Easy To Use Patents Search & Patent Lawyer Directory

At Patents you can conduct a Patent Search, File a Patent Application, find a Patent Attorney, or search available technology through our Patent Exchange. Patents are available using simple keyword or date criteria. If you are looking to hire a patent attorney, you've come to the right place. Protect your idea and hire a patent lawyer.


Search All Patents:



  This Patent May Be For Sale or Lease. Contact Us

  Is This Your Patent? Claim This Patent Now.



Register or Login To Download This Patent As A PDF




United States Patent Application 20170245329
Kind Code A1
FRYSHMAN; BERNARD August 24, 2017

INDUCTION COOKING APPARATUS AND METHOD OF USE

Abstract

A method of forming a cooking apparatus includes providing a vessel having an inside surface, an outside surface, and a hollow area that is configured to receive food. The method also includes forming a first plurality of ferrous elements to be disposed on an outside of the vessel. The method also includes forming a second plurality of ferrous elements to be disposed in the hollow area of the vessel. The first plurality of ferrous elements and the second plurality of ferrous elements are configured to be heated by electromagnetic radiation from an electromagnetic radiation source, and the first plurality of ferrous elements and the second plurality of ferrous elements are configured to transfer heat to food located in the vessel. The method further includes providing a controller to control movement of at least the first plurality of ferrous elements.


Inventors: FRYSHMAN; BERNARD; (Brooklyn, NY)
Applicant:
Name City State Country Type

FRYSHMAN; BERNARD

Brooklyn

NY

US
Family ID: 1000002651752
Appl. No.: 15/457207
Filed: March 13, 2017


Related U.S. Patent Documents

Application NumberFiling DatePatent Number
14796071Jul 10, 20159596722
15457207
14078297Nov 12, 20139084299
14796071
13372654Feb 14, 20129131536
14078297
61725903Nov 13, 2012
61442369Feb 14, 2011

Current U.S. Class: 1/1
Current CPC Class: H05B 6/12 20130101; A47J 27/002 20130101; A47J 36/02 20130101; H05B 6/105 20130101
International Class: H05B 6/12 20060101 H05B006/12; A47J 36/02 20060101 A47J036/02; A47J 27/00 20060101 A47J027/00; H05B 6/10 20060101 H05B006/10

Claims



1. A method of forming a cooking apparatus comprising: providing a vessel having an inside surface, an outside surface, and a hollow area that is configured to receive food via an opening in the vessel; forming a first plurality of ferrous elements to be disposed on an outside of the vessel; forming a second plurality of ferrous elements to be disposed in the hollow area of the vessel; and forming a third plurality of ferrous elements to be disposed over the opening of the vessel, wherein the first plurality of ferrous elements, the second plurality of ferrous elements, and the third plurality of ferrous elements are configured to be heated by electromagnetic radiation from an electromagnetic radiation source, and wherein the first plurality of ferrous elements, the second plurality of ferrous elements, and the third plurality of ferrous elements are configured to transfer heat to the food located in the hollow area of the vessel.

2. The method of claim 1, further comprising a controller configured to independently control movement of the first plurality of ferrous elements, the second plurality of ferrous elements, and the third plurality of ferrous elements.

3. The method of claim 1, further comprising mounting the first plurality of ferrous elements on a support column.

4. The method of claim 3, wherein the support column is configured to rotate about a longitudinal axis.

5. The method of claim 1, further comprising mounting the second plurality of ferrous elements on a wall of the inside surface.

6. The method of claim 1, further comprising mounting the second plurality of ferrous elements on a support column.

7. The method of claim 1, further comprising mounting the third plurality of ferrous elements on a support arm disposed over the opening of the vessel.

8. The method of claim 1, wherein the electromagnetic radiation source comprises a first electromagnetic radiation source configured to provide electromagnetic radiation to the first plurality of ferrous elements, a second electromagnetic radiation source configured to provide electromagnetic radiation to the second plurality of ferrous elements, and a third electromagnetic radiation source configured to provide electromagnetic radiation to the third plurality of ferrous elements.

9. The method of claim 1, wherein the vessel is configured to rotate about a longitudinal axis.

10. The method of claim 1, wherein the vessel is made from a ferrous material.

11. The method of claim 1, wherein the vessel is made from a non-ferrous material.

12. The method of claim 1, further comprising forming at least one heat sensor in the hollow area, the at least one heat sensor in communication with a controller and configured to detect areas of the vessel that are cooler relative to other areas of the vessel, and wherein the controller is configured to control movement of at least the first plurality of ferrous elements to direct the heat to the areas of the vessel that are cooler.

13. A cooking system comprising: a cooking vessel having an inside surface, an outside surface, and a hollow area configured to receive food via an opening of the vessel; a first plurality of ferrous elements configured to be positioned outside the cooking vessel; a second plurality of ferrous elements configured to be positioned within the hollow area; a third plurality of ferrous elements configured to be positioned over the opening of the vessel; and at least one electromagnetic radiation source configured to heat the first plurality of ferrous elements, the second plurality of ferrous elements, and the third plurality of ferrous elements to transfer the heat to the food located in the hollow area of the cooking vessel.

14. The cooking system of claim 13, further comprising a motor configured to move the first plurality of ferrous elements relative to the cooking vessel.

15. The cooking system of claim 13, further comprising a heat sensor located within the hollow area, wherein the heat sensor is configured to detect areas of the cooking vessel that are cooler relative to other areas of the cooking vessel, and wherein the heat sensor is in communication with a controller that is configured to control movement of at least the first plurality of ferrous elements to direct the heat to the areas of the cooking vessel that are cooler.

16. The cooking system of claim 13, further comprising a controller configured to control the heat transferred to the food by the first plurality of ferrous elements, the second plurality of ferrous elements, and the third plurality of ferrous elements.

17. A method comprising: positioning a first plurality of ferrous elements relative to a cooking vessel; delivering electromagnetic radiation, by an electromagnetic radiation source, to heat the first plurality of ferrous elements and to transfer the heat from the first plurality of ferrous elements to food within the cooking vessel; detecting, by a heat sensor positioned within the cooking vessel, areas within the cooking vessel that are cooler relative to other areas within the cooking vessel; and causing, by a controller in communication with the heat sensor, movement of the first plurality of ferrous elements for directing targeted heat from the first plurality of ferrous elements to the food within the cooking vessel.

18. The method of claim 17, further comprising causing rotation, by the controller, of the first plurality of ferrous elements relative to the cooking vessel for directing the targeted heat to the food.

19. The method of claim 17, wherein the first plurality of ferrous elements are located outside the cooking vessel.

20. The method of claim 19, wherein a portion of the first plurality of ferrous elements are disposed over an opening of the cooking vessel, wherein the opening is configured to receive the food into the cooking vessel.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application is a Continuation of U.S. patent application. Ser. No. 14/796,071, filed Jul. 10, 2015, which is a Continuation of U.S. patent application. Ser. No. 14/078,297 filed on Nov. 12, 2013, which is a Continuation-In-Part of U.S. patent application. Ser. No. 13/372,654 filed on Feb. 14, 2012, which claims the benefit of U.S. Provisional Patent App. No. 61/442,369 filed on Feb. 14, 2011, each of which is incorporated herein by reference in its entirety. U.S. patent application. Ser. No. 14/078,297 also claims the benefit of U.S. Provisional Patent App. No. 61/725,903, filed on Nov. 13, 2012, the entire disclosure of which is incorporated herein by reference in its entirety.

FIELD

[0002] The present invention relates generally to the field of equipment for cooking and more particularly to an induction cooking apparatus and a method of induction cooking.

BACKGROUND

[0003] Induction cooking is similar to other forms of cooking in that it uses a heated cooking vessel such as a pot or a pan to transfer heat to the food contained in the vessel. Induction cooking differs in that the vessel itself is the source of the heat, receiving its energy through electromagnetic radiation which creates the heat in the walls of the vessel. The heat then reaches the food, from the vessel walls inward.

[0004] In order to function, the vessel must be made of a ferrous or similar material. Sometimes, an adaptor is used to enable a non-ferrous pot or pan to be used. The adaptor then becomes the source of the heat. Adaptors are sometimes called induction discs.

[0005] Despite the developments of the prior art there remains a need for an induction cooking apparatus which provides targeted application of heat.

OBJECTS AND SUMMARY

[0006] It is an object of the present invention to provide an induction cooking apparatus which provides targeted heating of food enabling elective cooking of different parts of the food.

[0007] Another object of the present invention is to provide a method for induction cooking which provides improved heating uniformity.

[0008] Another object of the present invention is to provide an induction cooking apparatus which incorporates pieces of metal of varying sizes and shapes which are distributed within the cooking vessel to vary the heating pattern.

[0009] Another object of the present invention is to provide an induction cooking apparatus in which inserts are inserted into food for the purpose of heating and cooking the food.

[0010] Yet another object of the present invention is to provide an induction cooking apparatus to incorporate a relatively small of number of component parts which can be manufactured economically in volume, resulting in a low unit cost.

[0011] These and other objects and advantages of the present invention will become evident hereinafter.

[0012] In accordance with the present invention, an induction cooking apparatus includes a cooking vessel, a support structure, and a plurality of ferrous elements which are placed throughout the interior of the cooking vessel and are typically mounted on the support structure so that the source of heat is dispersed and distributed enabling a previously unavailable level of heat precision and control in the preparation of food. Alternatively, ferrous elements are placed outside of the vessel. Yet, alternatively, ferrous elements are place inside of the vessel and outside thereof--both of which may be used to heat food held by the vessel.

[0013] Ferrous and similar pieces of metal of varying shapes, sizes, number, and magnetic/conducting properties are distributed throughout the vessel. Each becomes a source of heat so that the food is cooked according to the specifications of the preparer. No longer does the heat travel only from the enveloping heated vessel, (or from the flame which is directed at the food). The heat can travel from a number of separate sources, from inside the cooking vessel, therefore enabling a new level of uniformity--or differentiation--as the case (and desire) may be.

[0014] A method of forming a cooking apparatus includes providing a vessel having an inside surface, an outside surface, and a hollow area that is configured to receive food. The method also includes forming a first plurality of ferrous elements to be disposed on an outside of the vessel. The method also includes forming a second plurality of ferrous elements to be disposed in the hollow area of the vessel. The first plurality of ferrous elements and the second plurality of ferrous elements are configured to be heated by electromagnetic radiation from an electromagnetic radiation source, and the first plurality of ferrous elements and the second plurality of ferrous elements are configured to transfer heat to food located in the vessel. The method further includes providing a controller to control movement of at least the first plurality of ferrous elements.

BRIEF DESCRIPTION OF DRAWINGS

[0015] Additional features and advantages of the present invention will be made clear in the following specification taken with the drawings in which:

[0016] FIG. 1 is an overall perspective view of the induction cooking apparatus according to the present invention with the apparatus shown in use and with a portion of the apparatus shown broken away to reveal details of internal construction;

[0017] FIG. 2 is a perspective view of the support structure shown in FIG. 1 with the support structure shown removed from the cooking vessel;

[0018] FIG. 3 is an alternative embodiment of the invention in which ferrous elements are inserted directly into food;

[0019] FIG. 4 shows a pail mounted on the support structure and;

[0020] FIG. 5 sows a pair of ferrous elements joined together.

[0021] FIG. 6 shows a front view of an induction cooking apparatus having ferrous elements disposed externally to the cooking vessel according to an embodiment of the invention.

[0022] FIG. 7 shows a front view of induction cooking apparatus having external ferrous elements, both above and along the side wall of the cooking vessel according to an embodiment of the invention.

DETAILED DESCRIPTION

[0023] Embodiments of the present invention will now be described with reference to the above-identified Drawings. However, the Drawings and the description herein of the invention are not intended to limit the scope of the invention. It will be understood that various modifications of the present description of the invention are possible without departing from the spirit of the invention. Also, features described herein may be omitted, additional features may be included, and/or features described herein may be combined in a manner different from the specific combinations recited herein, all without departing from the spirit of the invention.

[0024] With reference to the drawings there is shown in FIGS. 1-7 an induction cooking apparatus 10 made in accordance with the present invention, with the apparatus 10 shown in use cooking food items 12, 14, 16, 18. The apparatus 10 includes a cooking vessel 20, a support structure 22 and a source of electro-magnetic radiation 24. The source of electro-magnetic radiation 24 is of conventional construction which is well known in the art and, accordingly, the source of electro-magnetic radiation 24 is represented schematically in FIG. 1 by a rectangular prism. The source of electro-magnetic radiation 24 is capable of producing radiation in a range of power levels and a range of frequencies. For example, a source electromagnetic radiation may consist of a coil of copper having an alternating electric current flowing therethrough in order to produce an oscillating magnetic field. The magnetic field induces an electric current in the ferrous elements and heat generated by resistance heats food that is in thermal communication with the ferrous elements. The source of electromagnetic radiation is interchangeably referred to as an "electromagnetic source," an "electromagnetic energy source," and an "electromagnetic radiation source" herein.

[0025] The cooking vessel 20 is a container of generally conventional design and may be made of a non-ferrous material or, alternatively, of a non-ferrous material with a ferrous bottom surface to facilitate two modes of cooking. Induction cooking is accomplished according to the present invention and also conventional cooking may be accomplished using a conventional stove or cook top. As shown in FIG. 1, the cooking vessel 20 has a generally cylindrical side wall 80 and a generally flat bottom 82. The side wall 80 is made of a non-ferrous material and the flat bottom 82 may be either a ferrous or non-ferrous material.

[0026] The source of electromagnetic radiation 24 may be spaced apart from the container 20 as is shown in FIG. 1 or alternatively it may be attached to the generally cylindrical side wall of the container. A plurality of sources 24 of electromagnetic radiation may be utilized.

[0027] The support structure 22 is a key element of the present invention and is preferably made of a non-ferrous material which is capable of withstanding typical cooking temperatures. Appropriate materials for the support structure 22 have been found to be glass, aluminum and certain woods.

[0028] As is best shown in FIGS. 1 and 2, the support structure 22 includes a base 26 and a central column 28 which projects upwardly from the base 26.

[0029] Along the central column 28 there is a plurality of branches 30 or hooks 40 on which ferrous elements 32, 34, 36, 38 or similar materials may be removably affixed according to the wishes of the person preparing the food. The food being cooked may be affixed to selected branches 30 by allowing the end of the branch 30 to pierce the solid food. Alternatively, ferrous elements 32, 34, 36, 38 are permanently attached to central column 28.

[0030] A ferrous or non-ferrous dish or pail 42 may be hung from a selected branch as shown in FIG. 4. Food of a loose or soft or liquid consistency may be placed in the pail 42 for the purpose of cooking.

[0031] During use, the ferrous elements 32, 34, 36, 38, which are hung from or attached to selected branches 30 of the support structure 22, are heated by induction in order to create the desired heating pattern. The ferrous elements 32, 34, 36, 38 may be of various shapes and number according to the cooking application. Included in these shapes are rectangular, circular, ellipsoidal, triangular and regular and irregular geometrical shapes. The size of the ferrous elements 32, 34, 36, 38 and the relative proximity of the ferrous elements 32, 34, 36, 38 to the food being cooked may be adjusted or varied by a user in order to create a desired heating pattern.

[0032] The ferrous element may also have various configurations including a household item such as an eating utensil 42 as is shown in FIG. 3.

[0033] During use, the source of electro-magnetic energy 24 creates heat within the ferrous elements 32, 34, 36, 38.

[0034] When a ferrous cooking vessel is used the electro-magnetic radiation source can also create heat in the cooking vessel 20.

[0035] The ability to vary the size, shape and proximity of the ferrous elements 32, 34, 36, 38 to the food being cooked results in a previously unavailable level of precision and control in the preparation of food.

[0036] In another embodiment shown in FIG. 3, solid foods for which structures and hanging ferrous elements are unsuitable, elements 32, 34, 42 are provided with sharp edges which can be stuck into the food at various places--or inserted into folds at specified locations. The heating (and cooking) will be precise, and once the process is over, the elements 32, 34, 42 are readily removed.

[0037] The ferrous elements can have different sizes, shapes compositions and magnetic properties. The ferrous element may be connected one to another either by mounting two or more ferrous elements 36, 44 on a single branch of the support structure as shown in FIG. 4 or alternatively providing a snap together or link together interface as shown in FIG. 5. Ferrous elements 46, 48 can be easily attached and detached as is shown in FIG. 5 ferrous element 48 includes a projecting tongue 50 while ferrous element 46 includes a receptacle 52 which accepts the tongue 50. Ferrous elements 46, 48 include apertures 54 for attachment to a branch 30.

[0038] The ability to vary the number, shape orientation and proximity to the food during the cooking process enables the user to achieve a previously unobtainable level of control and precision in the preparation of food.

[0039] The present invention also includes an induction cooking oven which is generally similar to the cooking vessel 20 and which is generally rectangular and box-like in configuration having a top, a bottom and four side walls with food disposed on ferrous or non-ferrous racks mounted within the oven. Ferrous elements 32, 34, 42 are inserted into the food as previously described. A plurality of sources of electromagnetic radiation 24 are disposed on the top wall and the four sidewalls.

[0040] The present invention provides a method for induction cooking which includes the following steps:

[0041] 1. Placing a plurality of ferrous elements in proximity to food;

[0042] 2. Subjecting the ferrous element and the food to electro-magnetic radiation, thereby enabling the electro-magnetic energy to heat the ferrous elements and allowing the heated ferrous element to transfer heat to the food.

[0043] In addition, the present invention provides another method for induction cooking which includes the following steps:

[0044] 1. Placing a plurality of ferrous elements in an area that is external to a cooking vessel;

[0045] 2. Subjecting the ferrous element and the food to electro-magnetic radiation, thereby enabling the electro-magnetic energy to heat the ferrous elements and allowing the heated ferrous element to transfer heat to the vessel and/or food.

[0046] In addition, the present invention provides another method for induction cooking which includes the following steps:

[0047] 1. Inserting at least one ferrous element into food;

[0048] 2. Subjecting the ferrous element and the food to electro-magnetic radiation thereby enabling the electro-magnetic energy to heat the at least one ferrous element by induction and allowing the heated ferrous element to transfer heat to the food.

[0049] The embodiments set forth above are directed to a cooking vessel having a plurality of ferrous members mounted on a support structure disposed in the hollow or cavity of the vessel. The various ferrous members are heated by an electromagnetic energy source and the resultant output heat is used to heat the contents of the vessel. However, it will be understood by those of ordinary skill in the art that ferrous elements may be placed external to the cooking vessel and which serve the purpose of heating food within the vessel. External elements may be positioned above, below and/or on the side of the cooking vessel. Such external ferrous elements are positioned to be in thermal communication with food located in the vessel. External ferrous elements may be provided in addition to internal ferrous elements.

[0050] For example, in one embodiment of the invention, electromagnetic energy sources may be positioned in any of various locations outside of a cooking vessel. The electromagnetic energy is directed to a ferrous vessel or to ferrous members external to the vessel.

[0051] FIG. 6 shows a cooking vessel 74 having one or more support columns 62 positioned near the outside walls thereof. Support columns 62 have one or more ferrous elements 64 mounted thereon. The support members 62 are shown oriented with their longitudinal axes substantially parallel to the walls of the vessel, but other orientations are possible in other embodiments of the invention. Moreover, although two support members 62 are shown, the invention is not limited to two external support members 62 and any number of support members 62 are within the teaching of the invention.

[0052] In one embodiment of the invention support member 62 is rotatable about its longitudinal axis (in the direction indicated by arrow 66), for example by way of an associated motor.

[0053] Alternatively or additionally support member 62 is movable in an upward and downward direction with respect to the floor of the vessel (as indicated by arrow 68), for example by way of a linear motion track or a bidirectional motor.

[0054] Still in another embodiment of the invention, the vessel itself is rotatable (e.g. by way of a motor driven roundtable) with respect to one or more support columns (as indicated by arrow 70).

[0055] Electromagnetic radiation emanating from electromagnetic energy sources 72a and/or 72b is used to heat either a cooking vessel, ferrous elements in or near the vessel or both. In the example shown in FIG. 6, electromagnetic energy source 72a or 72b directs radiation at the ferrous elements mounted on support member 62 and it thereby causes heat to be generated. The generated heat is used to warm food located in the vessel which is in thermal communication with the ferrous elements 64. Food is introduced into the vessel through opening 60. The vessel may have a corresponding cover (not shown) that is used to cover the vessel during cooking.

[0056] It will be understood that more than one electromagnetic energy source may be provided in different embodiments of the invention. For example, FIG. 6 shows a first electromagnetic source 72a positioned to the side of cooking vessel 74 and a second electromagnetic source 72b is positioned below cooking vessel 74. It will be understood that the number of electromagnetic sources or the placements thereof shown in FIG. 6 are exemplary and more or less than two sources may be provided and electromagnetic sources may be positioned in various locations in different embodiments of the invention.

[0057] It will be understood that while the vessel of the invention may be of a variety of materials, it can also be ferrous in nature so that it too can be heated by induction. Ferrous elements can be mounted on the walls of the vessel itself or they may be placed in or near the vessel (e.g. an internal support column 78 with ferrous members 80 branching off thereof--as shown in FIG. 6).

[0058] In one embodiment of the invention, movable support members 62 which have ferrous elements 64 mounted thereon may be coupled to a heat sensor inside the vessel. The heat sensor will detect areas of the vessel that are cooler with respect to other areas and it will direct ferrous elements to such cooler areas to achieve more targeted heating. Alternatively, the ferrous elements may be moved randomly or at programmed intervals to insure uniform heating.

[0059] It will be understood by those of ordinary skill in the art that a cooking vessel 74 may have ferrous elements 80 positioned in the interior thereof, or ferrous elements 64 positioned in the exterior thereof--or a combination of both. For example, FIG. 6 shows a vessel 74 having ferrous elements 80 attached to a column 78 in the hollow of the vessel. Additional, ferrous elements 64 are mounted on columns 62 outside of the vessel. In one embodiment of the invention, ferrous elements 64 and ferrous elements 80 are independently controllable. For example, electromagnetic radiation source 72a may be used to heat ferrous elements 64 on the outside of the vessel and electromagnetic radiation source 72b may be used to heat ferrous elements 80 in the inside of the vessel. In one mode of cooking only electromagnetic radiation source 72b is activated to heat ferrous elements 80, however, in a second mode of heating both electromagnetic radiation sources 72b and 72a are utilized to respectively heat ferrous elements 80 and 64.

[0060] Although in the embodiment shown in FIG. 6, there are ferrous elements both inside of and outside of the cooking vessel--it will be understood that ferrous elements may be mounted solely inside or solely outside of a cooking vessel in different embodiments of the invention. In addition, it will be understood that in some embodiment of the invention, ferrous elements may be permanently attached to a supporting structure, whereas, in other embodiments of the invention, ferrous elements may be selectively attached to support structures or to the vessel in a non-permanent manner.

[0061] FIG. 7 shows an alternate embodiment of the invention whereby a support member 82 atop of the vessel is provided with an arm 83 which has ferrous elements 84 and/or an electromagnetic source 86 affixed thereto. Arm 83 is positioned above of the opening 60 of the vessel. Ferrous elements 84 receive electromagnetic radiation from one or more external sources, such as electromagnetic source 72c and thereby radiate heat downward into the vessel. Electromagnetic source 86 radiates and thereby heats ferrous elements either in the vessel or outside of the vessel as described above.

[0062] It will be understood by those of ordinary skill in the art, that ferrous elements may be positioned in any of various areas around the walls and/or top of cooking vessel and the invention is not limited to any particular placement or arrangement of ferrous elements outside (or within) a cooking vessel.

* * * * *

File A Patent Application

  • Protect your idea -- Don't let someone else file first. Learn more.

  • 3 Easy Steps -- Complete Form, application Review, and File. See our process.

  • Attorney Review -- Have your application reviewed by a Patent Attorney. See what's included.