys Asn Ile His Lys Gln Val Ile Gln Arg Asp Tyr Met 1 5 10 15 Glu 192168DNAHomo sapiens 19gaatccgcgg ggagggcaca acagctgcta cctgaacagt ttctgaccca acagttaccc 60agcgccggac tcgctgcgcc ccggcggctc tagggacccc cggcgcctac acttagctcc 120gcgcccgaga gaatgttgga ccgacgacac aagacctcag acttgtgtta ttctagcagc 180tgaacacacc ccaggctctt ctgaccggca gtggctctgg aagcagtctg gtgtatagag 240ttatggattc actaccagat tctactgtat gctcttgaca actatgacca caatggtcca 300cccacaaatg aattatcagg agtgaaccca gaggcacgta tgaatgaaag tcctgatccg 360actgacctgg cgggagtcat cattgagctc ggccccaatg acagtccaca gacaagtgaa 420tttaaaggag caaccgagga ggcacctgcg aaagaaagcc cacacacaag tgaatttaaa 480ggagcagccc gggtgtcacc tatcagtgaa agtgtgttag cacgactttc caagtttgaa 540gttgaagatg ctgaaaatgt tgcttcatat gacagcaaga ttaagaaaat tgtgcattca 600attgtatcat cctttgcatt tggactattt ggagttttcc tggtcttact ggatgtcact 660ctcatccttg ccgacctaat tttcactgac agcaaacttt atattccttt ggagtatcgt 720tctatttctc tagctattgc cttatttttt ctcatggatg ttcttcttcg agtatttgta 780gaaaggagac agcagtattt ttctgactta tttaacattt tagatactgc cattattgtg 840attcttctgc tggttgatgt cgtttacatt ttttttgaca ttaagttgct taggaatatt 900cccagatgga cacatttact tcgacttcta cgacttatta ttctgttaag aatttttcat 960ctgtttcatc aaaaaagaca acttgaaaag ctgataagaa ggcgggtttc agaaaacaaa 1020aggcgataca caagggatgg atttgaccta gacctcactt acgttacaga acgtattatt 1080gctatgtcat ttccatcttc tggaaggcag tctttctata gaaatccaat caaggaagtt 1140gtgcggtttc tagataagaa acaccgaaac cactatcgag tctacaatct atgcagtgaa 1200agagcttacg atcctaagca cttccataat agggtcgtta gaatcatgat tgatgatcat 1260aatgtcccca ctctacatca gatggtggtt ttcaccaagg aagtaaatga gtggatggct 1320caagatcttg aaaacatcgt agcgattcac tgtaaaggag gcacagatag aacaggaact 1380atggtttgtg

ccttccttat tgcctctgaa atatgttcaa ctgcaaagga aagcctgtat 1440tattttggag aaaggcgaac agataaaacc cacagcgaaa aatttcaggg agtagaaact 1500ccttctcaga agagatatgt tgcatatttt gcacaagtga aacatctcta caactggaat 1560ctccctccaa gacggatact ctttataaaa cacttcatta tttattcgat tcctcgttat 1620gtacgtgatc taaaaatcca aatagaaatg gagaaaaagg ttgtcttttc cactatttca 1680ttaggaaaat gttcggtact tgataacatt acaacagaca aaatattaat tgatgtattc 1740gacggtccac ctctgtatga tgatgtgaaa gtgcagtttt tctattcgaa tcttcctaca 1800tactatgaca attgctcatt ttacttctgg ttgcacacat cttttattga aaataacagg 1860ctttatctac caaaaaatga attggataat ctacataaac aaaaagcacg gagaatttat 1920ccatcagatt ttgccgtgga gatacttttt ggcgagaaaa tgacttccag tgatgttgta 1980gctggatccg attaagtata gctccccctt ccccttctgg gaaagaatta tgttctttcc 2040aaccctgcca catgttcata tatcctaaat ctatcctaaa tgttcccttg aagtatttat 2100ttatgtttat atatgtttat acatgttctt caataaatct attacatata tataaaaaaa 2160aaaaaaaa 2168202114DNAHomo sapiens 20gaatccgcgg ggagggcaca acagctgcta cctgaacagt ttctgaccca acagttaccc 60agcgccggac tcgctgcgcc ccggcggctc tagggacccc cggcgcctac acttagctcc 120gcgcccgaga gaatgttgga ccgacgacac aagacctcag acttgtgtta ttctagcagc 180tgaacacacc ccaggctctt ctgaccggca gtggctctgg aagcagtctg gtgtatagag 240ttatggattc actaccagat tctactgtat gctcttgaca actatgacca caatggtcca 300cccacaaatg aattatcagg agtgaaccca gaggcacgta tgaatgaaag tcctgatccg 360actgacctgg cgggagtcat cattgagctc ggccccaatg acagtccaca gacaagtgaa 420tttaaaggag caaccgagga ggcacctgcg aaagaaagtg tgttagcacg actttccaag 480tttgaagttg aagatgctga aaatgttgct tcatatgaca gcaagattaa gaaaattgtg 540cattcaattg tatcatcctt tgcatttgga ctatttggag ttttcctggt cttactggat 600gtcactctca tccttgccga cctaattttc actgacagca aactttatat tcctttggag 660tatcgttcta tttctctagc tattgcctta ttttttctca tggatgttct tcttcgagta 720tttgtagaaa ggagacagca gtatttttct gacttattta acattttaga tactgccatt 780attgtgattc ttctgctggt tgatgtcgtt tacatttttt ttgacattaa gttgcttagg 840aatattccca gatggacaca tttacttcga cttctacgac ttattattct gttaagaatt 900tttcatctgt ttcatcaaaa aagacaactt gaaaagctga taagaaggcg ggtttcagaa 960aacaaaaggc gatacacaag ggatggattt gacctagacc tcacttacgt tacagaacgt 1020attattgcta tgtcatttcc atcttctgga aggcagtctt tctatagaaa tccaatcaag 1080gaagttgtgc ggtttctaga taagaaacac cgaaaccact atcgagtcta caatctatgc 1140agtgaaagag cttacgatcc taagcacttc cataataggg tcgttagaat catgattgat 1200gatcataatg tccccactct acatcagatg gtggttttca ccaaggaagt aaatgagtgg 1260atggctcaag atcttgaaaa catcgtagcg attcactgta aaggaggcac agatagaaca 1320ggaactatgg tttgtgcctt ccttattgcc tctgaaatat gttcaactgc aaaggaaagc 1380ctgtattatt ttggagaaag gcgaacagat aaaacccaca gcgaaaaatt tcagggagta 1440gaaactcctt ctcagaagag atatgttgca tattttgcac aagtgaaaca tctctacaac 1500tggaatctcc ctccaagacg gatactcttt ataaaacact tcattattta ttcgattcct 1560cgttatgtac gtgatctaaa aatccaaata gaaatggaga aaaaggttgt cttttccact 1620atttcattag gaaaatgttc ggtacttgat aacattacaa cagacaaaat attaattgat 1680gtattcgacg gtccacctct gtatgatgat gtgaaagtgc agtttttcta ttcgaatctt 1740cctacatact atgacaattg ctcattttac ttctggttgc acacatcttt tattgaaaat 1800aacaggcttt atctaccaaa aaatgaattg gataatctac ataaacaaaa agcacggaga 1860atttatccat cagattttgc cgtggagata ctttttggcg agaaaatgac ttccagtgat 1920gttgtagctg gatccgatta agtatagctc ccccttcccc ttctgggaaa gaattatgtt 1980ctttccaacc ctgccacatg ttcatatatc ctaaatctat cctaaatgtt cccttgaagt 2040atttatttat gtttatatat gtttatacat gttcttcaat aaatctatta catatatata 2100aaaaaaaaaa aaaa 2114212222DNAHomo sapiens 21gaatccgcgg ggagggcaca acagctgcta cctgaacagt ttctgaccca acagttaccc 60agcgccggac tcgctgcgcc ccggcggctc tagggacccc cggcgcctac acttagctcc 120gcgcccgaga gaatgttgga ccgacgacac aagacctcag acttgtgtta ttctagcagc 180tgaacacacc ccaggctctt ctgaccggca gtggctctgg aagcagtctg gtgtatagag 240ttatggattc actaccagat tctactgtat gctcttgaca actatgacca caatggtcca 300cccacaaatg aattatcagg agtgaaccca gaggcacgta tgaatgaaag tcctgatccg 360actgacctgg cgggagtcat cattgagctc ggccccaatg acagtccaca gacaagtgaa 420tttaaaggag caaccgagga ggcacctgcg aaagaaagcc cacacacaag tgaatttaaa 480ggagcagccc gggtgtcacc tatcagtgaa agtgtgttag cacgactttc caagtttgaa 540gttgaagatg ctgaaaatgt tgcttcatat gacagcaaga ttaagaaaat tgtgcattca 600attgtatcat cctttgcatt tggactattt ggagttttcc tggtcttact ggatgtcact 660ctcatccttg ccgacctaat tttcactgac agcaaacttt atattccttt ggagtatcgt 720tctatttctc tagctattgc cttatttttt ctcatggatg ttcttcttcg agtatttgta 780gaaaggagac agcagtattt ttctgactta tttaacattt tagatactgc cattattgtg 840attcttctgc tggttgatgt cgtttacatt ttttttgaca ttaagttgct taggaatatt 900cccagatgga cacatttact tcgacttcta cgacttatta ttctgttaag aatttttcat 960ctgtttcatc aaaaaagaca acttgaaaag ctgataagaa ggcgggtttc agaaaacaaa 1020aggcgataca caagggatgg atttgaccta gacctcactt acgttacaga acgtattatt 1080gctatgtcat ttccatcttc tggaaggcag tctttctata gaaatccaat caaggaagtt 1140gtgcggtttc tagataagaa acaccgaaac cactatcgag tctacaatct atgcagtatg 1200tacattactc tatattgtgc tactgtagat agaaaacaga ttactgcacg tgaaagagct 1260tacgatccta agcacttcca taatagggtc gttagaatca tgattgatga tcataatgtc 1320cccactctac atcagatggt ggttttcacc aaggaagtaa atgagtggat ggctcaagat 1380cttgaaaaca tcgtagcgat tcactgtaaa ggaggcacag atagaacagg aactatggtt 1440tgtgccttcc ttattgcctc tgaaatatgt tcaactgcaa aggaaagcct gtattatttt 1500ggagaaaggc gaacagataa aacccacagc gaaaaatttc agggagtaga aactccttct 1560cagaagagat atgttgcata ttttgcacaa gtgaaacatc tctacaactg gaatctccct 1620ccaagacgga tactctttat aaaacacttc attatttatt cgattcctcg ttatgtacgt 1680gatctaaaaa tccaaataga aatggagaaa aaggttgtct tttccactat ttcattagga 1740aaatgttcgg tacttgataa cattacaaca gacaaaatat taattgatgt attcgacggt 1800ccacctctgt atgatgatgt gaaagtgcag tttttctatt cgaatcttcc tacatactat 1860gacaattgct cattttactt ctggttgcac acatctttta ttgaaaataa caggctttat 1920ctaccaaaaa atgaattgga taatctacat aaacaaaaag cacggagaat ttatccatca 1980gattttgccg tggagatact ttttggcgag aaaatgactt ccagtgatgt tgtagctgga 2040tccgattaag tatagctccc ccttcccctt ctgggaaaga attatgttct ttccaaccct 2100gccacatgtt catatatcct aaatctatcc taaatgttcc cttgaagtat ttatttatgt 2160ttatatatgt ttatacatgt tcttcaataa atctattaca tatatataaa aaaaaaaaaa 2220aa 222222551PRTHomo sapiens 22Met Asn Glu Ser Pro Asp Pro Thr Asp Leu Ala Gly Val Ile Ile Glu 1 5 10 15 Leu Gly Pro Asn Asp Ser Pro Gln Thr Ser Glu Phe Lys Gly Ala Thr 20 25 30 Glu Glu Ala Pro Ala Lys Glu Ser Pro His Thr Ser Glu Phe Lys Gly 35 40 45 Ala Ala Arg Val Ser Pro Ile Ser Glu Ser Val Leu Ala Arg Leu Ser 50 55 60 Lys Phe Glu Val Glu Asp Ala Glu Asn Val Ala Ser Tyr Asp Ser Lys 65 70 75 80 Ile Lys Lys Ile Val His Ser Ile Val Ser Ser Phe Ala Phe Gly Leu 85 90 95 Phe Gly Val Phe Leu Val Leu Leu Asp Val Thr Leu Ile Leu Ala Asp 100 105 110 Leu Ile Phe Thr Asp Ser Lys Leu Tyr Ile Pro Leu Glu Tyr Arg Ser 115 120 125 Ile Ser Leu Ala Ile Ala Leu Phe Phe Leu Met Asp Val Leu Leu Arg 130 135 140 Val Phe Val Glu Arg Arg Gln Gln Tyr Phe Ser Asp Leu Phe Asn Ile 145 150 155 160 Leu Asp Thr Ala Ile Ile Val Ile Leu Leu Leu Val Asp Val Val Tyr 165 170 175 Ile Phe Phe Asp Ile Lys Leu Leu Arg Asn Ile Pro Arg Trp Thr His 180 185 190 Leu Leu Arg Leu Leu Arg Leu Ile Ile Leu Leu Arg Ile Phe His Leu 195 200 205 Phe His Gln Lys Arg Gln Leu Glu Lys Leu Ile Arg Arg Arg Val Ser 210 215 220 Glu Asn Lys Arg Arg Tyr Thr Arg Asp Gly Phe Asp Leu Asp Leu Thr 225 230 235 240 Tyr Val Thr Glu Arg Ile Ile Ala Met Ser Phe Pro Ser Ser Gly Arg 245 250 255 Gln Ser Phe Tyr Arg Asn Pro Ile Lys Glu Val Val Arg Phe Leu Asp 260 265 270 Lys Lys His Arg Asn His Tyr Arg Val Tyr Asn Leu Cys Ser Glu Arg 275 280 285 Ala Tyr Asp Pro Lys His Phe His Asn Arg Val Val Arg Ile Met Ile 290 295 300 Asp Asp His Asn Val Pro Thr Leu His Gln Met Val Val Phe Thr Lys 305 310 315 320 Glu Val Asn Glu Trp Met Ala Gln Asp Leu Glu Asn Ile Val Ala Ile 325 330 335 His Cys Lys Gly Gly Thr Asp Arg Thr Gly Thr Met Val Cys Ala Phe 340 345 350 Leu Ile Ala Ser Glu Ile Cys Ser Thr Ala Lys Glu Ser Leu Tyr Tyr 355 360 365 Phe Gly Glu Arg Arg Thr Asp Lys Thr His Ser Glu Lys Phe Gln Gly 370 375 380 Val Glu Thr Pro Ser Gln Lys Arg Tyr Val Ala Tyr Phe Ala Gln Val 385 390 395 400 Lys His Leu Tyr Asn Trp Asn Leu Pro Pro Arg Arg Ile Leu Phe Ile 405 410 415 Lys His Phe Ile Ile Tyr Ser Ile Pro Arg Tyr Val Arg Asp Leu Lys 420 425 430 Ile Gln Ile Glu Met Glu Lys Lys Val Val Phe Ser Thr Ile Ser Leu 435 440 445 Gly Lys Cys Ser Val Leu Asp Asn Ile Thr Thr Asp Lys Ile Leu Ile 450 455 460 Asp Val Phe Asp Gly Pro Pro Leu Tyr Asp Asp Val Lys Val Gln Phe 465 470 475 480 Phe Tyr Ser Asn Leu Pro Thr Tyr Tyr Asp Asn Cys Ser Phe Tyr Phe 485 490 495 Trp Leu His Thr Ser Phe Ile Glu Asn Asn Arg Leu Tyr Leu Pro Lys 500 505 510 Asn Glu Leu Asp Asn Leu His Lys Gln Lys Ala Arg Arg Ile Tyr Pro 515 520 525 Ser Asp Phe Ala Val Glu Ile Leu Phe Gly Glu Lys Met Thr Ser Ser 530 535 540 Asp Val Val Ala Gly Ser Asp 545 550 23533PRTHomo sapiens 23Met Asn Glu Ser Pro Asp Pro Thr Asp Leu Ala Gly Val Ile Ile Glu 1 5 10 15 Leu Gly Pro Asn Asp Ser Pro Gln Thr Ser Glu Phe Lys Gly Ala Thr 20 25 30 Glu Glu Ala Pro Ala Lys Glu Ser Val Leu Ala Arg Leu Ser Lys Phe 35 40 45 Glu Val Glu Asp Ala Glu Asn Val Ala Ser Tyr Asp Ser Lys Ile Lys 50 55 60 Lys Ile Val His Ser Ile Val Ser Ser Phe Ala Phe Gly Leu Phe Gly 65 70 75 80 Val Phe Leu Val Leu Leu Asp Val Thr Leu Ile Leu Ala Asp Leu Ile 85 90 95 Phe Thr Asp Ser Lys Leu Tyr Ile Pro Leu Glu Tyr Arg Ser Ile Ser 100 105 110 Leu Ala Ile Ala Leu Phe Phe Leu Met Asp Val Leu Leu Arg Val Phe 115 120 125 Val Glu Arg Arg Gln Gln Tyr Phe Ser Asp Leu Phe Asn Ile Leu Asp 130 135 140 Thr Ala Ile Ile Val Ile Leu Leu Leu Val Asp Val Val Tyr Ile Phe 145 150 155 160 Phe Asp Ile Lys Leu Leu Arg Asn Ile Pro Arg Trp Thr His Leu Leu 165 170 175 Arg Leu Leu Arg Leu Ile Ile Leu Leu Arg Ile Phe His Leu Phe His 180 185 190 Gln Lys Arg Gln Leu Glu Lys Leu Ile Arg Arg Arg Val Ser Glu Asn 195 200 205 Lys Arg Arg Tyr Thr Arg Asp Gly Phe Asp Leu Asp Leu Thr Tyr Val 210 215 220 Thr Glu Arg Ile Ile Ala Met Ser Phe Pro Ser Ser Gly Arg Gln Ser 225 230 235 240 Phe Tyr Arg Asn Pro Ile Lys Glu Val Val Arg Phe Leu Asp Lys Lys 245 250 255 His Arg Asn His Tyr Arg Val Tyr Asn Leu Cys Ser Glu Arg Ala Tyr 260 265 270 Asp Pro Lys His Phe His Asn Arg Val Val Arg Ile Met Ile Asp Asp 275 280 285 His Asn Val Pro Thr Leu His Gln Met Val Val Phe Thr Lys Glu Val 290 295 300 Asn Glu Trp Met Ala Gln Asp Leu Glu Asn Ile Val Ala Ile His Cys 305 310 315 320 Lys Gly Gly Thr Asp Arg Thr Gly Thr Met Val Cys Ala Phe Leu Ile 325 330 335 Ala Ser Glu Ile Cys Ser Thr Ala Lys Glu Ser Leu Tyr Tyr Phe Gly 340 345 350 Glu Arg Arg Thr Asp Lys Thr His Ser Glu Lys Phe Gln Gly Val Glu 355 360 365 Thr Pro Ser Gln Lys Arg Tyr Val Ala Tyr Phe Ala Gln Val Lys His 370 375 380 Leu Tyr Asn Trp Asn Leu Pro Pro Arg Arg Ile Leu Phe Ile Lys His 385 390 395 400 Phe Ile Ile Tyr Ser Ile Pro Arg Tyr Val Arg Asp Leu Lys Ile Gln 405 410 415 Ile Glu Met Glu Lys Lys Val Val Phe Ser Thr Ile Ser Leu Gly Lys 420 425 430 Cys Ser Val Leu Asp Asn Ile Thr Thr Asp Lys Ile Leu Ile Asp Val 435 440 445 Phe Asp Gly Pro Pro Leu Tyr Asp Asp Val Lys Val Gln Phe Phe Tyr 450 455 460 Ser Asn Leu Pro Thr Tyr Tyr Asp Asn Cys Ser Phe Tyr Phe Trp Leu 465 470 475 480 His Thr Ser Phe Ile Glu Asn Asn Arg Leu Tyr Leu Pro Lys Asn Glu 485 490 495 Leu Asp Asn Leu His Lys Gln Lys Ala Arg Arg Ile Tyr Pro Ser Asp 500 505 510 Phe Ala Val Glu Ile Leu Phe Gly Glu Lys Met Thr Ser Ser Asp Val 515 520 525 Val Ala Gly Ser Asp 530 24569PRTHomo sapiens 24Met Asn Glu Ser Pro Asp Pro Thr Asp Leu Ala Gly Val Ile Ile Glu 1 5 10 15 Leu Gly Pro Asn Asp Ser Pro Gln Thr Ser Glu Phe Lys Gly Ala Thr 20 25 30 Glu Glu Ala Pro Ala Lys Glu Ser Pro His Thr Ser Glu Phe Lys Gly 35 40 45 Ala Ala Arg Val Ser Pro Ile Ser Glu Ser Val Leu Ala Arg Leu Ser 50 55 60 Lys Phe Glu Val Glu Asp Ala Glu Asn Val Ala Ser Tyr Asp Ser Lys 65 70 75 80 Ile Lys Lys Ile Val His Ser Ile Val Ser Ser Phe Ala Phe Gly Leu 85 90 95 Phe Gly Val Phe Leu Val Leu Leu Asp Val Thr Leu Ile Leu Ala Asp 100 105 110 Leu Ile Phe Thr Asp Ser Lys Leu Tyr Ile Pro Leu Glu Tyr Arg Ser 115 120 125 Ile Ser Leu Ala Ile Ala Leu Phe Phe Leu Met Asp Val Leu Leu Arg 130 135 140 Val Phe Val Glu Arg Arg Gln Gln Tyr Phe Ser Asp Leu Phe Asn Ile 145 150 155 160 Leu Asp Thr Ala Ile Ile Val Ile Leu Leu Leu Val Asp Val Val Tyr 165 170 175 Ile Phe Phe Asp Ile Lys Leu Leu Arg Asn Ile Pro Arg Trp Thr His 180 185 190 Leu Leu Arg Leu Leu Arg Leu Ile Ile Leu Leu Arg Ile Phe His Leu 195 200 205 Phe His Gln Lys Arg Gln Leu Glu Lys Leu Ile Arg Arg Arg Val Ser 210 215 220 Glu Asn Lys Arg Arg Tyr Thr Arg Asp Gly Phe Asp Leu Asp Leu Thr 225 230 235 240 Tyr Val Thr Glu Arg Ile Ile Ala Met Ser Phe Pro Ser Ser Gly Arg 245 250 255 Gln Ser Phe Tyr Arg Asn Pro Ile Lys Glu Val Val Arg Phe Leu Asp 260 265 270 Lys Lys His Arg Asn His Tyr Arg Val Tyr Asn Leu Cys Ser Met Tyr 275 280 285 Ile Thr Leu Tyr Cys Ala Thr Val Asp Arg Lys Gln Ile Thr Ala Arg 290 295 300 Glu Arg Ala Tyr Asp Pro Lys His Phe His Asn Arg Val Val Arg Ile 305 310 315 320 Met Ile Asp Asp His Asn Val Pro Thr Leu His Gln Met Val Val Phe 325 330 335 Thr Lys Glu Val Asn Glu Trp Met Ala Gln Asp Leu Glu Asn Ile Val 340 345 350 Ala Ile His Cys Lys Gly Gly Thr Asp Arg Thr Gly Thr Met Val Cys 355 360 365 Ala Phe Leu Ile Ala Ser Glu Ile Cys Ser Thr Ala Lys Glu Ser Leu 370 375 380 Tyr Tyr Phe Gly Glu Arg Arg Thr Asp Lys Thr His Ser Glu Lys Phe 385 390 395

400 Gln Gly Val Glu Thr Pro Ser Gln Lys Arg Tyr Val Ala Tyr Phe Ala 405 410 415 Gln Val Lys His Leu Tyr Asn Trp Asn Leu Pro Pro Arg Arg Ile Leu 420 425 430 Phe Ile Lys His Phe Ile Ile Tyr Ser Ile Pro Arg Tyr Val Arg Asp 435 440 445 Leu Lys Ile Gln Ile Glu Met Glu Lys Lys Val Val Phe Ser Thr Ile 450 455 460 Ser Leu Gly Lys Cys Ser Val Leu Asp Asn Ile Thr Thr Asp Lys Ile 465 470 475 480 Leu Ile Asp Val Phe Asp Gly Pro Pro Leu Tyr Asp Asp Val Lys Val 485 490 495 Gln Phe Phe Tyr Ser Asn Leu Pro Thr Tyr Tyr Asp Asn Cys Ser Phe 500 505 510 Tyr Phe Trp Leu His Thr Ser Phe Ile Glu Asn Asn Arg Leu Tyr Leu 515 520 525 Pro Lys Asn Glu Leu Asp Asn Leu His Lys Gln Lys Ala Arg Arg Ile 530 535 540 Tyr Pro Ser Asp Phe Ala Val Glu Ile Leu Phe Gly Glu Lys Met Thr 545 550 555 560 Ser Ser Asp Val Val Ala Gly Ser Asp 565 2521DNAArtificial SequenceDescription of artificial sequence Oligonucleotide 25tgccgtaggc atggcttgtg c 212621DNAArtificial SequenceDescription of artificial sequence Oligonucleotide 26caacatctga gacaccattc c 212721DNAArtificial SequenceDescription of artificial sequence Oligonucleotide 27tggatgtcac tctcatcctt g 212821DNAArtificial SequenceDescription of artificial sequence Oligonucleotide 28ccatagttcc tgttctatct g 21292192DNAHomo sapiens 29agctcagctg ggagcgcaga ggctcacgcc tgtaatccca tcatttgctt aggtctgatc 60aatctgctcc acacaatttc tcagtgatcc tctgcatctc tgcctacaag ggcctccctg 120acacccaagt tcatattgct cagaaacagt gaacttgagt ttttcgtttt accttgatct 180ctctctgaca aagaaatcca gatgatgcaa cacctgatga agacaataca tggaaaatga 240cagtcttgga aataactttg gctgtcatcc tgactctact gggacttgcc atcctggcta 300ttttgttaac aagatgggca cgacgtaagc aaagtgaaat gtatatctcc agatacagtt 360cagaacaaag tgctagactt ctggactatg aggatggtag aggatcccga catgcatatc 420aacacaaagt gacacttcat atgataaccg agagagatcc aaaaagagat tacacaccat 480caaccaactc tctagcactg tctcgatcaa gtattgcttt acctcaagga tccatgagta 540gtataaaatg tttacaaaca actgaagaac ctccttccag aactgcagga gccatgatgc 600aattcacagc cctattcccg gagctacagg acctatcaag ctctctcaaa aaaccattgt 660gcaaactcca ggacctattg tacaatatct ggatccaatg tcagatcgca tctcacacaa 720tcactggtca ccttcagcac ccgcggtcac ccatggcacc cataataatt tcacagagaa 780ccgcaagtca gctggcagca cctataagaa tacctcaagt tcacactatg gacagttctg 840gaaaaatcac actgactcct gtggttatat taacaggtta catggacgaa gaacttcgaa 900aaaaatcttg ttccaaaatc cagattctaa aatgtggagg cactgcaagg tctcagatag 960ccgagaagaa aacaaggaag caactaaaga atgacatcat atttacgaat tctgtagaat 1020ccttgaaatc agcacacata aaggagccag aaagagaagg aaaaggcact gatttagaga 1080aagacaaaat aggaatggag gtcaaggtag acagtgacgc tggaatacca aaaagacagg 1140aaacccaact aaaaatcagt gaagatgagt ataccacaag gacagggagc ccaaataaag 1200aaaagtgtgt cagatgtacc aagaggacag gagtccaagt aaagaagagt gagtcaggtg 1260tcccaaaagg acaagaagcc caagtaacga agagtgggtt ggttgtactg aaaggacagg 1320aagcccaggt agagaagagt gagatgggtg tgccaagaag acaggaatcc caagtaaaga 1380agagtcagtc tggtgtctca aagggacagg aagcccaggt aaagaagagg gagtcagttg 1440tactgaaagg acaggaagcc caggtagaga agagtgagtt gaaggtacca aaaggacaag 1500aaggccaagt agagaagact gaggcagatg tgccaaagga acaagaggtc caagaaaaga 1560agagtgaggc aggtgtactg aaaggaccag aatcccaagt aaagaacact gaggtgagtg 1620taccagaaac actggaatcc caagtaaaga agagtgagtc aggtgtacta aaaggacagg 1680aagcccaaga aaagaaggag agttttgagg ataaaggaaa taatgataaa gaaaaggaga 1740gagatgcaga gaaagatcca aataaaaaag aaaaaggtga caaaaacaca aaaggtgaca 1800aaggaaagga caaagttaaa ggaaagagag aatcagaaat caatggtgaa aaatcaaaag 1860gctcgaaaag gcgaaggcaa atacaggaag gaagtacaac aaaaaagtgg aagagtaagg 1920ataaattttt taaaggccca taagacaagt gattattatg attcccatac tccagataca 1980aaccatatcc cagccattgc ctaaacagat tacaattata aaatcccttt catcttcata 2040tcacagtttc tgctcttcag aagtttcacc ctttttaatc tctcagccac aaacctcagt 2100tccaatattg ttataagtta agacgtatat gattccgtca agaaagactg gatactttct 2160gaagtaaaac attttaatta aagaaaaaaa aa 219230568PRTHomo sapiens 30Met Thr Val Leu Glu Ile Thr Leu Ala Val Ile Leu Thr Leu Leu Gly 1 5 10 15 Leu Ala Ile Leu Ala Ile Leu Leu Thr Arg Trp Ala Arg Arg Lys Gln 20 25 30 Ser Glu Met Tyr Ile Ser Arg Tyr Ser Ser Glu Gln Ser Ala Arg Leu 35 40 45 Leu Asp Tyr Glu Asp Gly Arg Gly Ser Arg His Ala Tyr Gln His Lys 50 55 60 Val Thr Leu His Met Ile Thr Glu Arg Asp Pro Lys Arg Asp Tyr Thr 65 70 75 80 Pro Ser Thr Asn Ser Leu Ala Leu Ser Arg Ser Ser Ile Ala Leu Pro 85 90 95 Gln Gly Ser Met Ser Ser Ile Lys Cys Leu Gln Thr Thr Glu Glu Pro 100 105 110 Pro Ser Arg Thr Ala Gly Ala Met Met Gln Phe Thr Ala Leu Phe Pro 115 120 125 Glu Leu Gln Asp Leu Ser Ser Ser Leu Lys Lys Pro Leu Cys Lys Leu 130 135 140 Gln Asp Leu Leu Tyr Asn Ile Trp Ile Gln Cys Gln Ile Ala Ser His 145 150 155 160 Thr Ile Thr Gly His Leu Gln His Pro Arg Ser Pro Met Ala Pro Ile 165 170 175 Ile Ile Ser Gln Arg Thr Ala Ser Gln Leu Ala Ala Pro Ile Arg Ile 180 185 190 Pro Gln Val His Thr Met Asp Ser Ser Gly Lys Ile Thr Leu Thr Pro 195 200 205 Val Val Ile Leu Thr Gly Tyr Met Asp Glu Glu Leu Arg Lys Lys Ser 210 215 220 Cys Ser Lys Ile Gln Ile Leu Lys Cys Gly Gly Thr Ala Arg Ser Gln 225 230 235 240 Ile Ala Glu Lys Lys Thr Arg Lys Gln Leu Lys Asn Asp Ile Ile Phe 245 250 255 Thr Asn Ser Val Glu Ser Leu Lys Ser Ala His Ile Lys Glu Pro Glu 260 265 270 Arg Glu Gly Lys Gly Thr Asp Leu Glu Lys Asp Lys Ile Gly Met Glu 275 280 285 Val Lys Val Asp Ser Asp Ala Gly Ile Pro Lys Arg Gln Glu Thr Gln 290 295 300 Leu Lys Ile Ser Glu Asp Glu Tyr Thr Thr Arg Thr Gly Ser Pro Asn 305 310 315 320 Lys Glu Lys Cys Val Arg Cys Thr Lys Arg Thr Gly Val Gln Val Lys 325 330 335 Lys Ser Glu Ser Gly Val Pro Lys Gly Gln Glu Ala Gln Val Thr Lys 340 345 350 Ser Gly Leu Val Val Leu Lys Gly Gln Glu Ala Gln Val Glu Lys Ser 355 360 365 Glu Met Gly Val Pro Arg Arg Gln Glu Ser Gln Val Lys Lys Ser Gln 370 375 380 Ser Gly Val Ser Lys Gly Gln Glu Ala Gln Val Lys Lys Arg Glu Ser 385 390 395 400 Val Val Leu Lys Gly Gln Glu Ala Gln Val Glu Lys Ser Glu Leu Lys 405 410 415 Val Pro Lys Gly Gln Glu Gly Gln Val Glu Lys Thr Glu Ala Asp Val 420 425 430 Pro Lys Glu Gln Glu Val Gln Glu Lys Lys Ser Glu Ala Gly Val Leu 435 440 445 Lys Gly Pro Glu Ser Gln Val Lys Asn Thr Glu Val Ser Val Pro Glu 450 455 460 Thr Leu Glu Ser Gln Val Lys Lys Ser Glu Ser Gly Val Leu Lys Gly 465 470 475 480 Gln Glu Ala Gln Glu Lys Lys Glu Ser Phe Glu Asp Lys Gly Asn Asn 485 490 495 Asp Lys Glu Lys Glu Arg Asp Ala Glu Lys Asp Pro Asn Lys Lys Glu 500 505 510 Lys Gly Asp Lys Asn Thr Lys Gly Asp Lys Gly Lys Asp Lys Val Lys 515 520 525 Gly Lys Arg Glu Ser Glu Ile Asn Gly Glu Lys Ser Lys Gly Ser Lys 530 535 540 Arg Arg Arg Gln Ile Gln Glu Gly Ser Thr Thr Lys Lys Trp Lys Ser 545 550 555 560 Lys Asp Lys Phe Phe Lys Gly Pro 565 311686DNAHomo sapiens 31atgacagtct tggaaataac tttggctgtc atcctgactc tactgggact tgccatcctg 60gctattttgt taacaagatg ggcacgatgt aagcaaagtg aaatgtatat ctccagatac 120agttcagaac aaagtgctag acttctggac tatgaggatg gtagaggatc ccgacatgca 180tattcaacac aaagtgacac ttcatatgat aaccgagaga gatccaaaag agattacaca 240ccatcaacca actctctagc actgtctcga tcaagtattg ctttacctca aggatccatg 300agtagtataa aatgtttaca aacaactgaa gaacctcctt ccagaactgc aggagccatg 360atgcaattca cagcccctat tcccggagct acaggaccta tcaagctctc tcaaaaaacc 420attgtgcaaa ctccaggacc tattgtacaa tatcctggat ccaatgctgg tccaccttca 480gcaccccgcg gtccacccat ggcacccata ataatttcac agagaaccgc aagtcagctg 540gcagcaccta taataatttc gcagagaact gcaagaatac ctcaagttca cactatggac 600agttctggaa aaatcacact gactcctgtg gttatattaa caggttacat ggatgaagaa 660cttgcaaaaa aatcttgttc caaaatccag attctaaaat gtggaggcac tgcaaggtct 720cagaatagcc gagaagaaaa caaggaagca ctaaagaatg acatcatatt tacgaattct 780gtagaatcct tgaaatcagc acacataaag gagccagaaa gagaaggaaa aggcactgat 840ttagagaaag acaaaatagg aatggaggtc aaggtagaca gtgacgctgg aataccaaaa 900agacaggaaa cccaactaaa aatcagtgag atgagtatac cacaaggaca gggagcccaa 960ataaagaaaa gtgtgtcaga tgtaccaaga ggacaggagt cccaagtaaa gaagagtgag 1020tcaggtgtcc caaaaggaca agaagcccaa gtaacgaaga gtgggttggt tgtactgaaa 1080ggacaggaag cccaggtaga gaagagtgag atgggtgtgc caagaagaca ggaatcccaa 1140gtaaagaaga gtcagtctgg tgtctcaaag ggacaggaag cccaggtaaa gaagagggag 1200tcagttgtac tgaaaggaca ggaagcccag gtagagaaga gtgagttgaa ggtaccaaaa 1260ggacaagaag gccaagtaga gaagactgag gcagatgtgc caaaggaaca agaggtccaa 1320gaaaagaaga gtgaggcagg tgtactgaaa ggaccagaat cccaagtaaa gaacactgag 1380gtgagtgtac cagaaacact ggaatcccaa gtaaagaaga gtgagtcagg tgtactaaaa 1440ggacaggaag cccaagaaaa gaaggagagt tttgaggata aaggaaataa tgataaagaa 1500aaggagagag atgcagagaa agatccaaat aaaaaagaaa aaggtgacaa aaacacaaaa 1560ggtgacaaag gaaaggacaa agttaaagga aagagagaat cagaaatcaa tggtgaaaaa 1620tcaaaaggct cgaaaagggc gaaggcaaat acaggaagga agtacaacaa aaaagtggaa 1680gagtaa 1686321710DNAHomo sapiens 32atgacagtct tggaaataac tttggctgtc atcctgactc tactgggact tgccatcctg 60gctattttgt taacaagatg ggcacgacgt aagcaaagtg aaatgcatat ctccagatac 120agttcagaac aaagtgctag acttctggac tatgaggatg gtagaggatc ccgacatgca 180tattcaacac aaagtgacac ttcatgtgat aaccgagaga gatccaaaag agattacaca 240ccatcaacca actctctagc actgtctcga tcaagtattg ctttacctca aggatccatg 300agtagtataa aatgtttaca aacaactgaa gaacttcctt ccagaactgc aggagccatg 360atgcaattca cagcccctat tcccggagct acaggaccta tcaagctctc tcaaaaaacc 420attgtgcaaa ctccaggacc tattgtacaa tatcctggac ccaatgtcag atcgcatcct 480cacacaatca ctggtccacc ttcagcaccc cgcggtccac ccatggcacc cataataatt 540tcacagagaa ccgcaagtca gctggcagca cctataataa tttcgcagag aactgcaaga 600atacctcaag ttcacactat ggacagttct ggaaaaacca cactgactcc tgtggttata 660ttaacaggtt acatggatga agaacttgca aaaaaatctt gttccaaaat ccagattcta 720aaatgtggag gcactgcaag gtctcagaat agccgagaag aaaacaagga agcactaaag 780aatgacatca tatttacgaa ttctgtagaa tccttgaaat cagcacacat aaaggagcca 840gaaagagaag gaaaaggcac tgatttagag aaagacaaaa taggaatgga ggtcaaggta 900gacagtgacg ctggaatacc aaaaagacag gaaacccaac taaaaatcag tgagatgagt 960ataccacaag gacagggagc ccaaataaag aaaagtgtgt cagatgtacc aagaggacag 1020gagtcccaag taaagaagag tgagtcaggt gtcccaaaag gacaagaagc ccaagtaacg 1080aagagtgggt tggttgtact gaaaggacag gaagcccagg tagagaagag tgagatgggt 1140gtgccaagaa gacaggaatc ccaagtaaag aagagtcagt ctggtgtctc aaagggacag 1200gaagcccagg taaagaagag ggagtcagtt gtactgaaag gacaggaagc ccaggtagag 1260aagagtgagt tgaaggtacc aaaaggacaa gaaggccaag tagagaagac tgaggcagat 1320gtgccaaagg aacaagaggt ccaagaaaag aagagtgagg caggtgtact gaaaggacca 1380gaatcccaag taaagaacac tgaggtgagt gtaccagaaa cactggaatc ccaagtaaag 1440aagagtgagt caggtgtact aaaaggacag gaagcccaag aaaagaagga gagttttgag 1500gataaaggaa ataatgataa agaaaaggag agagatgcag agaaagatcc aaataaaaaa 1560gaaaaaggtg acaaaaacac aaaaggtgac aaaggaaagg acaaagttaa aggaaagaga 1620gaatcagaaa tcaatggtga aaaatcaaaa ggctcgaaaa gggcgaaggc aaatacagga 1680aggaagtaca acaaaaaagt ggaagagtaa 1710331665DNAHomo sapiens 33atgacagtct tggaaataac tttggctgtc atcctgactc tactgggact tgccatcctg 60gctattttgt taacaagatg ggcacgatgt aagcaaagtg aaatgtatat ctccagatac 120agttcagaac aaagtgctag acttctggac tatgaggatg gtagaggatc ccgacatgca 180tattcaacac aaagtgagag atccaaaaga gattacacac catcaaccaa ctctctagca 240ctgtctcgat caagtattgc tttacctcaa ggatccatga gtagtataaa atgtttacaa 300acaactgaag aacctccttc cagaactgca ggagccatga tgcaattcac agcccctatt 360cccggagcta caggacctat caagctctct caaaaaacca ttgtgcaaac tccaggacct 420attgtacaat atcctggatc caatgctggt ccaccttcag caccccgcgg tccacccatg 480gcacccataa taatttcaca gagaaccgca agtcagctgg cagcacctat aataatttcg 540cagagaactg caagaatacc tcaagttcac actatggaca gttctggaaa aatcacactg 600actcctgtgg ttatattaac aggttacatg gatgaagaac ttgcaaaaaa atcttgttcc 660aaaatccaga ttctaaaatg tggaggcact gcaaggtctc agaatagccg agaagaaaac 720aaggaagcac taaagaatga catcatattt acgaattctg tagaatcctt gaaatcagca 780cacataaagg agccagaaag agaaggaaaa ggcactgatt tagagaaaga caaaatagga 840atggaggtca aggtagacag tgacgctgga ataccaaaaa gacaggaaac ccaactaaaa 900atcagtgaga tgagtatacc acaaggacag ggagcccaaa taaagaaaag tgtgtcagat 960gtaccaagag gacaggagtc ccaagtaaag aagagtgagt caggtgtccc aaaaggacaa 1020gaagcccaag taacgaagag tgggttggtt gtactgaaag gacaggaagc ccaggtagag 1080aagagtgaga tgggtgtgcc aagaagacag gaatcccaag taaagaagag tcagtctggt 1140gtctcaaagg gacaggaagc ccaggtaaag aagagggagt cagttgtact gaaaggacag 1200gaagcccagg tagagaagag tgagttgaag gtaccaaaag gacaagaagg ccaagtagag 1260aagactgagg cagatgtgcc aaaggaacaa gaggtccaag aaaagaagag tgaggcaggt 1320gtactgaaag gaccagaatc ccaagtaaag aacactgagg tgagtgtacc agaaacactg 1380gaatcccaag taaagaagag tgagtcaggt gtactaaaag gacaggaagc ccaagaaaag 1440aaggagagtt ttgaggataa aggaaataat gataaagaaa aggagagaga tgcagagaaa 1500gatccaaata aaaaagaaaa aggtgacaaa aacacaaaag gtgacaaagg aaaggacaaa 1560gttaaaggaa agagagaatc agaaatcaat ggtgaaaaat caaaaggctc gaaaagggcg 1620aaggcaaata caggaaggaa gtacaacaaa aaagtggaag agtaa 166534561PRTHomo sapiens 34Met Thr Val Leu Glu Ile Thr Leu Ala Val Ile Leu Thr Leu Leu Gly 1 5 10 15 Leu Ala Ile Leu Ala Ile Leu Leu Thr Arg Trp Ala Arg Cys Lys Gln 20 25 30 Ser Glu Met Tyr Ile Ser Arg Tyr Ser Ser Glu Gln Ser Ala Arg Leu 35 40 45 Leu Asp Tyr Glu Asp Gly Arg Gly Ser Arg His Ala Tyr Ser Thr Gln 50 55 60 Ser Asp Thr Ser Tyr Asp Asn Arg Glu Arg Ser Lys Arg Asp Tyr Thr 65 70 75 80 Pro Ser Thr Asn Ser Leu Ala Leu Ser Arg Ser Ser Ile Ala Leu Pro 85 90 95 Gln Gly Ser Met Ser Ser Ile Lys Cys Leu Gln Thr Thr Glu Glu Pro 100 105 110 Pro Ser Arg Thr Ala Gly Ala Met Met Gln Phe Thr Ala Pro Ile Pro 115 120 125 Gly Ala Thr Gly Pro Ile Lys Leu Ser Gln Lys Thr Ile Val Gln Thr 130 135 140 Pro Gly Pro Ile Val Gln Tyr Pro Gly Ser Asn Ala Gly Pro Pro Ser 145 150 155 160 Ala Pro Arg Gly Pro Pro Met Ala Pro Ile Ile Ile Ser Gln Arg Thr 165 170 175 Ala Ser Gln Leu Ala Ala Pro Ile Ile Ile Ser Gln Arg Thr Ala Arg 180 185 190 Ile Pro Gln Val His Thr Met Asp Ser Ser Gly Lys Ile Thr Leu Thr 195 200 205 Pro Val Val Ile Leu Thr Gly Tyr Met Asp Glu Glu Leu Ala Lys Lys 210 215 220 Ser Cys Ser Lys Ile Gln Ile Leu Lys Cys Gly Gly Thr Ala Arg Ser 225 230 235 240 Gln Asn Ser Arg Glu Glu Asn Lys Glu Ala Leu Lys Asn Asp Ile Ile 245 250 255 Phe Thr Asn Ser Val Glu Ser Leu Lys Ser Ala His Ile Lys Glu Pro 260 265 270 Glu Arg Glu Gly Lys Gly Thr Asp Leu Glu Lys Asp Lys Ile Gly Met 275 280 285 Glu Val Lys Val Asp Ser Asp Ala Gly Ile Pro Lys Arg Gln Glu Thr 290 295 300 Gln Leu Lys Ile Ser Glu Met Ser Ile Pro Gln Gly Gln Gly Ala Gln 305 310 315 320 Ile Lys Lys Ser Val Ser Asp Val Pro Arg Gly Gln Glu Ser Gln Val 325 330 335 Lys Lys

Ser Glu Ser Gly Val Pro Lys Gly Gln Glu Ala Gln Val Thr 340 345 350 Lys Ser Gly Leu Val Val Leu Lys Gly Gln Glu Ala Gln Val Glu Lys 355 360 365 Ser Glu Met Gly Val Pro Arg Arg Gln Glu Ser Gln Val Lys Lys Ser 370 375 380 Gln Ser Gly Val Ser Lys Gly Gln Glu Ala Gln Val Lys Lys Arg Glu 385 390 395 400 Ser Val Val Leu Lys Gly Gln Glu Ala Gln Val Glu Lys Ser Glu Leu 405 410 415 Lys Val Pro Lys Gly Gln Glu Gly Gln Val Glu Lys Thr Glu Ala Asp 420 425 430 Val Pro Lys Glu Gln Glu Val Gln Glu Lys Lys Ser Glu Ala Gly Val 435 440 445 Leu Lys Gly Pro Glu Ser Gln Val Lys Asn Thr Glu Val Ser Val Pro 450 455 460 Glu Thr Leu Glu Ser Gln Val Lys Lys Ser Glu Ser Gly Val Leu Lys 465 470 475 480 Gly Gln Glu Ala Gln Glu Lys Lys Glu Ser Phe Glu Asp Lys Gly Asn 485 490 495 Asn Asp Lys Glu Lys Glu Arg Asp Ala Glu Lys Asp Pro Asn Lys Lys 500 505 510 Glu Lys Gly Asp Lys Asn Thr Lys Gly Asp Lys Gly Lys Asp Lys Val 515 520 525 Lys Gly Lys Arg Glu Ser Glu Ile Asn Gly Glu Lys Ser Lys Gly Ser 530 535 540 Lys Arg Ala Lys Ala Asn Thr Gly Arg Lys Tyr Asn Lys Lys Val Glu 545 550 555 560 Glu 35569PRTHomo sapiens 35Met Thr Val Leu Glu Ile Thr Leu Ala Val Ile Leu Thr Leu Leu Gly 1 5 10 15 Leu Ala Ile Leu Ala Ile Leu Leu Thr Arg Trp Ala Arg Arg Lys Gln 20 25 30 Ser Glu Met His Ile Ser Arg Tyr Ser Ser Glu Gln Ser Ala Arg Leu 35 40 45 Leu Asp Tyr Glu Asp Gly Arg Gly Ser Arg His Ala Tyr Ser Thr Gln 50 55 60 Ser Asp Thr Ser Cys Asp Asn Arg Glu Arg Ser Lys Arg Asp Tyr Thr 65 70 75 80 Pro Ser Thr Asn Ser Leu Ala Leu Ser Arg Ser Ser Ile Ala Leu Pro 85 90 95 Gln Gly Ser Met Ser Ser Ile Lys Cys Leu Gln Thr Thr Glu Glu Leu 100 105 110 Pro Ser Arg Thr Ala Gly Ala Met Met Gln Phe Thr Ala Pro Ile Pro 115 120 125 Gly Ala Thr Gly Pro Ile Lys Leu Ser Gln Lys Thr Ile Val Gln Thr 130 135 140 Pro Gly Pro Ile Val Gln Tyr Pro Gly Pro Asn Val Arg Ser His Pro 145 150 155 160 His Thr Ile Thr Gly Pro Pro Ser Ala Pro Arg Gly Pro Pro Met Ala 165 170 175 Pro Ile Ile Ile Ser Gln Arg Thr Ala Ser Gln Leu Ala Ala Pro Ile 180 185 190 Ile Ile Ser Gln Arg Thr Ala Arg Ile Pro Gln Val His Thr Met Asp 195 200 205 Ser Ser Gly Lys Thr Thr Leu Thr Pro Val Val Ile Leu Thr Gly Tyr 210 215 220 Met Asp Glu Glu Leu Ala Lys Lys Ser Cys Ser Lys Ile Gln Ile Leu 225 230 235 240 Lys Cys Gly Gly Thr Ala Arg Ser Gln Asn Ser Arg Glu Glu Asn Lys 245 250 255 Glu Ala Leu Lys Asn Asp Ile Ile Phe Thr Asn Ser Val Glu Ser Leu 260 265 270 Lys Ser Ala His Ile Lys Glu Pro Glu Arg Glu Gly Lys Gly Thr Asp 275 280 285 Leu Glu Lys Asp Lys Ile Gly Met Glu Val Lys Val Asp Ser Asp Ala 290 295 300 Gly Ile Pro Lys Arg Gln Glu Thr Gln Leu Lys Ile Ser Glu Met Ser 305 310 315 320 Ile Pro Gln Gly Gln Gly Ala Gln Ile Lys Lys Ser Val Ser Asp Val 325 330 335 Pro Arg Gly Gln Glu Ser Gln Val Lys Lys Ser Glu Ser Gly Val Pro 340 345 350 Lys Gly Gln Glu Ala Gln Val Thr Lys Ser Gly Leu Val Val Leu Lys 355 360 365 Gly Gln Glu Ala Gln Val Glu Lys Ser Glu Met Gly Val Pro Arg Arg 370 375 380 Gln Glu Ser Gln Val Lys Lys Ser Gln Ser Gly Val Ser Lys Gly Gln 385 390 395 400 Glu Ala Gln Val Lys Lys Arg Glu Ser Val Val Leu Lys Gly Gln Glu 405 410 415 Ala Gln Val Glu Lys Ser Glu Leu Lys Val Pro Lys Gly Gln Glu Gly 420 425 430 Gln Val Glu Lys Thr Glu Ala Asp Val Pro Lys Glu Gln Glu Val Gln 435 440 445 Glu Lys Lys Ser Glu Ala Gly Val Leu Lys Gly Pro Glu Ser Gln Val 450 455 460 Lys Asn Thr Glu Val Ser Val Pro Glu Thr Leu Glu Ser Gln Val Lys 465 470 475 480 Lys Ser Glu Ser Gly Val Leu Lys Gly Gln Glu Ala Gln Glu Lys Lys 485 490 495 Glu Ser Phe Glu Asp Lys Gly Asn Asn Asp Lys Glu Lys Glu Arg Asp 500 505 510 Ala Glu Lys Asp Pro Asn Lys Lys Glu Lys Gly Asp Lys Asn Thr Lys 515 520 525 Gly Asp Lys Gly Lys Asp Lys Val Lys Gly Lys Arg Glu Ser Glu Ile 530 535 540 Asn Gly Glu Lys Ser Lys Gly Ser Lys Arg Ala Lys Ala Asn Thr Gly 545 550 555 560 Arg Lys Tyr Asn Lys Lys Val Glu Glu 565 36554PRTHomo sapiens 36Met Thr Val Leu Glu Ile Thr Leu Ala Val Ile Leu Thr Leu Leu Gly 1 5 10 15 Leu Ala Ile Leu Ala Ile Leu Leu Thr Arg Trp Ala Arg Cys Lys Gln 20 25 30 Ser Glu Met Tyr Ile Ser Arg Tyr Ser Ser Glu Gln Ser Ala Arg Leu 35 40 45 Leu Asp Tyr Glu Asp Gly Arg Gly Ser Arg His Ala Tyr Ser Thr Gln 50 55 60 Ser Glu Arg Ser Lys Arg Asp Tyr Thr Pro Ser Thr Asn Ser Leu Ala 65 70 75 80 Leu Ser Arg Ser Ser Ile Ala Leu Pro Gln Gly Ser Met Ser Ser Ile 85 90 95 Lys Cys Leu Gln Thr Thr Glu Glu Pro Pro Ser Arg Thr Ala Gly Ala 100 105 110 Met Met Gln Phe Thr Ala Pro Ile Pro Gly Ala Thr Gly Pro Ile Lys 115 120 125 Leu Ser Gln Lys Thr Ile Val Gln Thr Pro Gly Pro Ile Val Gln Tyr 130 135 140 Pro Gly Ser Asn Ala Gly Pro Pro Ser Ala Pro Arg Gly Pro Pro Met 145 150 155 160 Ala Pro Ile Ile Ile Ser Gln Arg Thr Ala Ser Gln Leu Ala Ala Pro 165 170 175 Ile Ile Ile Ser Gln Arg Thr Ala Arg Ile Pro Gln Val His Thr Met 180 185 190 Asp Ser Ser Gly Lys Ile Thr Leu Thr Pro Val Val Ile Leu Thr Gly 195 200 205 Tyr Met Asp Glu Glu Leu Ala Lys Lys Ser Cys Ser Lys Ile Gln Ile 210 215 220 Leu Lys Cys Gly Gly Thr Ala Arg Ser Gln Asn Ser Arg Glu Glu Asn 225 230 235 240 Lys Glu Ala Leu Lys Asn Asp Ile Ile Phe Thr Asn Ser Val Glu Ser 245 250 255 Leu Lys Ser Ala His Ile Lys Glu Pro Glu Arg Glu Gly Lys Gly Thr 260 265 270 Asp Leu Glu Lys Asp Lys Ile Gly Met Glu Val Lys Val Asp Ser Asp 275 280 285 Ala Gly Ile Pro Lys Arg Gln Glu Thr Gln Leu Lys Ile Ser Glu Met 290 295 300 Ser Ile Pro Gln Gly Gln Gly Ala Gln Ile Lys Lys Ser Val Ser Asp 305 310 315 320 Val Pro Arg Gly Gln Glu Ser Gln Val Lys Lys Ser Glu Ser Gly Val 325 330 335 Pro Lys Gly Gln Glu Ala Gln Val Thr Lys Ser Gly Leu Val Val Leu 340 345 350 Lys Gly Gln Glu Ala Gln Val Glu Lys Ser Glu Met Gly Val Pro Arg 355 360 365 Arg Gln Glu Ser Gln Val Lys Lys Ser Gln Ser Gly Val Ser Lys Gly 370 375 380 Gln Glu Ala Gln Val Lys Lys Arg Glu Ser Val Val Leu Lys Gly Gln 385 390 395 400 Glu Ala Gln Val Glu Lys Ser Glu Leu Lys Val Pro Lys Gly Gln Glu 405 410 415 Gly Gln Val Glu Lys Thr Glu Ala Asp Val Pro Lys Glu Gln Glu Val 420 425 430 Gln Glu Lys Lys Ser Glu Ala Gly Val Leu Lys Gly Pro Glu Ser Gln 435 440 445 Val Lys Asn Thr Glu Val Ser Val Pro Glu Thr Leu Glu Ser Gln Val 450 455 460 Lys Lys Ser Glu Ser Gly Val Leu Lys Gly Gln Glu Ala Gln Glu Lys 465 470 475 480 Lys Glu Ser Phe Glu Asp Lys Gly Asn Asn Asp Lys Glu Lys Glu Arg 485 490 495 Asp Ala Glu Lys Asp Pro Asn Lys Lys Glu Lys Gly Asp Lys Asn Thr 500 505 510 Lys Gly Asp Lys Gly Lys Asp Lys Val Lys Gly Lys Arg Glu Ser Glu 515 520 525 Ile Asn Gly Glu Lys Ser Lys Gly Ser Lys Arg Ala Lys Ala Asn Thr 530 535 540 Gly Arg Lys Tyr Asn Lys Lys Val Glu Glu 545 550 371182DNAHomo sapiens 37acacaggttg gagcagagaa agaggaaaca tagaggtgcc aaaggaacaa agacataatg 60atgtcatcca agccaacaag ccatgctgaa gtaaatgaaa ccatacccaa cccttaccca 120ccaggcagct ttatggctcc tggatttcaa cagcctctgg gttcaatcaa cttagaaaac 180caagctcagg gtgctcagcg tgctcagccc tacggcatca catctccggg aatctttgct 240agcagtcaac cgggtcaagg aaatatacaa atgataaatc caagtgtggg aacagcagta 300atgaacttta aagaagaagc aaaggcacta ggggtgatcc agatcatggt tggattgatg 360cacattggtt ttggaattgt tttgtgttta atatccttct cttttagaga agtattaggt 420tttgcctcta ctgctgttat tggtggatac ccattctggg gtggcctttc ttttattatc 480tctggctctc tctctgtgtc agcatccaag gagctttccc gttgtctggt gaaaggcagc 540ctgggaatga acattgttag ttctatcttg gccttcattg gagtgattct gctgctggtg 600gatatgtgca tcaatggggt agctggccaa gactactggg ccgtgctttc tggaaaaggc 660atttcagcca cgctgatgat cttctccctc ttggagttct tcgtagcttg tgccacagcc 720cattttgcca accaagcaaa caccacaacc aatatgtctg tcctggttat tccaaatatg 780tatgaaagca accctgtgac accagcgtct tcttcagctc ctcccagatg caacaactac 840tcagctaatg cccctaaata gtaaaagaaa aaggggtatc agtctaatct catggagaaa 900aactacttgc aaaaacttct taagaagatg tcttttattg tctacaatga tttctagtct 960ttaaaaactg tgtttgagat ttgtttttag gttggtcgct aatgatggct gtatctccct 1020tcactgtctc ttcctacatt accactacta catgctggca aaggtgaagg atcagaggac 1080tgaaaaatga ttctgcaact ctcttaaagt tagaaatgtt tctgttcata ttactttttc 1140cttaataaaa tgtcattaga aacaaaaaaa aaaaaaaaaa aa 118238267PRTHomo sapiens 38Met Met Ser Ser Lys Pro Thr Ser His Ala Glu Val Asn Glu Thr Ile 1 5 10 15 Pro Asn Pro Tyr Pro Pro Gly Ser Phe Met Ala Pro Gly Phe Gln Gln 20 25 30 Pro Leu Gly Ser Ile Asn Leu Glu Asn Gln Ala Gln Gly Ala Gln Arg 35 40 45 Ala Gln Pro Tyr Gly Ile Thr Ser Pro Gly Ile Phe Ala Ser Ser Gln 50 55 60 Pro Gly Gln Gly Asn Ile Gln Met Ile Asn Pro Ser Val Gly Thr Ala 65 70 75 80 Val Met Asn Phe Lys Glu Glu Ala Lys Ala Leu Gly Val Ile Gln Ile 85 90 95 Met Val Gly Leu Met His Ile Gly Phe Gly Ile Val Leu Cys Leu Ile 100 105 110 Ser Phe Ser Phe Arg Glu Val Leu Gly Phe Ala Ser Thr Ala Val Ile 115 120 125 Gly Gly Tyr Pro Phe Trp Gly Gly Leu Ser Phe Ile Ile Ser Gly Ser 130 135 140 Leu Ser Val Ser Ala Ser Lys Glu Leu Ser Arg Cys Leu Val Lys Gly 145 150 155 160 Ser Leu Gly Met Asn Ile Val Ser Ser Ile Leu Ala Phe Ile Gly Val 165 170 175 Ile Leu Leu Leu Val Asp Met Cys Ile Asn Gly Val Ala Gly Gln Asp 180 185 190 Tyr Trp Ala Val Leu Ser Gly Lys Gly Ile Ser Ala Thr Leu Met Ile 195 200 205 Phe Ser Leu Leu Glu Phe Phe Val Ala Cys Ala Thr Ala His Phe Ala 210 215 220 Asn Gln Ala Asn Thr Thr Thr Asn Met Ser Val Leu Val Ile Pro Asn 225 230 235 240 Met Tyr Glu Ser Asn Pro Val Thr Pro Ala Ser Ser Ser Ala Pro Pro 245 250 255 Arg Cys Asn Asn Tyr Ser Ala Asn Ala Pro Lys 260 265 391948DNAHomo sapiens 39gcacgaggtt ttgaggacca gcaacacagc aatacttcca gatctccata taacctctgt 60tcatttggga ggggctttgt attttcaaca ggagagttca aagttcattt ttttttcagc 120aactacagtt ctaagtgaaa tctattttta ttgatacatg gtattttaca tgtttatggg 180atacatatga gtcataatct attttaaata ataccttagt gttgtaaaat caacagtgct 240ttttaaaaga aatatacctt gttaattatc ccacatgtgt ctccagaagt acagcttgaa 300caaatccacc ttctgtggac caagcaccac cctgggcatt tctagcatga gcaaaatcca 360aggtcctggc tggactccag agatgctatt tacctcagaa gcatgacaat aggaggcaga 420aggagcaggc aaatccaagt cctttcttgt agtttccttg tttggggagg aaaagttgag 480ttttactatt atggaaaaga aacaggaaat agagacagac aaagagatat gacaatacag 540tcctgccacc cagatactca tttccaccta ccattccatg catttgtttt gaatatataa 600gtatgtacat aaaggtaggt actctcaagt ccatcagggc ttggctgtcc actgtttttg 660aagttccaga atgtttttgc taagttgagg aaataccaaa tcaggactat gaaaattatg 720gtatatattg atgtgtcaca gaacacagat gtgacataat aaagatgtgt aagattatat 780atataacttg tgtgtacacc tacctcatct ggggataaca cctcaagttt aattttgagg 840cttgggtcaa tcgtgcttcc cttccctttc ataggtcctc tatgagatat tgtcatagat 900tccatgttat gcaatagcca tagaatatga catctctcta tgataattct atattacttt 960aattgctgca cagaagttca ttgtatgtaa gtgccacagt atattataga tcttcttgtg 1020ggacatctat ttctagttta tgtgatagta tagcactttc atgaatgttc ttgtacttga 1080tctttacaca ttttcttttt tccttaggat gaattctgag agatgtaatt gatggggcaa 1140aatgtactca ctgtttgagg tttgaaattt ttccatcaaa agctggtact cttggttttt 1200taagacaaag agcaaatcct cccctgccag gattgacttt tggctctttt ttttcaaacc 1260tcactgcttt ttggtttagt tgtcataaaa tgccaagcac catgaacagg gctccatgaa 1320ggggctcaga ggtaggaggg ctgtgattag gagaaggctt ggactgatgg gcaatttgag 1380tgctcagaat tagagtgagg gggtgggggt gctgcaggga cagatgctgg ggaaagacac 1440cctgaagggc aaagggagca acaatggctg cagtacatgt ggcctttcag ctagcgcaga 1500ggatggaaac cagagtgggc tgatgattgg atgccaggcc tgagccagca actgtgatcc 1560tgagctgtgc acacttctgg ttgggattat ttctggtttc tacttcctgt ttgaagatgt 1620ggcatggaga gtgctctgct ttgacctgaa gtattttatc tatcctcagt ctcaggacac 1680tgttgatgga attaaggcca agcacatctg caaaaaagac attgctggag gaggtgcaaa 1740gagctggaaa ccaagtctcc agtcctggga aaagcagtgg tatggaaaag caatggaaag 1800agcattttga aaatgccatt ccactgtttt ctggccttta tgatttctgc tgagaaatcc 1860actgttagtc tgatggggtc tccttcatag caccaatgac ctgaagagcc ttgttgaagg 1920aagactccat ctgatgactc agagcaag 1948401406DNAHomo sapiens 40cggtgagagg ggcgcgcagc agcagctcct caacgccgca acgcgccggc ccaactgcag 60gaaggtctgt gctctggagc cagggtaaat ggttataaaa ttatacacca tggccctcct 120aaagacactc taggaaaacc atgtcatcct gatcttaaaa cacctgcaag aaagagcaca 180gtacttcacc attaataaag tagatatttc atcctgctca gaaaaccaac atttccagca 240atggctttac taccggtgtt gtttctggtt actgtgctgc ttccatcttt acctgcagaa 300ggaaaggatc ccgcttttac tgctttgtta accacccagt tgcaagtgca aagggagatt 360gtaaataaac acaatgaact aaggaaagca gtctctccac ctgccagtaa catgctaaag 420atggaatgga gcagagaggt aacaacgaat gcccaaaggt gggcaaacaa gtgcacttta 480caacatagtg atccagagga ccgcaaaacc agtacaagat gtggtgagaa tctctatatg 540tcaagtgacc ctacttcctg gtcttctgca atccaaagct ggtatgacga gatcctagat 600tttgtctatg gtgtaggacc aaagagtccc aatgcagttg ttggacatta tactcagctt 660gtttggtact cgacttacca ggtaggctgt ggaattgcct actgtcccaa tcaagatagt 720ctaaaatact actatgtttg ccaatattgt cctgctggta ataatatgaa tagaaagaat 780accccgtacc aacaaggaac accttgtgcc ggttgccctg atgactgtga caaaggacta 840tgcaccaata gttgccagta tcaagatctc ctaagtaact gtgattcctt gaagaataca 900gctggctgtg aacatgagtt actcaaggaa aagtgcaagg ctacttgcct atgtgagaac 960aaaatttact gatttaccta gtgagcattg tgcaagactg catggataag ggctgcatca 1020tttaattgcg acataccagt ggaaattgta tgtatgttag tgacaaattt gatttcaaag 1080agcaatgcat cttctccccc agatcatcac agaaatcact ttcaggcaat gatttacaaa 1140agtagcatag tagatgatga caactgtgaa ctctgacata aatttagtgc tttataacga 1200actgaatcag gttgaggatt

ttgaaaactg tataaccata ggatttaggt cactaggact 1260ttggatcaaa atggtgcatt acgtatttcc tgaaacatgc taaagaagaa gactgtaaca 1320tcattgccat tcctactacc tgagttttta cttgcataaa caataaattc aaagctttac 1380atctgcaaaa aaaaaaaaaa aaaaaa 140641243PRTHomo sapiens 41Met Ala Leu Leu Pro Val Leu Phe Leu Val Thr Val Leu Leu Pro Ser 1 5 10 15 Leu Pro Ala Glu Gly Lys Asp Pro Ala Phe Thr Ala Leu Leu Thr Thr 20 25 30 Gln Leu Gln Val Gln Arg Glu Ile Val Asn Lys His Asn Glu Leu Arg 35 40 45 Lys Ala Val Ser Pro Pro Ala Ser Asn Met Leu Lys Met Glu Trp Ser 50 55 60 Arg Glu Val Thr Thr Asn Ala Gln Arg Trp Ala Asn Lys Cys Thr Leu 65 70 75 80 Gln His Ser Asp Pro Glu Asp Arg Lys Thr Ser Thr Arg Cys Gly Glu 85 90 95 Asn Leu Tyr Met Ser Ser Asp Pro Thr Ser Trp Ser Ser Ala Ile Gln 100 105 110 Ser Trp Tyr Asp Glu Ile Leu Asp Phe Val Tyr Gly Val Gly Pro Lys 115 120 125 Ser Pro Asn Ala Val Val Gly His Tyr Thr Gln Leu Val Trp Tyr Ser 130 135 140 Thr Tyr Gln Val Gly Cys Gly Ile Ala Tyr Cys Pro Asn Gln Asp Ser 145 150 155 160 Leu Lys Tyr Tyr Tyr Val Cys Gln Tyr Cys Pro Ala Gly Asn Asn Met 165 170 175 Asn Arg Lys Asn Thr Pro Tyr Gln Gln Gly Thr Pro Cys Ala Gly Cys 180 185 190 Pro Asp Asp Cys Asp Lys Gly Leu Cys Thr Asn Ser Cys Gln Tyr Gln 195 200 205 Asp Leu Leu Ser Asn Cys Asp Ser Leu Lys Asn Thr Ala Gly Cys Glu 210 215 220 His Glu Leu Leu Lys Glu Lys Cys Lys Ala Thr Cys Leu Cys Glu Asn 225 230 235 240 Lys Ile Tyr 4221DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 42tctagcactg tctcgatcaa g 214321DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 43tgtcctcttg gtacatctga c 214421DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 44ctgtgtcagc atccaaggag c 214521DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 45ttcacctttg ccagcatgta g 214621DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 46cttgctctga gtcatcagat g 214721DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 47cacagaatat gagccataca g 214822DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 48ggtgtcactt ctgtgccttc ct 224921DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 49cggcaccagt tccaacaata g 215018DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 50caaaggttct ccaaatgt 185121DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 51tagcgcctca actgtcgttg g 215223DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 52cgtgagcgct tcgagatgtt ccg 235323DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 53cctaaccagc tgcccaactg tag 23541550DNAHomo sapiens 54atgaatgaaa gtcctgatcc gactgacctg gcgggagtca tcattgagct cggccccaat 60gacagtccac agacaagtga atttaaagga gcaaccgagg aggcacctgc gaaagaaagc 120ccacacacaa gtgaatttaa aggagcagcc cgggtgtcac ctatcagtga aagtgtgtta 180gcacgacttt ccaagtttga agttgaagat gctgaaaatg ttgcttcata tgacagcaag 240attaagaaaa ttgtgcattc aattgtatca tcctttgcat ttggactatt tggagttttc 300ctggtcttac tggatgtcac tctcatcctt gccgacctaa ttttcactga cagcaaactt 360tatattcctt tggagtatcg ttctatttct ctagctattg ccttattttt tctcatggat 420gttcttcttc gagtatttgt agaaaggaga cagcagtatt tttctgactt atttaacatt 480ttagatactg ccattattgt gattcttctg ctggttgatg tcgtttacat tttttttgac 540attaagttgc ttaggaatat tcccagatgg acacatttac ttcgacttct acgacttatt 600attctgttaa gaatttttca tctgtttcat caaaaaagac aacttgaaaa gctgataaga 660aggcgggttt cagaaaacaa aaggcgatac acaagggatg gatttgacct agacctcact 720tacgttacag aacgtattat tgctatgtca tttccatctt ctggaaggca gtctttctat 780agaaatccaa tcaaggaagt tgtgcggttt ctagataaga aacaccgaaa ccactatcga 840gtctacaatc tatgcagtga aagagcttac gatcctaagc acttccataa tagggtcgtt 900agaatcatga ttgatgatca taatgtcccc actctacatc agatggtggt tttcaccaag 960gaagtaaatg agtggatggc tcaagatctt gaaaacatcg tagcgattca ctgtaaagga 1020ggcacagata gaacaggaac tatggtttgt gccttcctta ttgcctctga aatatgttca 1080actgcaaagg aaagcctgta ttattttgga gaaaggcgaa cagataaaac ccacagcgaa 1140aaatttcagg gagtagaaac tccttctcag gttatgtacg tgatctaaaa atccaaatag 1200aaatggagaa aaaggttgtc ttttccacta tttcattagg aaaatgttcg gtacttgata 1260acattacaac agacaaaata ttaattgatg tattcgacgg tccacctctg tatgatgatg 1320tgaaagtgca gtttttctat tcgaatcttc ctacatacta tgacaattgc tcattttact 1380tctggttgca cacatctttt attgaaaata acaggcttta tctaccaaaa aatgaattgg 1440ataatctaca taaacaaaaa gcacggagaa tttatccatc agattttgcc gtggagatac 1500tttttggcga gaaaatgact tccagtgatg ttgtagctgg atccgattaa 1550551407DNAHomo sapiens 55atgaatgaaa gtcctgatcc gactgacctg gcgggagtca tcattgagct cggccccaat 60gacagtccac agacaagtga atttaaagga gcaaccgagg aggcacctgc gaaagaaagc 120ccacacacaa gtgaatttaa aggagcagcc cgggtgtcac ctatcagtga aagtgtgtta 180gcacgacttt ccaagtttga agttgaagat gctgaaaatg ttgcttcata tgacagcaag 240attaagaaaa ttgtgcattc aattgtatca tcctttgcat ttggactatt tggagttttc 300ctggtcttac tggatgtcac tctcatcctt gccgacctaa ttttcactga cagcaaactt 360tatattcctt tggagtatcg ttctatttct ctagctattg ccttattttt tctcatggat 420gttcttcttc gagtatttgt agaaaggaga cagcagtatt tttctgactt atttaacatt 480ttagatactg ccattattgt gattcttctg ctggttgatg tcgtttacat tttttttgac 540attaagttgc ttaggaatat tcccagatgg acacatttac ttcgacttct acgacttatt 600attctgttaa gaatttttca tctgtttcat caaaaaagac aacttgaaaa gctgataaga 660aggcgggttt cagaaaacaa aaggcgatac acaagggatg gatttgacct agacctcact 720tacgttacag aacgtattat tgctatgtca tttccatctt ctggaaggca gtctttctat 780agaaatccaa tcaaggaagt tgtgcggttt ctagataaga aacaccgaaa ccactatcga 840gtctacaatc tatgcagtga aagagcttac gatcctaagc acttccataa tagggtcgtt 900agaatcatga ttgatgatca taatgtcccc actctacatc agatggtggt tttcaccaag 960gaagtaaatg agtggatggc tcaagatctt gaaaacatcg tagcgattca ctgtaaagga 1020ggcacaggtt atgtacgtga tctaaaaatc caaatagaaa tggagaaaaa ggttgtcttt 1080tccactattt cattaggaaa atgttcggta cttgataaca ttacaacaga caaaatatta 1140attgatgtat tcgacggtcc acctctgtat gatgatgtga aagtgcagtt tttctattcg 1200aatcttccta catactatga caattgctca ttttacttct ggttgcacac atcttttatt 1260gaaaataaca ggctttatct accaaaaaat gaattggata atctacataa acaaaaagca 1320cggagaattt atccatcaga ttttgccgtg gagatacttt ttggcgagaa aatgacttcc 1380agtgatgttg tagctggatc cgattaa 1407561413DNAHomo sapiens 56atgaatgaaa gtcctgatcc gactgacctg gcgggagtca tcattgagct cggccccaat 60gacagtccac agacaagtga atttaaagga gcaaccgagg aggcacctgc gaaagaaagt 120gtgttagcac gactttccaa gtttgaagtt gaagatgctg aaaatgttgc ttcatatgac 180agcaagatta agaaaattgt gcattcaatt gtatcatcct ttgcatttgg actatttgga 240gttttcctgg tcttactgga tgtcactctc atccttgccg acctaatttt cactgacagc 300aaactttata ttcctttgga gtatcgttct atttctctag ctattgcctt attttttctc 360atggatgttc ttcttcgagt atttgtagaa aggagacagc agtatttttc tgacttattt 420aacattttag atactgccat tattgtgatt cttctgctgg ttgatgtcgt ttacattttt 480tttgacatta agttgcttag gaatattccc agatggacac atttacttcg acttctacga 540cttattattc tgttaagaat ttttcatctg tttcatcaaa aaagacaact tgaaaagctg 600ataagaaggc gggtttcaga aaacaaaagg cgatacacaa gggatggatt tgacctagac 660ctcacttacg ttacagaacg tattattgct atgtcatttc catcttctgg aaggcagtct 720ttctatagaa atccaatcaa ggaagttgtg cggtttctag ataagaaaca ccgaaaccac 780tatcgagtct acaatctatg cagtgaaaga gcttacgatc ctaagcactt ccataatagg 840gtcgttagaa tcatgattga tgatcataat gtccccactc tacatcagat ggtggttttc 900accaaggaag taaatgagtg gatggctcaa gatcttgaaa acatcgtagc gattcactgt 960aaaggaggca cagatagaac aggaactatg gtttgtgcct tccttattgc ctctgaaata 1020tgttcaactg caaaggaaag cctgtattat tttggagaaa ggcgaacaga taaaacccac 1080agcgaaaaat ttcagggagt agaaactcct tctgtacttg ataacattac aacagacaaa 1140atattaattg atgtattcga cggtccacct ctgtatgatg atgtgaaagt gcagtttttc 1200tattcgaatc ttcctacata ctatgacaat tgctcatttt acttctggtt gcacacatct 1260tttattgaaa ataacaggct ttatctacca aaaaatgaat tggataatct acataaacaa 1320aaagcacgga gaatttatcc atcagatttt gccgtggaga tactttttgg cgagaaaatg 1380acttccagtg atgttgtagc tggatccgat taa 1413571353DNAHomo sapiens 57atgaatgaaa gtcctgatcc gactgacctg gcgggagtca tcattgagct cggccccaat 60gacagtccac agacaagtga atttaaagga gcaaccgagg aggcacctgc gaaagaaagt 120gtgttagcac gactttccaa gtttgaagtt gaagatgctg aaaatgttgc ttcatatgac 180agcaagatta agaaaattgt gcattcaatt gtatcatcct ttgcatttgg actatttgga 240gttttcctgg tcttactgga tgtcactctc atccttgccg acctaatttt cactgacagc 300aaactttata ttcctttgga gtatcgttct atttctctag ctattgcctt attttttctc 360atggatgttc ttcttcgagt atttgtagaa aggagacagc agtatttttc tgacttattt 420aacattttag atactgccat tattgtgatt cttctgctgg ttgatgtcgt ttacattttt 480tttgacatta agttgcttag gaatattccc agatggacac atttacttcg acttctacga 540cttattattc tgttaagaat ttttcatctg tttcatcaaa aaagacaact tgaaaagctg 600ataagaaggc gggtttcaga aaacaaaagg cgatacacaa gggatggatt tgacctagac 660ctcacttacg ttacagaacg tattattgct atgtcatttc catcttctgg aaggcagtct 720ttctatagaa atccaatcaa ggaagttgtg cggtttctag ataagaaaca ccgaaaccac 780tatcgagtct acaatctatg cagtgaaaga gcttacgatc ctaagcactt ccataatagg 840gtcgttagaa tcatgattga tgatcataat gtccccactc tacatcagat ggtggttttc 900accaaggaag taaatgagtg gatggctcaa gatcttgaaa acatcgtagc gattcactgt 960aaaggaggca caggttatgt acgtgatcta aaaatccaaa tagaaatgga gaaaaaggtt 1020gtcttttcca ctatttcatt aggaaaatgt tcggtacttg ataacattac aacagacaaa 1080atattaattg atgtattcga cggtccacct ctgtatgatg atgtgaaagt gcagtttttc 1140tattcgaatc ttcctacata ctatgacaat tgctcatttt acttctggtt gcacacatct 1200tttattgaaa ataacaggct ttatctacca aaaaatgaat tggataatct acataaacaa 1260aaagcacgga gaatttatcc atcagatttt gccgtggaga tactttttgg cgagaaaatg 1320acttccagtg atgttgtagc tggatccgat taa 135358395PRTHomo sapiens 58Met Asn Glu Ser Pro Asp Pro Thr Asp Leu Ala Gly Val Ile Ile Glu 1 5 10 15 Leu Gly Pro Asn Asp Ser Pro Gln Thr Ser Glu Phe Lys Gly Ala Thr 20 25 30 Glu Glu Ala Pro Ala Lys Glu Ser Pro His Thr Ser Glu Phe Lys Gly 35 40 45 Ala Ala Arg Val Ser Pro Ile Ser Glu Ser Val Leu Ala Arg Leu Ser 50 55 60 Lys Phe Glu Val Glu Asp Ala Glu Asn Val Ala Ser Tyr Asp Ser Lys 65 70 75 80 Ile Lys Lys Ile Val His Ser Ile Val Ser Ser Phe Ala Phe Gly Leu 85 90 95 Phe Gly Val Phe Leu Val Leu Leu Asp Val Thr Leu Ile Leu Ala Asp 100 105 110 Leu Ile Phe Thr Asp Ser Lys Leu Tyr Ile Pro Leu Glu Tyr Arg Ser 115 120 125 Ile Ser Leu Ala Ile Ala Leu Phe Phe Leu Met Asp Val Leu Leu Arg 130 135 140 Val Phe Val Glu Arg Arg Gln Gln Tyr Phe Ser Asp Leu Phe Asn Ile 145 150 155 160 Leu Asp Thr Ala Ile Ile Val Ile Leu Leu Leu Val Asp Val Val Tyr 165 170 175 Ile Phe Phe Asp Ile Lys Leu Leu Arg Asn Ile Pro Arg Trp Thr His 180 185 190 Leu Leu Arg Leu Leu Arg Leu Ile Ile Leu Leu Arg Ile Phe His Leu 195 200 205 Phe His Gln Lys Arg Gln Leu Glu Lys Leu Ile Arg Arg Arg Val Ser 210 215 220 Glu Asn Lys Arg Arg Tyr Thr Arg Asp Gly Phe Asp Leu Asp Leu Thr 225 230 235 240 Tyr Val Thr Glu Arg Ile Ile Ala Met Ser Phe Pro Ser Ser Gly Arg 245 250 255 Gln Ser Phe Tyr Arg Asn Pro Ile Lys Glu Val Val Arg Phe Leu Asp 260 265 270 Lys Lys His Arg Asn His Tyr Arg Val Tyr Asn Leu Cys Ser Glu Arg 275 280 285 Ala Tyr Asp Pro Lys His Phe His Asn Arg Val Val Arg Ile Met Ile 290 295 300 Asp Asp His Asn Val Pro Thr Leu His Gln Met Val Val Phe Thr Lys 305 310 315 320 Glu Val Asn Glu Trp Met Ala Gln Asp Leu Glu Asn Ile Val Ala Ile 325 330 335 His Cys Lys Gly Gly Thr Asp Arg Thr Gly Thr Met Val Cys Ala Phe 340 345 350 Leu Ile Ala Ser Glu Ile Cys Ser Thr Ala Lys Glu Ser Leu Tyr Tyr 355 360 365 Phe Gly Glu Arg Arg Thr Asp Lys Thr His Ser Glu Lys Phe Gln Gly 370 375 380 Val Glu Thr Pro Ser Gln Val Met Tyr Val Ile 385 390 395 59468PRTHomo sapiens 59Met Asn Glu Ser Pro Asp Pro Thr Asp Leu Ala Gly Val Ile Ile Glu 1 5 10 15 Leu Gly Pro Asn Asp Ser Pro Gln Thr Ser Glu Phe Lys Gly Ala Thr 20 25 30 Glu Glu Ala Pro Ala Lys Glu Ser Pro His Thr Ser Glu Phe Lys Gly 35 40 45 Ala Ala Arg Val Ser Pro Ile Ser Glu Ser Val Leu Ala Arg Leu Ser 50 55 60 Lys Phe Glu Val Glu Asp Ala Glu Asn Val Ala Ser Tyr Asp Ser Lys 65 70 75 80 Ile Lys Lys Ile Val His Ser Ile Val Ser Ser Phe Ala Phe Gly Leu 85 90 95 Phe Gly Val Phe Leu Val Leu Leu Asp Val Thr Leu Ile Leu Ala Asp 100 105 110 Leu Ile Phe Thr Asp Ser Lys Leu Tyr Ile Pro Leu Glu Tyr Arg Ser 115 120 125 Ile Ser Leu Ala Ile Ala Leu Phe Phe Leu Met Asp Val Leu Leu Arg 130 135 140 Val Phe Val Glu Arg Arg Gln Gln Tyr Phe Ser Asp Leu Phe Asn Ile 145 150 155 160 Leu Asp Thr Ala Ile Ile Val Ile Leu Leu Leu Val Asp Val Val Tyr 165 170 175 Ile Phe Phe Asp Ile Lys Leu Leu Arg Asn Ile Pro Arg Trp Thr His 180 185 190 Leu Leu Arg Leu Leu Arg Leu Ile Ile Leu Leu Arg Ile Phe His Leu 195 200 205 Phe His Gln Lys Arg Gln Leu Glu Lys Leu Ile Arg Arg Arg Val Ser 210 215 220 Glu Asn Lys Arg Arg Tyr Thr Arg Asp Gly Phe Asp Leu Asp Leu Thr 225 230 235 240 Tyr Val Thr Glu Arg Ile Ile Ala Met Ser Phe Pro Ser Ser Gly Arg 245 250 255 Gln Ser Phe Tyr Arg Asn Pro Ile Lys Glu Val Val Arg Phe Leu Asp 260 265 270 Lys Lys His Arg Asn His Tyr Arg Val Tyr Asn Leu Cys Ser Glu Arg 275 280 285 Ala Tyr Asp Pro Lys His Phe His Asn Arg Val Val Arg Ile Met Ile 290 295 300 Asp Asp His Asn Val Pro Thr Leu His Gln Met Val Val Phe Thr Lys 305 310 315 320 Glu Val Asn Glu Trp Met Ala Gln Asp Leu Glu Asn Ile Val Ala Ile 325 330 335 His Cys Lys Gly Gly Thr Gly Tyr Val Arg Asp Leu Lys Ile Gln Ile 340 345 350 Glu Met Glu Lys Lys Val Val Phe Ser Thr Ile Ser Leu Gly Lys Cys 355 360 365 Ser Val Leu Asp Asn Ile Thr Thr Asp Lys Ile Leu Ile Asp Val Phe 370 375 380 Asp Gly Pro Pro Leu Tyr Asp Asp Val Lys Val Gln Phe Phe Tyr Ser 385 390 395 400 Asn Leu Pro Thr Tyr Tyr Asp Asn Cys Ser Phe Tyr Phe Trp Leu His 405 410 415 Thr Ser Phe Ile Glu Asn Asn Arg Leu Tyr Leu Pro Lys Asn Glu Leu 420 425 430 Asp Asn Leu His Lys Gln Lys Ala Arg Arg Ile Tyr Pro Ser Asp Phe 435 440 445 Ala Val Glu Ile Leu Phe Gly Glu Lys Met Thr Ser Ser Asp Val Val 450 455 460 Ala Gly Ser Asp 465 60470PRTHomo sapiens 60Met Asn Glu Ser Pro Asp Pro Thr Asp

Leu Ala Gly Val Ile Ile Glu 1 5 10 15 Leu Gly Pro Asn Asp Ser Pro Gln Thr Ser Glu Phe Lys Gly Ala Thr 20 25 30 Glu Glu Ala Pro Ala Lys Glu Ser Val Leu Ala Arg Leu Ser Lys Phe 35 40 45 Glu Val Glu Asp Ala Glu Asn Val Ala Ser Tyr Asp Ser Lys Ile Lys 50 55 60 Lys Ile Val His Ser Ile Val Ser Ser Phe Ala Phe Gly Leu Phe Gly 65 70 75 80 Val Phe Leu Val Leu Leu Asp Val Thr Leu Ile Leu Ala Asp Leu Ile 85 90 95 Phe Thr Asp Ser Lys Leu Tyr Ile Pro Leu Glu Tyr Arg Ser Ile Ser 100 105 110 Leu Ala Ile Ala Leu Phe Phe Leu Met Asp Val Leu Leu Arg Val Phe 115 120 125 Val Glu Arg Arg Gln Gln Tyr Phe Ser Asp Leu Phe Asn Ile Leu Asp 130 135 140 Thr Ala Ile Ile Val Ile Leu Leu Leu Val Asp Val Val Tyr Ile Phe 145 150 155 160 Phe Asp Ile Lys Leu Leu Arg Asn Ile Pro Arg Trp Thr His Leu Leu 165 170 175 Arg Leu Leu Arg Leu Ile Ile Leu Leu Arg Ile Phe His Leu Phe His 180 185 190 Gln Lys Arg Gln Leu Glu Lys Leu Ile Arg Arg Arg Val Ser Glu Asn 195 200 205 Lys Arg Arg Tyr Thr Arg Asp Gly Phe Asp Leu Asp Leu Thr Tyr Val 210 215 220 Thr Glu Arg Ile Ile Ala Met Ser Phe Pro Ser Ser Gly Arg Gln Ser 225 230 235 240 Phe Tyr Arg Asn Pro Ile Lys Glu Val Val Arg Phe Leu Asp Lys Lys 245 250 255 His Arg Asn His Tyr Arg Val Tyr Asn Leu Cys Ser Glu Arg Ala Tyr 260 265 270 Asp Pro Lys His Phe His Asn Arg Val Val Arg Ile Met Ile Asp Asp 275 280 285 His Asn Val Pro Thr Leu His Gln Met Val Val Phe Thr Lys Glu Val 290 295 300 Asn Glu Trp Met Ala Gln Asp Leu Glu Asn Ile Val Ala Ile His Cys 305 310 315 320 Lys Gly Gly Thr Asp Arg Thr Gly Thr Met Val Cys Ala Phe Leu Ile 325 330 335 Ala Ser Glu Ile Cys Ser Thr Ala Lys Glu Ser Leu Tyr Tyr Phe Gly 340 345 350 Glu Arg Arg Thr Asp Lys Thr His Ser Glu Lys Phe Gln Gly Val Glu 355 360 365 Thr Pro Ser Val Leu Asp Asn Ile Thr Thr Asp Lys Ile Leu Ile Asp 370 375 380 Val Phe Asp Gly Pro Pro Leu Tyr Asp Asp Val Lys Val Gln Phe Phe 385 390 395 400 Tyr Ser Asn Leu Pro Thr Tyr Tyr Asp Asn Cys Ser Phe Tyr Phe Trp 405 410 415 Leu His Thr Ser Phe Ile Glu Asn Asn Arg Leu Tyr Leu Pro Lys Asn 420 425 430 Glu Leu Asp Asn Leu His Lys Gln Lys Ala Arg Arg Ile Tyr Pro Ser 435 440 445 Asp Phe Ala Val Glu Ile Leu Phe Gly Glu Lys Met Thr Ser Ser Asp 450 455 460 Val Val Ala Gly Ser Asp 465 470 61450PRTHomo sapiens 61Met Asn Glu Ser Pro Asp Pro Thr Asp Leu Ala Gly Val Ile Ile Glu 1 5 10 15 Leu Gly Pro Asn Asp Ser Pro Gln Thr Ser Glu Phe Lys Gly Ala Thr 20 25 30 Glu Glu Ala Pro Ala Lys Glu Ser Val Leu Ala Arg Leu Ser Lys Phe 35 40 45 Glu Val Glu Asp Ala Glu Asn Val Ala Ser Tyr Asp Ser Lys Ile Lys 50 55 60 Lys Ile Val His Ser Ile Val Ser Ser Phe Ala Phe Gly Leu Phe Gly 65 70 75 80 Val Phe Leu Val Leu Leu Asp Val Thr Leu Ile Leu Ala Asp Leu Ile 85 90 95 Phe Thr Asp Ser Lys Leu Tyr Ile Pro Leu Glu Tyr Arg Ser Ile Ser 100 105 110 Leu Ala Ile Ala Leu Phe Phe Leu Met Asp Val Leu Leu Arg Val Phe 115 120 125 Val Glu Arg Arg Gln Gln Tyr Phe Ser Asp Leu Phe Asn Ile Leu Asp 130 135 140 Thr Ala Ile Ile Val Ile Leu Leu Leu Val Asp Val Val Tyr Ile Phe 145 150 155 160 Phe Asp Ile Lys Leu Leu Arg Asn Ile Pro Arg Trp Thr His Leu Leu 165 170 175 Arg Leu Leu Arg Leu Ile Ile Leu Leu Arg Ile Phe His Leu Phe His 180 185 190 Gln Lys Arg Gln Leu Glu Lys Leu Ile Arg Arg Arg Val Ser Glu Asn 195 200 205 Lys Arg Arg Tyr Thr Arg Asp Gly Phe Asp Leu Asp Leu Thr Tyr Val 210 215 220 Thr Glu Arg Ile Ile Ala Met Ser Phe Pro Ser Ser Gly Arg Gln Ser 225 230 235 240 Phe Tyr Arg Asn Pro Ile Lys Glu Val Val Arg Phe Leu Asp Lys Lys 245 250 255 His Arg Asn His Tyr Arg Val Tyr Asn Leu Cys Ser Glu Arg Ala Tyr 260 265 270 Asp Pro Lys His Phe His Asn Arg Val Val Arg Ile Met Ile Asp Asp 275 280 285 His Asn Val Pro Thr Leu His Gln Met Val Val Phe Thr Lys Glu Val 290 295 300 Asn Glu Trp Met Ala Gln Asp Leu Glu Asn Ile Val Ala Ile His Cys 305 310 315 320 Lys Gly Gly Thr Gly Tyr Val Arg Asp Leu Lys Ile Gln Ile Glu Met 325 330 335 Glu Lys Lys Val Val Phe Ser Thr Ile Ser Leu Gly Lys Cys Ser Val 340 345 350 Leu Asp Asn Ile Thr Thr Asp Lys Ile Leu Ile Asp Val Phe Asp Gly 355 360 365 Pro Pro Leu Tyr Asp Asp Val Lys Val Gln Phe Phe Tyr Ser Asn Leu 370 375 380 Pro Thr Tyr Tyr Asp Asn Cys Ser Phe Tyr Phe Trp Leu His Thr Ser 385 390 395 400 Phe Ile Glu Asn Asn Arg Leu Tyr Leu Pro Lys Asn Glu Leu Asp Asn 405 410 415 Leu His Lys Gln Lys Ala Arg Arg Ile Tyr Pro Ser Asp Phe Ala Val 420 425 430 Glu Ile Leu Phe Gly Glu Lys Met Thr Ser Ser Asp Val Val Ala Gly 435 440 445 Ser Asp 450 621299DNAHomo sapiens 62cgcccttaga catggctcag atgtgcagcc acagtgagct tctgaacatt tcttctcaga 60ctaagctctt acacacagtt gcagttgaaa gaaagaattg cttgacatgg ccacaggagc 120aggcagcttc ctgcagacat gacagtcaac gcaaactcat gtcactgtgg gcagacacat 180gtttgcaaag agactcagag ccaaacaagc acactcaatg tgctttgccc aaatttaccc 240attaggtaaa tcttccctcc tcccaagaag aaagtggaga gagcatgagt cctcacatgg 300gaacttgaag tcagggaaat gaaggctcac caattatttg tgcatgggtt taagttttcc 360ttgaaattaa gttcaggttt gtctttgtgt gtaccaatta atgacaagag gttagataga 420agtatgctag atggcaaaga gaaatatgtt ttgtgtcttc aattttgcta aaaataaccc 480agaacatgga taattcattt attaattgat tttggtaagc caagtcctat ttggagaaaa 540ttaatagttt ttctaaaaaa gaattttctc aatatcacct ggcttgataa catttttctc 600cttcgagttc ctttttctgg agtttaacaa acttgttctt tacaaataga ttatattgac 660tacctctcac tgatgttatg atattagttt ctattgctta ctttgtattt ctaattttag 720gattcacaat ttagctggag aactattttt taacctgttg cacctaaaca tgattgagct 780agaagacagt tttaccatat gcatgcattt tctctgagtt atattttaaa atctatacat 840ttctcctaaa tatggaggaa atcactggca tcaaatgcca gtctcagacg gaagacctaa 900agcccatttc tggcctggag ctacttggct ttgtgaccta tggtgaggca taagtgctct 960gagtttgtgt tgcctctttt gtaaaatgag ggtttgactt aatcagtgat tttcatagct 1020taaaattttt ttgaagaaca gaactttttt taaaaacagt tagatgcaac catattatat 1080aaaacagaac agatacaagt agagctaact tgctaaagaa aggatggagg ctctgaagct 1140gtgacttcat tatcccttaa tactgctatg tcctctgtag taccttagat ttctatggga 1200catcgtttaa aaactattgt ttatgcgaga gccttgctaa tttcctaaaa attgtggata 1260cattttttct cccatgtata attttctcac cttctattt 129963405DNAHomo sapiens 63gcacaaggcc tgctcttact ccaaaaagat ggacccaggt ccgaaggggc actgccactg 60tggggggcat ggccatcctc caggtcactg cgggccaccc cctggccatg gcccagggcc 120ctgcgggcca ccccccacca tggtccaggg ccctgcgggc caccccctgg ccatggccca 180gggccctgcg ggccaccccc ccaccatggt ccagggccct gcgggcctcc ccctggccat 240ggcccaggtc acccaccccc tggtccacat cactgaggaa gtagaagaaa acaggacaca 300agatggcaag cctgagagaa ttgcccagct gacctggaat gaggcctaaa ccacaatctt 360ctcttcctaa taaacagcct cctagaggcc acattctatt ctgta 40564106PRTHomo sapiens 64Met Asp Pro Gly Pro Lys Gly His Cys His Cys Gly Gly His Gly His 1 5 10 15 Pro Pro Gly His Cys Gly Pro Pro Pro Gly His Gly Pro Gly Pro Cys 20 25 30 Gly Pro Pro Pro Thr Met Val Gln Gly Pro Ala Gly His Pro Leu Ala 35 40 45 Met Ala Gln Gly Pro Ala Gly His Pro Pro Thr Met Val Gln Gly Pro 50 55 60 Ala Gly Leu Pro Leu Ala Met Ala Gln Val Thr His Pro Leu Val His 65 70 75 80 Ile Thr Glu Glu Val Glu Glu Asn Arg Thr Gln Asp Gly Lys Pro Glu 85 90 95 Arg Ile Ala Gln Leu Thr Trp Asn Glu Ala 100 105 6571PRTHomo sapiens 65Met Ala Ile Leu Gln Val Thr Ala Gly His Pro Leu Ala Met Ala Gln 1 5 10 15 Gly Pro Ala Gly His Pro Pro Pro Trp Ser Arg Ala Leu Arg Ala Thr 20 25 30 Pro Trp Pro Trp Pro Arg Ala Leu Arg Ala Thr Pro Pro Pro Trp Ser 35 40 45 Arg Ala Leu Arg Ala Ser Pro Trp Pro Trp Pro Arg Ser Pro Thr Pro 50 55 60 Trp Ser Thr Ser Leu Arg Lys 65 70 6621DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 66agacatggct cagatgtgca g 216721DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 67ggaaattagc aaggctctcg c 216821DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 68tcaggtattc cctgctctta c 216921DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 69tgggcaattc tctcaggctt g 2170908DNAHomo sapiens 70aaaattcggc acgaggccgg gctgtggtct agcataaagg cggagcccag aagaaggggc 60ggggtatggg agaagcctcc ccacctgccc ccgcaaggcg gcatctgctg gtcctgctgc 120tgctcctctc taccctggtg atcccctccg ctgcagctcc tatccatgat gctgacgccc 180aagagagctc cttgggtctc acaggcctcc agagcctact ccaaggcttc agccgacttt 240tcctgaaagg taacctgctt cggggcatag acagcttatt ctctgccccc atggacttcc 300ggggcctccc tgggaactac cacaaagagg agaaccagga gcaccagctg gggaacaaca 360ccctctccag ccacctccag atcgacaaga tgaccgacaa caagacagga gaggtgctga 420tctccgagaa tgtggtggca tccattcaac cagcggaggg gagcttcgag ggtgatttga 480aggtacccag gatggaggag aaggaggccc tggtacccat ccagaaggcc acggacagct 540tccacacaga actccatccc cgggtggcct tctggatcat taagctgcca cggcggaggt 600cccaccagga tgccctggag ggcggccact ggctcagcga gaagcgacac cgcctgcagg 660ccatccggga tggactccgc aaggggaccc acaaggacgt cctagaagag gggaccgaga 720gctcctccca ctccaggctg tccccccgaa agacccactt actgtacatc ctcaggccct 780ctcggcagct gtaggggtgg ggaccgggga gcacctgcct gtagccccca tcagaccctg 840ccccaagcac catatggaaa taaagttctt tcttacatct aaaaaaaaaa aaaaaaaaaa 900aaaaaaaa 90871242PRTHomo sapiens 71Met Gly Glu Ala Ser Pro Pro Ala Pro Ala Arg Arg His Leu Leu Val 1 5 10 15 Leu Leu Leu Leu Leu Ser Thr Leu Val Ile Pro Ser Ala Ala Ala Pro 20 25 30 Ile His Asp Ala Asp Ala Gln Glu Ser Ser Leu Gly Leu Thr Gly Leu 35 40 45 Gln Ser Leu Leu Gln Gly Phe Ser Arg Leu Phe Leu Lys Gly Asn Leu 50 55 60 Leu Arg Gly Ile Asp Ser Leu Phe Ser Ala Pro Met Asp Phe Arg Gly 65 70 75 80 Leu Pro Gly Asn Tyr His Lys Glu Glu Asn Gln Glu His Gln Leu Gly 85 90 95 Asn Asn Thr Leu Ser Ser His Leu Gln Ile Asp Lys Met Thr Asp Asn 100 105 110 Lys Thr Gly Glu Val Leu Ile Ser Glu Asn Val Val Ala Ser Ile Gln 115 120 125 Pro Ala Glu Gly Ser Phe Glu Gly Asp Leu Lys Val Pro Arg Met Glu 130 135 140 Glu Lys Glu Ala Leu Val Pro Ile Gln Lys Ala Thr Asp Ser Phe His 145 150 155 160 Thr Glu Leu His Pro Arg Val Ala Phe Trp Ile Ile Lys Leu Pro Arg 165 170 175 Arg Arg Ser His Gln Asp Ala Leu Glu Gly Gly His Trp Leu Ser Glu 180 185 190 Lys Arg His Arg Leu Gln Ala Ile Arg Asp Gly Leu Arg Lys Gly Thr 195 200 205 His Lys Asp Val Leu Glu Glu Gly Thr Glu Ser Ser Ser His Ser Arg 210 215 220 Leu Ser Pro Arg Lys Thr His Leu Leu Tyr Ile Leu Arg Pro Ser Arg 225 230 235 240 Gln Leu 7221DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 72ctcctatcca tgatgctgac g 217321DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 73cctgaggatg tacagtaagt g 21742987DNAHomo sapiens 74tttcccagcg aggtggtcat tcagagccta cacatctgtt ctgtatttta acccatggat 60gagaatattc attcaagcca agagagttaa aactaaacat ctttgctatt gcctctacag 120acccagaaag tatctttatg tcacatcttc ttttaaagga gcatttaaag atgaagttaa 180aaaggcagaa gaagcagtaa agattgctga atccatattg aaagaagcac aaatcaaagt 240aaaccagtgt gacagaacct ctttatcttc tgccaaggat gtattacaga gagctttgga 300agatgtagaa gcaaagcaaa agaatcttaa agagaaacaa agagaattaa aaacagcaag 360aacgctctcc ctgttctatg gagtgaacgt agaaaaccga agccaagctg gaatgttcat 420ttacagtaat aaccgtttga tcaaaatgca tgaaaaagtg ggctcacagt tgaaactgaa 480gtccttactt ggcgcaggcg tggttggaat tgttaatata cccttggagg tcatggaacc 540atcccataat aaacaggaat ttctcaatgt ccaagagtat aatcatctac taaaagtcat 600gggacagtac ttggtccagt actgtaagga caccggcatc aataatagaa atttaacatt 660gttttgcaat gaatttggat accagaatga catcgatgtg gagaaacctt taaattcttt 720tcaatatcaa agaagacaag ccatgggtat cccattcatc atacaatgtg atctttgtct 780taaatggaga gtcttgcctt cctctactaa ttatcaggaa aaagaatttt ttgacatttg 840gatttgtgct aataatccca accgcttgga aaacagttgt catcaggtag aatgtctacc 900ttccatccca ctgggcacca tgagcacaat atcaccatca aaaaatgaga aagagaagca 960acttagagag tcggtcataa agtatcaaaa tagactggca gaacagcagc cacagcctca 1020atttatacca gtggacgaaa tcactgtcac ttccacctgc ctaacttcag cacataagga 1080aaataccaaa acccagaaaa tcaggctttt gggcgatgac ttgaagcatg aatctctttc 1140atcctttgag ctttcagcga gccgtagagg acagaaaaga aacatagaag agacagactc 1200tgatgtagag tatatttcag aaacaaaaat tatgaaaaag tctatggagg agaaaatgaa 1260ctctcaacag cagagaattc cagtagctct gccagaaaat gtcaaactag ctgagagatc 1320ccagagaagt cagattgcta atattaccac tgtctggaga gctcaaccaa ctgaagggtg 1380cctgaagaat gcccaggccg cttcttggga aatgaaaagg aagcagagtc tgaactttgt 1440agaggaatgt aaggtattga ctgaagatga gaacacgagt gattcagata taatcctggt 1500ttcagataaa agcaacactg atgtttcatt gaaacaagaa aaaaaggaaa ttcctctttt 1560aaaccaagaa aaacaggagc tgtgcaatga tgttctagca atgaaaagaa gctcttcatt 1620acctagctgg aaaagcttgc tcaatgtgcc gatggaagat gtgaatctaa gttctggaca 1680catagccaga gtttctgtga gtggcagttg taaagttgct tcttcgccag cgtcttctca 1740aagcacacct gtcaaggaaa cagtgagaaa actgaagtct aagttaaggg agattcttct 1800gtattttttt cctgagcatc agctaccatc agaattggaa gaacctgcat taagttgtga 1860gctggagcag tgcccagagc agatgaacaa aaagctgaaa atgtgtttca accagataca 1920gaatacttac atggtccaat atgaaaaaaa aataaagagg aaattgcagt ccattatcta 1980tgattcaaat acaagaggaa tacataatga aatctctctg gggcaatgtg aaaataaaag 2040aaaaatctct gaggataagc tgaagaatct tcgtataaaa ctggcactat tgttgcagaa 2100actccaactg ggtggtccag aaggtgacct ggagcagact gacacttatt tagaagcttt 2160gcttaaagaa gataatcttc tcttccagaa caatttaaat aaagtaacta tagatgcaag 2220acatagactc cctttagaaa aaaatgaaaa gacttcggaa aattaagtca gagatggtat 2280taccttttaa aaaatgctaa taagaaaatt ggaagattct tttaaaaatt tttctttttt 2340gttgttgtta ctgtaaagtc tattctgttt aacaataaga aataagaaat aatttttttc 2400aaataagaaa attgtgtact ctagaaatgg agaccgattt acaatttatg tattccctaa 2460tccaattatc taaatcttcc ttttctttca gaaatattaa taatatctag agttctctaa 2520ttttcatgtg agctactgaa aaaaatgaaa atgtcactca agcttaactt ttgttattcc 2580ttaaaagatt gttattgtaa ttttgttatt ccttaaaaac atttaaaagc agattttttc 2640aaaatcgata tgtgaaggac tacagaatca

cctcctcttg aagatattga aaaagaaaga 2700cattatgccc tttctccact atagccaaca ctcagtcaag cagaaaatac aaatcccccc 2760aaaactttga gacatagctt atataatttt attatttagt catagtaaaa gaataaatct 2820cctaagcata atatgtatac atattacaca tatgtaaaaa ttgttgtttt acatttacat 2880atacgtaaag aagtatgttt ttacactttt cttgataagt gttttttttt tgtttagaaa 2940tgtctgaaac tttagacaaa aacagtaaaa catttaatat tcatttg 298775735PRTHomo sapiens 75Met Arg Ile Phe Ile Gln Ala Lys Arg Val Lys Thr Lys His Leu Cys 1 5 10 15 Tyr Cys Leu Tyr Arg Pro Arg Lys Tyr Leu Tyr Val Thr Ser Ser Phe 20 25 30 Lys Gly Ala Phe Lys Asp Glu Val Lys Lys Ala Glu Glu Ala Val Lys 35 40 45 Ile Ala Glu Ser Ile Leu Lys Glu Ala Gln Ile Lys Val Asn Gln Cys 50 55 60 Asp Arg Thr Ser Leu Ser Ser Ala Lys Asp Val Leu Gln Arg Ala Leu 65 70 75 80 Glu Asp Val Glu Ala Lys Gln Lys Asn Leu Lys Glu Lys Gln Arg Glu 85 90 95 Leu Lys Thr Ala Arg Thr Leu Ser Leu Phe Tyr Gly Val Asn Val Glu 100 105 110 Asn Arg Ser Gln Ala Gly Met Phe Ile Tyr Ser Asn Asn Arg Leu Ile 115 120 125 Lys Met His Glu Lys Val Gly Ser Gln Leu Lys Leu Lys Ser Leu Leu 130 135 140 Gly Ala Gly Val Val Gly Ile Val Asn Ile Pro Leu Glu Val Met Glu 145 150 155 160 Pro Ser His Asn Lys Gln Glu Phe Leu Asn Val Gln Glu Tyr Asn His 165 170 175 Leu Leu Lys Val Met Gly Gln Tyr Leu Val Gln Tyr Cys Lys Asp Thr 180 185 190 Gly Ile Asn Asn Arg Asn Leu Thr Leu Phe Cys Asn Glu Phe Gly Tyr 195 200 205 Gln Asn Asp Ile Asp Val Glu Lys Pro Leu Asn Ser Phe Gln Tyr Gln 210 215 220 Arg Arg Gln Ala Met Gly Ile Pro Phe Ile Ile Gln Cys Asp Leu Cys 225 230 235 240 Leu Lys Trp Arg Val Leu Pro Ser Ser Thr Asn Tyr Gln Glu Lys Glu 245 250 255 Phe Phe Asp Ile Trp Ile Cys Ala Asn Asn Pro Asn Arg Leu Glu Asn 260 265 270 Ser Cys His Gln Val Glu Cys Leu Pro Ser Ile Pro Leu Gly Thr Met 275 280 285 Ser Thr Ile Ser Pro Ser Lys Asn Glu Lys Glu Lys Gln Leu Arg Glu 290 295 300 Ser Val Ile Lys Tyr Gln Asn Arg Leu Ala Glu Gln Gln Pro Gln Pro 305 310 315 320 Gln Phe Ile Pro Val Asp Glu Ile Thr Val Thr Ser Thr Cys Leu Thr 325 330 335 Ser Ala His Lys Glu Asn Thr Lys Thr Gln Lys Ile Arg Leu Leu Gly 340 345 350 Asp Asp Leu Lys His Glu Ser Leu Ser Ser Phe Glu Leu Ser Ala Ser 355 360 365 Arg Arg Gly Gln Lys Arg Asn Ile Glu Glu Thr Asp Ser Asp Val Glu 370 375 380 Tyr Ile Ser Glu Thr Lys Ile Met Lys Lys Ser Met Glu Glu Lys Met 385 390 395 400 Asn Ser Gln Gln Gln Arg Ile Pro Val Ala Leu Pro Glu Asn Val Lys 405 410 415 Leu Ala Glu Arg Ser Gln Arg Ser Gln Ile Ala Asn Ile Thr Thr Val 420 425 430 Trp Arg Ala Gln Pro Thr Glu Gly Cys Leu Lys Asn Ala Gln Ala Ala 435 440 445 Ser Trp Glu Met Lys Arg Lys Gln Ser Leu Asn Phe Val Glu Glu Cys 450 455 460 Lys Val Leu Thr Glu Asp Glu Asn Thr Ser Asp Ser Asp Ile Ile Leu 465 470 475 480 Val Ser Asp Lys Ser Asn Thr Asp Val Ser Leu Lys Gln Glu Lys Lys 485 490 495 Glu Ile Pro Leu Leu Asn Gln Glu Lys Gln Glu Leu Cys Asn Asp Val 500 505 510 Leu Ala Met Lys Arg Ser Ser Ser Leu Pro Ser Trp Lys Ser Leu Leu 515 520 525 Asn Val Pro Met Glu Asp Val Asn Leu Ser Ser Gly His Ile Ala Arg 530 535 540 Val Ser Val Ser Gly Ser Cys Lys Val Ala Ser Ser Pro Ala Ser Ser 545 550 555 560 Gln Ser Thr Pro Val Lys Glu Thr Val Arg Lys Leu Lys Ser Lys Leu 565 570 575 Arg Glu Ile Leu Leu Tyr Phe Phe Pro Glu His Gln Leu Pro Ser Glu 580 585 590 Leu Glu Glu Pro Ala Leu Ser Cys Glu Leu Glu Gln Cys Pro Glu Gln 595 600 605 Met Asn Lys Lys Leu Lys Met Cys Phe Asn Gln Ile Gln Asn Thr Tyr 610 615 620 Met Val Gln Tyr Glu Lys Lys Ile Lys Arg Lys Leu Gln Ser Ile Ile 625 630 635 640 Tyr Asp Ser Asn Thr Arg Gly Ile His Asn Glu Ile Ser Leu Gly Gln 645 650 655 Cys Glu Asn Lys Arg Lys Ile Ser Glu Asp Lys Leu Lys Asn Leu Arg 660 665 670 Ile Lys Leu Ala Leu Leu Leu Gln Lys Leu Gln Leu Gly Gly Pro Glu 675 680 685 Gly Asp Leu Glu Gln Thr Asp Thr Tyr Leu Glu Ala Leu Leu Lys Glu 690 695 700 Asp Asn Leu Leu Phe Gln Asn Asn Leu Asn Lys Val Thr Ile Asp Ala 705 710 715 720 Arg His Arg Leu Pro Leu Glu Lys Asn Glu Lys Thr Ser Glu Asn 725 730 735 7621DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 76ctgagtatca gctaccatca g 217721DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 77tctgtagtcc ttcacatatc g 217821DNAArtificial SeqeunceDescription of the artificial sequence Oligonucleotide 78ttttgtctat ggtgtaggac c 217921DNAArtificial SequenceDescription of the artificial sequence Oligonucleotide 79ggaatggcaa tgatgttaca g 218020PRTHomo sapiens 80Met Ser Thr Val Lys Glu Gln Leu Ile Glu Lys Leu Ile Glu Asp Asp 1 5 10 15 Glu Asn Ser Gln 20 8114PRTHomo sapiens 81Phe Thr Asp Ser Lys Leu Tyr Ile Pro Leu Glu Tyr Arg Ser 1 5 10 8213PRTHomo sapiens 82Phe Asp Ile Lys Leu Leu Arg Asn Ile Pro Arg Trp Thr 1 5 10 8315PRTHomo sapiens 83Gly Val Ala Gly Gln Asp Tyr Trp Ala Val Leu Ser Gly Lys Gly 1 5 10 15 8410PRTHomo sapiens 84Ser Arg Glu Val Thr Thr Asn Ala Gln Arg 1 5 10 85216DNAHomo sapiens 85tgctcttact ccaaaaagat ggacccaggg ccctgcgggc ctccccctgg ccatggccca 60ggtcacccac cccctggtcc acatcactga ggaagtagaa gaaaacagga cacaagatgg 120caagcctgag agaattgccc agctgacctg gaaggaggcc taaaccgcaa tattctcttc 180ctaataaaca gcctcctaga ggccacattc tattct 21686227DNAHomo sapiens 86tgctcttact ccaaaaagat ggacccaggt ccgaaggggc actgccactg tggggggcat 60ggccatcctc caggtcaccc accccctggt ccacatcact gaggaagtag aagaaaacag 120gacacaagat ggcaagcctg agagaattgc ccagctgacc tggaatgagg cctaaaccac 180aatcttctct tcctaataaa cagcctccta gaggccacat tctattc 22787261DNAHomo sapiens 87tgctcttact ccaaaaagat ggacccaggt ccgaaggggc actgccactg tggggggcat 60ggccatcctc caggtcactg cgggcctccc cctggccatg gcccaggtca cccaccccct 120ggtccacatc actgaggaag tagaagaaaa caggacacaa gatggcaagc ctgagagaat 180tgcccagctg acctggaatg aggcctaaac cacaatcttc tcttcctaat aaacagcctc 240ctagaggcca cattctattc t 26188327DNAHomo sapiens 88tgctcttact ccaaaaagat ggacccaggt ccgaaggggc actgccactg tggggggcat 60ggccatcctc caggtcactg cgggccaccc ccccaccatg gtccagggcc ctgcgggcca 120cccccccacc atggtccagg gccctgcggg cctccccctg gccatggccc aggtcaccca 180ccccctggtc cacatcactg aggaagtaga agaaaacagg acacaagatg gcaagcctga 240gagaattgcc cagctgacct ggaatgaggc ctaaaccaca atcttctctt cctaataaac 300agcctcctag aggccacatt ctattct 3278931PRTHomo sapiens 89Leu Leu Leu Gln Lys Asp Gly Pro Arg Ala Leu Arg Ala Ser Pro Trp 1 5 10 15 Pro Trp Pro Arg Ser Pro Thr Pro Trp Ser Thr Ser Leu Arg Lys 20 25 30 9023PRTHomo sapiens 90Met Asp Pro Gly Pro Cys Gly Pro Pro Pro Gly His Gly Pro Gly His 1 5 10 15 Pro Pro Pro Gly Pro His His 20 9136PRTHomo sapiens 91Met Ala Gln Val Thr His Pro Leu Val His Ile Thr Glu Glu Val Glu 1 5 10 15 Glu Asn Arg Thr Gln Asp Gly Lys Pro Glu Arg Ile Ala Gln Leu Thr 20 25 30 Trp Lys Glu Ala 35 9234PRTHomo sapiens 92Leu Leu Gln Lys Asp Gly Pro Arg Ser Glu Gly Ala Leu Pro Leu Trp 1 5 10 15 Gly Ala Trp Pro Ser Ser Arg Ser Pro Thr Pro Trp Ser Thr Ser Leu 20 25 30 Arg Lys 9327PRTHomo sapiens 93Met Asp Pro Gly Pro Lys Gly His Cys His Cys Gly Gly His Gly His 1 5 10 15 Pro Pro Gly His Pro Pro Pro Gly Pro His His 20 25 9438PRTHomo sapiens 94Met Ala Ile Leu Gln Val Thr His Pro Leu Val His Ile Thr Glu Glu 1 5 10 15 Val Glu Glu Asn Arg Thr Gln Asp Gly Lys Pro Glu Arg Ile Ala Gln 20 25 30 Leu Thr Trp Asn Glu Ala 35 9546PRTHomo sapiens 95Leu Leu Leu Gln Lys Asp Gly Pro Arg Ser Glu Gly Ala Leu Pro Leu 1 5 10 15 Trp Gly Ala Trp Pro Ser Ser Arg Ser Leu Arg Ala Ser Pro Trp Pro 20 25 30 Trp Pro Arg Ser Pro Thr Pro Trp Ser Thr Ser Leu Arg Lys 35 40 45 9638PRTHomo sapiens 96Met Asp Pro Gly Pro Lys Gly His Cys His Cys Gly Gly His Gly His 1 5 10 15 Pro Pro Gly His Cys Gly Pro Pro Pro Gly His Gly Pro Gly His Pro 20 25 30 Pro Pro Gly Pro His His 35 9749PRTHomo sapiens 97Met Ala Ile Leu Gln Val Thr Ala Gly Leu Pro Leu Ala Met Ala Gln 1 5 10 15 Val Thr His Pro Leu Val His Ile Thr Glu Glu Val Glu Glu Asn Arg 20 25 30 Thr Gln Asp Gly Lys Pro Glu Arg Ile Ala Gln Leu Thr Trp Asn Glu 35 40 45 Ala 9868PRTHomo sapiens 98Leu Leu Leu Gln Lys Asp Gly Pro Arg Ser Glu Gly Ala Leu Pro Leu 1 5 10 15 Trp Gly Ala Trp Pro Ser Ser Arg Ser Leu Arg Ala Thr Pro Pro Pro 20 25 30 Trp Ser Arg Ala Leu Arg Ala Thr Pro Pro Pro Trp Ser Arg Ala Leu 35 40 45 Arg Ala Ser Pro Trp Pro Trp Pro Arg Ser Pro Thr Pro Trp Ser Thr 50 55 60 Ser Leu Arg Lys 65 9960PRTHomo sapiens 99Met Asp Pro Gly Pro Lys Gly His Cys His Cys Gly Gly His Gly His 1 5 10 15 Pro Pro Gly His Cys Gly Pro Pro Pro His His Gly Pro Gly Pro Cys 20 25 30 Gly Pro Pro Pro His His Gly Pro Gly Pro Cys Gly Pro Pro Pro Gly 35 40 45 His Gly Pro Gly His Pro Pro Pro Gly Pro His His 50 55 60 10071PRTHomo sapiens 100Met Ala Ile Leu Gln Val Thr Ala Gly His Pro Pro Thr Met Val Gln 1 5 10 15 Gly Pro Ala Gly His Pro Pro Thr Met Val Gln Gly Pro Ala Gly Leu 20 25 30 Pro Leu Ala Met Ala Gln Val Thr His Pro Leu Val His Ile Thr Glu 35 40 45 Glu Val Glu Glu Asn Arg Thr Gln Asp Gly Lys Pro Glu Arg Ile Ala 50 55 60 Gln Leu Thr Trp Asn Glu Ala 65 70

* * * * *

File A Patent Application

  • Protect your idea -- Don't let someone else file first. Learn more.

  • 3 Easy Steps -- Complete Form, application Review, and File. See our process.

  • Attorney Review -- Have your application reviewed by a Patent Attorney. See what's included.