Easy To Use Patents Search & Patent Lawyer Directory

At Patents you can conduct a Patent Search, File a Patent Application, find a Patent Attorney, or search available technology through our Patent Exchange. Patents are available using simple keyword or date criteria. If you are looking to hire a patent attorney, you've come to the right place. Protect your idea and hire a patent lawyer.


Search All Patents:



  This Patent May Be For Sale or Lease. Contact Us

  Is This Your Patent? Claim This Patent Now.



Register or Login To Download This Patent As A PDF




United States Patent Application 20180105847
Kind Code A1
Koepke; Michael ;   et al. April 19, 2018

GENETICALLY ENGINEERED BACTERIUM FOR THE PRODUCTION OF 3-HYDROXYBUTYRATE

Abstract

The invention relates to a genetically engineered bacterium having an enzyme that converts acetyl-CoA to acetoacetyl-CoA, an enzyme that converts acetoacetyl-CoA to 3-hydroxybutyryl-CoA, and an enzyme that converts 3-hydroxybutyryl-CoA to 3-hydroxybutyrate. The bacterium may also have enzymes to produce other downstream products, such as 3-hydroxybutyryaldehyde, and 1,3-butanediol. Typically, the bacterium is capable of producing these products from a gaseous substrate, such as syngas or an industrial waste gas.


Inventors: Koepke; Michael; (Skokie, IL) ; Jensen; Rasmus Overgaard; (Skokie, IL) ; Behrendorff; James Bruce Yarnton Haycock; (Copenhagen, DK) ; Hill; Ryan Edward; (Stockholm, SE) ; Juminaga; Darmawi; (Skokie, IL) ; Mueller; Alexander Paul; (Skokie, IL)
Applicant:
Name City State Country Type

LanzaTech New Zealand Limited

Skokie

IL

US
Family ID: 1000002806477
Appl. No.: 15/658668
Filed: July 25, 2017


Related U.S. Patent Documents

Application NumberFiling DatePatent Number
15293191Oct 13, 20169738875
15658668

Current U.S. Class: 1/1
Current CPC Class: C12P 7/42 20130101; C12P 7/18 20130101; C12N 9/0008 20130101; C12N 9/0006 20130101; C12Y 101/01002 20130101; C12Y 203/01008 20130101; C12N 9/1217 20130101; C12N 9/16 20130101; C12Y 203/01009 20130101; C12Y 102/07005 20130101; C12Y 101/01001 20130101; C12Y 207/02001 20130101; C12Y 301/0202 20130101; C12P 7/24 20130101; C12N 9/1029 20130101
International Class: C12P 7/42 20060101 C12P007/42; C12N 9/10 20060101 C12N009/10; C12N 9/02 20060101 C12N009/02; C12N 9/04 20060101 C12N009/04; C12N 9/12 20060101 C12N009/12; C12N 9/16 20060101 C12N009/16; C12P 7/24 20060101 C12P007/24; C12P 7/18 20060101 C12P007/18

Claims



1. A genetically engineered C1-fixing bacterium comprising: (a) an enzyme that converts acetyl-CoA to acetoacetyl-CoA, (b) an enzyme that converts acetoacetyl-CoA to 3-hydroxybutyryl-CoA, and (c) an enzyme that converts 3-hydroxybutyryl-CoA to 3-hydroxybutyrate, wherein at least one of the enzymes is exogenous to the bacterium.

2. The bacterium of claim 1, wherein the enzyme that converts acetyl-CoA to acetoacetyl-CoA is thiolase (EC 2.3.1.9).

3. The bacterium of claim 1, wherein the enzyme that converts acetoacetyl-CoA to 3-hydroxybutyryl-CoA is 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157) or acetoacetyl-CoA reductase (EC 4.2.1.36).

4. The bacterium of claim 1, wherein the enzyme that converts 3-hydroxybutyryl-CoA to 3-hydroxybutyrate is thioesterase (EC 3.1.2.20), phosphate butyryltransferase (EC 2.3.1.19) and butyrate kinase (EC 2.7.2.7), or CoA-transferase (EC 2.8.3.9).

5. The bacterium of claim 1, wherein the enzyme that converts 3-hydroxybutyryl-CoA to 3-hydroxybutyrate is stereospecific.

6. The bacterium of claim 1, wherein the 3-hydroxybutyrate is (R)-3-hydroxybutyrate, (S)-3-hydroxybutyrate, or a combination thereof.

7. The bacterium of claim 1, wherein the bacterium further comprises an isomerase that interconverts (R)-3-hydroxybutyrate and (S)-3-hydroxybutyrate.

8. The bacterium of claim 1, wherein the bacterium further comprises an enzyme that converts 3 -hydroxybutyrate to 3-hydroxybutyryaldehyde.

9. The bacterium of claim 8, wherein the enzyme that converts 3-hydroxybutyrate to 3-hydroxybutyryaldehyde is aldehyde:ferredoxin oxidoreductase (EC 1.2.7.5).

10. The bacterium of claim 8, wherein the bacterium further comprises an enzyme that converts 3-hydroxybutyryaldehyde to 1,3-butanediol.

11. The bacterium of claim 10, wherein the enzyme that converts 3-hydroxybutyryaldehyde to 1,3-butanediol is alcohol dehydrogenase (EC 1.1.1.1. or 1.1.1.2.).

12. The bacterium of claim 1, wherein the bacterium is derived from a parental bacterium selected from the group consisting of Acetobacterium woodii, Alkalibaculum bacchii, Blautia product, Butyribacterium methylotrophicum, Clostridium aceticum, Clostridium autoethanogenum, Clostridium carboxidivorans, Clostridium coskatii, Clostridium drakei, Clostridium formicoaceticum, Clostridium ljungdahlii, Clostridium magnum, Clostridium ragsdalei, Clostridium scatologenes, Eubacterium limosum, Moorella thermautotrophica, Moorella thermoacetica, Oxobacter pfennigii, Sporomusa ovata, Sporomusa silvacetica, Sporomusa sphaeroides, and Thermoanaerobacter kiuvi.

13. The bacterium of claim 1, wherein the bacterium further comprises exogenous or endogenous aldehyde:ferredoxin oxidoreductase (AOR).

14. The bacterium of claim 1, wherein the bacterium further comprises a disruptive mutation in a phosphotransacetylase (Pta) and an acetate kinase (Ack).

15. The bacterium of claim 1, wherein the bacterium further comprises a disruptive mutation in a thioesterase.

16. A method of producing 3-hydroxybutyrate comprising culturing the bacterium of claim 1 in the presence of a substrate, whereby the bacterium produces 3-hydroxybutyrate.

17. The method of claim 16, wherein the substrate is a gaseous substrate comprising one or more of CO, CO.sub.2, and H.sub.2.

18. The method of claim 16, wherein the substrate comprises syngas or industrial waste gas.

19. A method of producing 3-hydroxybutyryaldehyde comprising culturing the bacterium of claim 8 in the presence of a substrate, whereby the bacterium produces 3-hydroxybutyryaldehyde.

20. A method of producing 1,3-butanediol comprising culturing the bacterium of claim 10 in the presence of a substrate, whereby the bacterium produces 1,3-butanediol.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent application Ser. No. 15/293,191 filed Oct. 13, 2016, which claims the benefit of U.S. Provisional Patent Application No. 62/240,850 filed Oct. 13, 2015, the entireties of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] With recent advances in fermentation and metabolic engineering, fermentation routes to various products have been identified and developed (Clomburg, Appl Microbiol Biotechnol, 86: 419-434, 2010; Peralta-Yahya, Biotechnol J, 5: 147-162, 2010; Cho, Biotechnol Adv, pii: S0734-9750(14)00181-5, 2014. However, all of these fermentation routes are energy (ATP)-consuming or, at best, energy (ATP)-neutral, which restricts product yield in energy-limited systems and uncouples product production from microorganism growth. The present invention provides energy (ATP)-generating pathways that overcome these limitations by providing novel fermentation routes and pathways to a variety of products, including acids, alkenes, aldehydes, alcohols, and diols. These pathways are directly coupled to microorganism growth and offer high product yields.

[0003] In particular, the invention relates to fermentation pathways involving Ptb-Buk. Phosphate butyryltransferase (Ptb) (EC 2.3.1.19) natively catalyzes the reaction of butanoyl-CoA and phosphate to form CoA and butanoyl phosphate. Butyrate kinase (Buk) (EC 2.7.2.7) natively catalyzes the reaction of butanoyl phosphate and ADP to form butyrate (butanoate) and ATP. Accordingly, these enzymes together (Ptb-Buk) natively catalyze the conversion of butanoyl-CoA to butyrate and generate one ATP via substrate level phosphorylation (SLP).

[0004] The inventors have discovered that Ptb is promiscuous and is capable of accepting a variety of acyl-CoAs and enoyl-CoAs as substrates, such that Ptb-Buk may be used to convert a number of acyl-CoAs and enoyl-CoAs to their corresponding acids or alkenates, respectively, while simultaneously generating ATP via substrate level phosphorylation.

[0005] Furthermore, in combination with an aldehyde ferredoxin oxidoreductase (AOR) and an alcohol dehydrogenase, acids formed via the Ptb-Buk system can be further converted to their respective aldehydes, alcohols, or diols. AOR (EC 1.2.7.5) catalyzes the reaction of an acid and reduced ferredoxin (which can, for example, be generated from oxidation of CO or hydrogen) to form an aldehyde and oxidized ferredoxin. Alcohol dehydrogenase (EC 1.1.1.1 and EC 1.1.1.2) can convert an aldehyde and NAD(P)H to an alcohol and NAD(P).

[0006] Introduction of Ptb-Buk and/or AOR into a heterologous species, therefore, provides a novel, alternate route to the formation of native and non-native products, such as as acids, alkenes, ketones, aldehydes, alcohols, and diols at high yields, thus overcoming limitations of the current state of the art.

SUMMARY OF THE INVENTION

[0007] The invention provides a genetically engineered bacterium comprising exogenous phosphate butyryltransferase (Ptb) and exogenous butyrate kinase (Buk) (Ptb-Buk). Generally, the Ptb-Buk acts on a non-native substrate, e.g., a substrate other than butanoyl-CoA and/or butanoyl phosphate, and produces a non-native product, e.g., a product other than butanoyl phosphate or butyrate. In certain embodiments, the Ptb-Buk converts acetoacetyl-CoA to acetoacetate, 3-hydroxyisovaleryl-CoA to 3-hydroxyisovalerate, 3-hydroxybutyryl-CoA to 3-hydroxybutyrate, or 2-hydroxyisobutyryl-CoA to 2-hydroxyisobutyrate.

[0008] The bacterium may produce one or more of an acid, an alkene, a ketone, an aldehyde, an alcohol, or a diol. More specifically, the bacterium may produce one or more of acetone or a precursor thereof, isopropanol or a precursor thereof, isobutylene or a precursor thereof, 3-hydroxybutyrate or a precursor thereof, 1,3-butanediol or a precursor thereof, 2-hydroxyisobutyrate or a precursor thereof, adipic acid or a precursor thereof, 1,3-hexanediol or a precursor thereof, 3-methyl-2-butanol or a precursor thereof, 2-buten-1-ol or a precursor thereof, isovalerate or a precursor thereof, or isoamyl alcohol or a precursor thereof. The bacterium does not typically produce butanol.

[0009] The bacterium may further comprise a disruptive mutation in a phosphotransacetylase (Pta) and an acetate kinase (Ack). The bacterium may further comprise a disruptive mutation in a thioesterase. In another embodiment, the invention provides a genetically engineered bacterium comprising exogenous Ptb-Buk and exogenous or endogenous aldehyde:ferredoxin oxidoreductase.

[0010] The invention further provides a method of producing a product comprising culturing the bacterium of any of the aforementioned embodiments in the presence of a substrate. The product may be, for example, acetone or a precursor thereof, isopropanol or a precursor thereof, isobutylene or a precursor thereof, 3-hydroxybutyrate or a precursor thereof, 1,3-butanediol or a precursor thereof, 2-hydroxyisobutyrate or a precursor thereof, adipic acid or a precursor thereof, 1,3-hexanediol or a precursor thereof, 3-methyl-2-butanol or a precursor thereof, 2-buten-1-ol or a precursor thereof, isovalerate or a precursor thereof, or isoamyl alcohol or a precursor thereof. Typically, the substrate is a gaseous substrate comprising, for example, one or more of CO, CO.sub.2, and H.sub.2. In one embodiment, the gaseous substrate is syngas. In another embodiment, the gaseous substrate is an industrial waste gas.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a diagram of metabolic pathways for the production of various products, including acetone, isopropanol, isobutylene, 3-hydroxybutyrate, 1,3-butanediol, and 2-hydroxyisobutyrate from acetyl-CoA. Acetyl-CoA may be generated from any suitable substrate, such as a carbohydrate (e.g., sugar) substrate or a gaseous substrate. In the present invention, acetyl-CoA is often generated from a gaseous substrate. Bold arrows indicate steps that may be catalyzed by Ptb-Buk.

[0012] FIG. 2 is a diagram showing the reactions natively catalyzed by Ptb-Buk, namely the conversion of butanoyl-CoA to butyrate and the generation of one ATP.

[0013] FIG. 3 is a diagram comparing the activities of CoA-transferase, thioesterase, and Ptb-Buk.

[0014] FIG. 4 is a graph showing average acetone production in E. coli BL21 (D3) modified with plasmids comprising exogenous genes. This data demonstrates the ability of Ptb-Buk to convert acetoacetyl-CoA to acetoacetate in E. coli in vivo.

[0015] FIG. 5 is a graph showing the effect of induction of E. coli BL21 (DE3) carrying both the pACYC-ptb-buk and pCOLA-thlA-adc plasmids (expressing thiolase, Ptb-Buk, and acetoacetate decarboxylase).

[0016] FIG. 6 is a diagram of a pathway designed to use Ptb-Buk for acetone production, while recycling the reducing equivalents produced in the production of (R)-3-hydroxybutyryl-CoA and the ATP generated by Ptb-Buk.

[0017] FIG. 7 is a diagram showing the role of aldehyde:ferredoxin oxidoreductase (AOR), ferredoxin, and Adh in the production of 1,3-butanediol in C. autoethanogenum. More generally, AOR may be used to catalyze the conversion of an acid to an aldehyde and Adh may be used to catalyze the conversion of the aldehyde to an alcohol/diol.

[0018] FIG. 8 is a diagram showing the stereospecificity of Ptb-Buk for the production of (R)-3-hydroxybutyrate and 2-hydroxyisobutyrate. The term "native" in FIG. 8 refers to native thioesterase.

[0019] FIG. 9 is a diagram showing the production of isobutene via Ptb-Buk conversion of 3-hydroxyisovaleryl-CoA and 3-hydroxyisovalerate using alternative pathway 1.

[0020] FIG. 10 is a diagram showing the production of isobutene via Ptb-Buk conversion of 3-hydroxyisovaleryl-CoA and 3-hydroxyisovalerate using alternative pathway 2.

[0021] FIG. 11 is a diagram showing the production of 1,3-butanediol via 3-butyraldehyde dehydrogenase (Bld).

[0022] FIG. 12 is a graph showing isopropanol production in C. autoethanogenum using the Ptb-Buk system over a control. .smallcircle. pMTL85147-thlA-adc, .circle-solid. pMTL85147-thlA-ptb-buk-adc.

[0023] FIGS. 13A-F are graphs showing production of 3-hydroxybutyrate, acetate, ethanol, and acetone with modular plasmids in E. coli with different concentrations of inducer IPTG (0, 50, 100 .mu.M). FIG. 13A: pACYC-ptb-buk, pCOLA-thlA-adc, pCDF-phaB. FIG. 13B: pACYC-ptb-buk, pCOLA-thlA-adc, pCDF-phaB-bdh1. FIG. 13C: pCOLA-thlA-adc, pCDF-phaB-bdh1. FIG. 13D: pCOLA-thlA-adc. FIG. 13E: pCDF-phaB-bdh1. FIG. 13F: pCDF-phaB.

[0024] FIG. 14 is a plasmid map of plasmid pMTL8225-budA::thlA-phaB.

[0025] FIG. 15 is a gel image of PCR verification of replacement of acetolactate synthase (budA) genes with thiolase (thlA) and 3-hydroxybutyryl-CoA dehydrogenase (phaB) genes in C. autoethanogenum for 4 clones (1, 4, 7, 9) compared to wild-type (W). All clones are positive as seen by a larger PCR fragment size compared to wild-type.

[0026] FIG. 16 is a graph showing fermentation profile of a batch fermentation C. autoethanogenum budA::thlAphaB strain and demonstrating 3-hydroxybutyrate and 1,3-butanediol formation from gas.

[0027] FIG. 17A is a graph showing production of 1,3-BDO via thiolase, 3-hydroxybutyryl-CoA dehydrogenase (Bld), and butyraldehyde dehydrogenase. FIG. 17B is a graph showing the impact of bld expression on growth.

[0028] FIG. 18A is a graph showing the formation of 3-hydroxybutyrate and 1,3-butanediol from gaseous substrate in C. autoethanogenum pMTL8315-Pfdx-hbd1-thlA. FIG. 18B is a graph showing the reduction of acetate to ethanol in the same culture.

[0029] FIG. 19 is a graph showing the fermentation profile for strain C. autoethanogenum pMTL8315-Pfdx-hbd1-thlA demonstrating formation of 3-hydroxybutyrate and 1,3-butanediol from gaseous substrate in continuous culture (where indicated, media was replenished continuously with given dilution rate D).

[0030] FIG. 20A and FIG. 20B are graphs showing increased CoA hydrolysis activity on a range of acyl-CoAs (acetoacetyl-CoA, 3-hydroxybutyryl-CoA and 2-hydroxyisobutyryl-CoA) in C. autoethanogenum expressing the Ptb-Buk system from plasmid pMTL82256-ptb-buk compared to wild-type (WT).

[0031] FIG. 21A and FIG. 21B are graphs showing reduced acyl-CoA hydrolysis activity of C. autoethanogenum strains with inactivated thioesterases (CT2640=thioesterase 1, CT 1524=thioesterase 2, CT1780=thioesterase 3) compared to activity found in C. autoethanogenum LZ1560 or LZ1561.

[0032] FIG. 22 is a graph showing increased specific isopropanol production in a C. autoethanogenum strain with disrupted thioesterase 3 CAETHG_1780 compared to wild-type C. autoethanogenum.

[0033] FIGS. 23A-D are graphs showing growth (FIG. 23A) and isopropanol (FIG. 23B), acetate (FIG. 23C), and ethanol (FIG. 23D) production profiles of C. autoethanogenum wild-type and strain with disrupted thioesterase 3 (CAETHG_1780) compared to wild-type C. autoethanogenum.

[0034] FIG. 24 is a plasmid map of pMTL8225-pta-ack::ptb-buk.

[0035] FIG. 25 is a gel image indicating the replacement of pta and ack genes replaced with ptb and buk genes and ermB cassette.

[0036] FIG. 26 is a graph showing increased conversion 3-hydroxybutyrate to 1,3-BDO by overexpression of the aldehyde:ferredoxin oxidoreductase gene aor1.

[0037] FIG. 27 is a graph showing the activity of thioesterase TesB, Pta-Ack, and Ptb-Buk system on CoA hydrolysis of acetoacetyl-CoA, 3-hydroxybutyryl-CoA and 2-hydroxyisobutyryl-CoA compared to control (BL21 strain). Ptb-Buk shows highest activity, while Pta-Ack shows no activity.

[0038] FIGS. 28A and 28B are graphs showing production of 3-hydroxybutyrate via Ptb-Buk in combination with an (S)-specific (Hbd) (FIG. 28A) or (R)-specific 3-hydroxybutyrate (PhaB) (FIG. 28B) dehydrogenase.

[0039] FIGS. 29A-D are graphs showing LC-MS/MS detection of 2-hydroxyisobutyric acid (2-HIB) and 2-hydroxybutyrate (2-HB). FIG. 29A: 1 mM 2-HIB standard. FIG. 29B: 1 mM 2-HB standard. FIG. 29C: 0.5 mM 2-HB and 2-HIB standard. FIG. 29D: duplicate of C. autoethanogenum sample showing 2-HIB and 2-HB production from gas.

[0040] FIG. 30 is a set of graphs showing GC-MS confirmation of 2-hydroxyisobutyric acid (8.91 min) production. First panel: C. autoethanogenum+pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-tesB. Second panel: C. autoethanogenum+pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk (spectrum). Third panel: E. coli+pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-tesB. Fourth panel: E. coli+pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk.

[0041] FIG. 31 is a set of graphs of real time PCR showing expression of genes of the 2-HIBA pathway (thlA, hba, meaBhcmA, hcmB from pta-ack promoter and respectively Wood-Ljungdahl operon promoter) in E. coli, C. autoethanogenum LZ1561 at 30.degree. C., and C. autoethanogenum LZ1561 at 37.degree. C.

[0042] FIG. 32 is a diagram showing the production of various products in a microorganism comprising Ptb-Buk, AOR, and Adh.

[0043] FIG. 33 is a diagram showing the coupling firefly luciferase (Luc) to the Ptb-Buk system to characterize Ptb-Buk variants.

[0044] FIG. 34 is a diagram of metabolic pathways for the production of various products, including adipic acid. Bold arrows indicate steps that may be catalyzed by Ptb-Buk.

[0045] FIG. 35 is a diagram of metabolic pathways for the production of various products, including 1,3-hexanediol, 2-methyl-2-butanol, and 2-buten-1-ol. Bold arrows indicate steps that may be catalyzed by Ptb-Buk.

[0046] FIG. 36 is a diagram of metabolic pathways for the production of various products, including isovalerate and isoamyl alcohol. Bold arrows indicate steps that may be catalyzed by Ptb-Buk.

[0047] FIG. 37 is a graph of 3-HB production in C. autoethanogenum containing plasmid pMTL82256-thlA-ctfAB at various points of growth.

[0048] FIG. 38A is a graph showing the growth and ethanol and 2,3-butanediol production profile of strain C. autoethanogenum pta-ack::ptb-buk+pMTL85147-thlA-ptb-buk-adc. FIG. 38B is a graph showing the isopropanol and 3-HB production profile of strain C. autoethanogenum pta-ack::ptb-buk+pMTL85147-thlA-ptb-buk-adc.

[0049] FIG. 39 is a diagram of a pathway scheme for producing a range of C.sub.4, C.sub.6, C.sub.8, C.sub.10, C.sub.12, C14 alcohols, ketones, enols or diols via combining known chain elongation pathway (Hbd, Crt, Bcd-EtfAB, Thl) with Ptb-Buk+AOR/Adc-Adh.

[0050] FIG. 40 is a graph showing production of 3-HB and 1,3-BDO by C. autoethanogenum transformed with plasmid pMTL83159-phaB-thlA at various points of growth.

[0051] FIG. 41 is a graph showing production of 3-HB and 1,3-BDO by C. autoethanogenum comprising budA knockout and pMTL-HBD-ThlA at various points of growth.

[0052] FIG. 42A is a graph showing production of 3-HB in a C. autoethanogenum pMTL83159-phaB-thlA+pMTL82256 fermentation. FIG. 42B is a graph showing production of 3-HB in a C. autoethanogenum pMTL83159-phaB-thlA+pMTL82256-buk-ptb fermentation.

[0053] FIG. 43 is a graph showing the production of 3-HB in a C. autoethanogenum strain with thioesterase knockout (.DELTA.CAETHG_1524) expressing plasmid pMTL83156-phaB-thlA with and without Ptb-Buk expression plasmid pMTL82256-buk-ptb.

[0054] FIG. 44 is a graph showing showing ethanol and 1,3-BDO production in a C. autoethanogenum strain expressing plasmid pMTL82256-hbd-thlA (2 pf) with and without AOR overexpression plasmid pMTL83159-aor1 (+aor1).

DETAILED DESCRIPTION OF THE INVENTION

Metabolic Pathways of FIGS. 1 and 34-36

[0055] FIGS. 1 and 34-36 are diagrams of metabolic pathways for the production of various acid, alkene, ketone, aldehyde, alcohol, and diol products, including acetone, isopropanol, isobutylene, 3-hydroxybutyrate (R- and S-isomers), 1,3-butanediol, 2-hydroxyisobutyrate, adipic acid, 1,3-hexanediol, 2-methyl-2-butanol, 2-buten-1-ol, isovalerate, and isoamyl alcohol from a substrate. Bold arrows indicate steps that may be catalyzed by Ptb-Buk. Exemplary enzymes are provided for each of the steps and enzymatic pathways detailed in FIGS. 1 and 34-36. However, additional suitable enzymes may be known to a person of ordinary skill in the art.

[0056] Step 1 shows the conversion of acetyl-CoA to acetoacetyl-CoA. This step may be catalyzed by thiolase (i.e., acetyl-CoA acetyltransferase) (EC 2.3.1.9). The thiolase may be, for example, ThlA from Clostridium acetobutylicum (WP_010966157.1) (SEQ ID NO: 1), PhaA from Cupriavidus necator (WP_013956452.1) (SEQ ID NO: 2), BktB from Cupriavidus necator (WP_011615089.1) (SEQ ID NO: 3), or AtoB from Escherichia coli (NP_416728.1) (SEQ ID NO: 4). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli has native activity for this step.

[0057] Step 2 shows the conversion of acetoacetyl-CoA to acetoacetate. This step may be catalyzed by CoA-transferase (i.e., acetyl-CoA:acetoacetyl-CoA transferase) (EC 2.8.3.9). The CoA-transferase may be, for example, CtfAB, a heterodimer comprising subunits CtfA and CtfB, from Clostridium beijerinckii (CtfA, WP_012059996.1) (SEQ ID NO: 5) (CtfB, WP_012059997.1) (SEQ ID NO: 6). This step may also be catalyzed by thioesterase (EC 3.1.2.20). The thioesterase may be, for example, TesB from Escherichia coli (NP_414986.1) (SEQ ID NO: 7). This step may also be catalyzed by a putative thioesterase, e.g., from Clostridium autoethanogenum or Clostridium ljungdahlii. In particular, three putative thioesterases have been identified in Clostridium autoethanogenum: (1) "thioesterase 1" (AGY74947.1; annotated as palmitoyl-CoA hydrolase; SEQ ID NO: 8), (2) "thioesterase 2" (AGY75747.1; annotated as 4-hydroxybenzoyl-CoA thioesterase; SEQ ID NO: 9), and (3) "thioesterase 3" (AGY75999.1; annotated as putative thioesterase; SEQ ID NO: 10). Three putative thioesterases have also been identified in Clostridium ljungdahlii: (1) "thioesterase 1" (ADK15695.1; annotated as predicted acyl-CoA thioesterase 1; SEQ ID NO: 11), (2) "thioesterase 2" (ADK16655.1; annotated as predicted thioesterase; SEQ ID NO: 12), and (3) "thioesterase 3" (ADK16959.1; annotated as predicted thioesterase; SEQ ID NO: 13). This step may also be catalyzed by phosphate butyryltransferase (EC 2.3.1.19)+butyrate kinase (EC 2.7.2.7). Exemplary sources for phosphate butyryltransferase and butyrate kinase are described elsewhere in this application. Native enzymes in Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei (or Escherichia coli), such as thioesterases from Clostridium autoethanogenum, may catalyze this step and result in the production of some amount of downstream products. However, introduction of an exogenous enzyme or overexpression of an endogenous enzyme may be required to produce downstream products at desirable levels. Additionally, in certain embodiments, a disruptive mutation may be introduced to an endogenous enzyme, such as an endogenous thioesterase, to reduce or eliminate competition with introduced Ptb-Buk.

[0058] Step 3 shows the conversion of acetoacetate to acetone. This step may be catalyzed by an acetoacetate decarboxylase (EC 4.1.1.4). The acetoacetate decarboxylase may be, for example, Adc from Clostridium beijerinckii (WP_012059998.1) (SEQ ID NO: 14). This step may also be catalyzed by an alpha-ketoisovalerate decarboxylase (EC 4.1.1.74). The alpha-ketoisovalerate decarboxylase may be, for example, KivD from Lactococcus lactis (SEQ ID NO: 15). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Additionally, Escherichia coli does not have known native activity for this step. Rarely, conversion of acetoacetate to acetone may occur spontaneously. However, spontaneous conversion is highly inefficient and unlikely to result in the production of downstream products at desirable levels.

[0059] Step 4 shows the conversion of acetone to isopropanol. This step may be catalyzed by a primary:secondary alcohol dehydrogenase (EC 1.1.1.2). The primary:secondary alcohol dehydrogenase may be, for example, SecAdh from Clostridium autoethanogenum (AGY74782.1) (SEQ ID NO: 16), SecAdh from Clostridium ljungdahlii (ADK15544.1) (SEQ ID NO: 17), SecAdh from Clostridium ragsdalei (WP_013239134.1) (SEQ ID NO: 18), or SecAdh from Clostridium beijerinckii (WP_026889046.1) (SEQ ID NO: 19). This step may also be catalyzed by a primary:secondary alcohol dehydrogenase (EC 1.1.1.80), such as SecAdh from Thermoanaerobacter brokii (3FSR_A) (SEQ ID NO: 20). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei have native activity for this step (Kopke, Appl Environ Microbiol, 80: 3394-3403, 2014). However, Escherichia coli does not have known native activity for this step. Knocking down or knocking out this enzyme in Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei results in the production and accumulation of acetone rather than isopropanol (WO 2015/085015).

[0060] Step 5 shows the conversion of acetone to 3-hydroxyisovalerate. This step may be catalyzed by a hydroxyisovalerate synthase, such as hydroxymethylglutaryl-CoA synthase (HMG-CoA synthase) (EC 2.3.3.10) from Mus musculus (SEQ ID NO: 21) (US 2012/0110001). The hydroxymethylglutaryl-CoA synthase may be engineered to improve activity. Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0061] Step 6 shows the conversion of 3-hydroxyisovalerate to isobutylene (isobutene). This step may be catalyzed by a hydroxyisovalerate phosphorylase/decarboxylase. This step may also be catalyzed by mevalonate diphosphate decarboxylase (hydroxyisovalerate decarboxylase) (EC 4.1.1.33). The mevalonate diphosphate decarboxylase may be, for example, Mdd from Saccharomyces cerevisiae (CAA96324.1) (SEQ ID NO: 22) or Mdd from Picrophilus torridus (WP_011178157.1) (SEQ ID NO: 23) (US 2011/0165644; van Leeuwen, Appl Microbiol Biotechnol, 93: 1377-1387, 2012). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step

[0062] Step 7 shows the conversion of acetone to 3-hydroxyisovaleryl-CoA. This step may be catalyzed by a 3-hydroxyisovaleryl-CoA synthase. Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step

[0063] Step 8 shows the conversion of 3-hydroxyisovaleryl-CoA to 3-hydroxyisovalerate. This step may be catalyzed by CoA-transferase (i.e., acetyl-CoA:acetoacetyl-CoA transferase) (EC 2.8.3.9). The CoA-transferase may be, for example, CtfAB, a heterodimer comprising subunits CtfA and CtfB, from Clostridium beijerinckii (CtfA, WP_012059996.1) (SEQ ID NO: 5) (CtfB, WP_012059997.1) (SEQ ID NO: 6). This step may also be catalyzed by thioesterase (EC 3.1.2.20). The thioesterase may be, for example, TesB from Escherichia coli (NP_414986.1) (SEQ ID NO: 7). This step may also be catalyzed by a putative thioesterase, e.g., from Clostridium autoethanogenum or Clostridium ljungdahlii. In particular, three putative thioesterases have been identified in Clostridium autoethanogenum: (1) "thioesterase 1" (AGY74947.1; annotated as palmitoyl-CoA hydrolase; SEQ ID NO: 8), (2) "thioesterase 2" (AGY75747.1; annotated as 4-hydroxybenzoyl-CoA thioesterase; SEQ ID NO: 9), and (3) "thioesterase 3" (AGY75999.1; annotated as putative thioesterase; SEQ ID NO: 10). Three putative thioesterases have also been identified in Clostridium ljungdahlii: (1) "thioesterase 1" (ADK15695.1; annotated as predicted acyl-CoA thioesterase 1; SEQ ID NO: 11), (2) "thioesterase 2" (ADK16655.1; annotated as predicted thioesterase; SEQ ID NO: 12), and (3) "thioesterase 3" (ADK16959.1; annotated as predicted thioesterase; SEQ ID NO: 13). This step may also be catalyzed by phosphate butyryltransferase (EC 2.3.1.19)+butyrate kinase (EC 2.7.2.7). Exemplary sources for phosphate butyryltransferase and butyrate kinase are described elsewhere in this application. Native enzymes in Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei (or Escherichia coli), such as thioesterases from Clostridium autoethanogenum, may catalyze this step and result in the production of some amount of downstream products. However, introduction of an exogenous enzyme or overexpression of an endogenous enzyme may be required to produce downstream products at desirable levels. Additionally, in certain embodiments, a disruptive mutation may be introduced to an endogenous enzyme, such as an endogenous thioesterase, to reduce or eliminate competition with introduced Ptb-Buk.

[0064] Step 9 shows the conversion of acetyl-CoA to 3-methyl-2-oxopentanoate. This step encompasses a number of enzymatic reactions involved in the isoleucine biosynthesis pathway, which is natively present in many bacteria, including Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei (and Escherichia coli). Enzymes involved in the conversion of acetyl-CoA to 3-methyl-2-oxopentanoate may include citramalate synthase (EC 2.3.1.182), 3-isopropylmalate dehydratase (EC 4.2.1.35), 3-isopropylmalate dehydrogenase (EC 1.1.1.85), acetolactate synthase (EC 2.2.1.6), ketol-acid reductoisomerase (EC 1.1.1.86), and/or dihydroxyacid dehydratase (EC 4.2.1.9). The citramalate synthase may be, for example, CimA from Clostridium autoethanogenum (AGY76958.1) (SEQ ID NO: 24) or CimA from Methanocaldococcus jannaschii (NP_248395.1) (SEQ ID NO: 25). The 3-isopropylmalate dehydratase may be, for example, LeuCD from Clostridium autoethanogenum (WP_023162955.1, LeuC; AGY77204.1, LeuD) (SEQ ID NOs: 26 and 27, respectively) or LeuCD from Escherichia coli (NP_414614.1, LeuC; NP_414613.1, LeuD) (SEQ ID NOs: 28 and 29, respectively). The 3-isopropylmalate dehydrogenase may be, for example, LeuB from Clostridium autoethanogenum (WP_023162957.1) (SEQ ID NO: 30) or LeuB from Escherichia coli (NP_414615.4) (SEQ ID NO: 31). The acetolactate synthase may be, for example, IlvBN from Clostridium autoethanogenum (AGY74359.1, IlvB; AGY74635.1, IlvB; AGY74360.1, IlvN) (SEQ ID NOs: 32, 33, and 34, respectively) or IlvBN from Escherichia coli (NP_418127.1, IlvB; NP_418126.1, IlvN) (SEQ ID NOs: 35 and 36, respectively). The ketol-acid reductoisomerase may be, for example, IlvC from Clostridium autoethanogenum (WP_013238693.1) (SEQ ID NO: 37) or IlvC from Escherichia coli (NP_418222.1) (SEQ ID NO: 38). The dihydroxyacid dehydratase may be, for example, IlvD from Clostridium autoethanogenum (WP_013238694.1) (SEQ ID NO: 39) or IlvD from Escherichia coli (YP_026248.1) (SEQ ID NO: 40). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei have native activity for this step.

[0065] Step 10 shows the conversion of 3-methyl-2-oxopentoate to 2-methylbutanoyl-CoA. This step may be catalyzed by ketoisovalerate oxidoreductase (EC 1.2.7.7). The ketoisovalerate oxidoreductase may be, for example, the VorABCD from Methanothermobacter thermautotrophicus (WP_010876344.1, VorA; WP_010876343.1, VorB; WP_010876342.1, VorC; WP_010876341.1, VorD) (SEQ ID NOs: 41-44, respectively) or VorABCD from Pyrococcus furiosus (WP_011012106.1, VorA; WP_011012105.1, VorB; WP_011012108.1, VorC; WP_011012107.1, VorD) (SEQ ID NOs: 45-48, respectively). VorABCD is a 4-subunit enzyme. Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0066] Step 11 shows the conversion of 2-methylbutanoyl-CoA to 2-methylcrotonyl-CoA. This step may be catalyzed by 2-methylbutanoyl-CoA dehydrogenase (EC 1.3.99.12). The 2-methylbutanoyl-CoA dehydrogenase may be, for example, AcdH from Streptomyces avermitilis (AAD44196.1 or BAB69160.1) (SEQ ID NO: 49) or AcdH from Streptomyces coelicolor (AAD44195.1) (SEQ ID NO: 50). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0067] Step 12 shows the conversion of 2-methylcrotonyl-CoA to 3-hydroxyisovaleryl-CoA. This step may be catalyzed by crotonase/3-hydroxybutyryl-CoA dehydratase (EC 4.2.1.55). The crotonase/3-hydroxybutyryl-CoA dehydratase may be, for example, Crt from Clostridium beijerinckii (ABR34202.1) (SEQ ID NO: 51), Crt from Clostridium acetobutylicum (NP_349318.1) (SEQ ID NO: 52), or LiuC from Myxococcus xanthus (WP_011553770.1). This step may also be catalyzed by crotonyl-CoA carboxylase-reductase (EC 1.3.1.86). The crotonyl-CoA carboxylase-reductase may be, for example, Ccr from Treponema denticola (NP_971211.1) (SEQ ID NO: 53). This step may also be catalyzed by crotonyl-CoA reductase (EC 1.3.1.44). The crotonyl-CoA reductase may be, for example, Ter from Euglena gracilis (AAW66853.1) (SEQ ID NO: 54). This step may also be catalyzed by a 3-hydroxypropionyl-CoA dehydratase (EC 4.2.1.116). This 3-hydroxypropionyl-CoA dehydratase may be, for example, Msed_2001 from Metallosphaera sedula (WP_012021928.1). This step may also be catalyzed by a enoyl-CoA hydratase. This enoyl-CoA hydratase (4.2.1.17) may be, for example, YngF from Bacillus anthracis (WP_000787371.1). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0068] Step 13 shows the conversion of acetoacetyl-CoA to 3-hydroxybutyryl-CoA. This step may be catalyzed by 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157). The 3-hydroxybutyryl-CoA dehydrogenase may be, for example, Hbd from Clostridium beijerinckii (WP_011967675.1) (SEQ ID NO: 55), Hbd from Clostridium acetobutylicum (NP_349314.1) (SEQ ID NO: 56), or Hbd1 from Clostridium kluyveri (WP_011989027.1) (SEQ ID NO: 57). This step may also be catalyzed by acetoacetyl-CoA reductase (EC 4.2.1.36). The acetoacetyl-CoA reductase may be, for example, PhaB from Cupriavidus necator (WP_010810131.1) (SEQ ID NO: 58). This step may also be catalyzed by acetoacetyl-CoA hydratase (EC 4.2.1.119). Of note, PhaB is R-specific and Hbd is S-specific. Additionally, Hbd1 from Clostridium kluyveri is NADPH-dependent and Hbd from Clostridium acetobutylicum and Clostridium beijerinckii are NADH-dependent. Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0069] Step 14 shows the conversion of 3-hydroxybutyryl-CoA to 3-hydroxybutyrate. This step may be catalyzed by thioesterase (EC 3.1.2.20). The thioesterase may be, for example, TesB from Escherichia coli (NP_414986.1) (SEQ ID NO: 7). This step may also be catalyzed by a putative thioesterase, e.g., from Clostridium autoethanogenum or Clostridium ljungdahlii. In particular, three putative thioesterases have been identified in Clostridium autoethanogenum: (1) "thioesterase 1" (AGY74947.1; annotated as palmitoyl-CoA hydrolase; SEQ ID NO: 8), (2) "thioesterase 2" (AGY75747.1; annotated as 4-hydroxybenzoyl-CoA thioesterase; SEQ ID NO: 9), and (3) "thioesterase 3" (AGY75999.1; annotated as putative thioesterase; SEQ ID NO: 10). Three putative thioesterases have also been identified in Clostridium ljungdahlii: (1) "thioesterase 1" (ADK15695.1; annotated as predicted acyl-CoA thioesterase 1; SEQ ID NO: 11), (2) "thioesterase 2" (ADK16655.1; annotated as predicted thioesterase; SEQ ID NO: 12), and (3) "thioesterase 3" (ADK16959.1; annotated as predicted thioesterase; SEQ ID NO: 13). This step may also be catalyzed by phosphate butyryltransferase (EC 2.3.1.19)+butyrate kinase (EC 2.7.2.7). Exemplary sources for phosphate butyryltransferase and butyrate kinase are described elsewhere in this application. Native enzymes in Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei (or Escherichia coli), such as thioesterases from Clostridium autoethanogenum, may catalyze this step and result in the production of some amount of downstream products. However, introduction of an exogenous enzyme or overexpression of an endogenous enzyme may be required to produce downstream products at desirable levels. Additionally, in certain embodiments, a disruptive mutation may be introduced to an endogenous enzyme, such as an endogenous thioesterase, to reduce or eliminate competition with introduced Ptb-Buk.

[0070] Step 15 shows the conversion of 3-hydroxybutyrate to acetoacetate. This step may be catalyzed by 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30). The 3-hydroxybutyrate dehydrogenase may be, for example, Bdh1 from Ralstonia pickettii (BAE72684.1) (SEQ ID NO: 60) or Bdh2 from Ralstonia pickettii (BAE72685.1) (SEQ ID NO: 61). The reverse reaction, the conversion of acetoacetate to 3-hydroxybutyrate, may be catalyzed by different 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) enzymes. For example, the conversion of acetoacetate to 3-hydroxybutyrate may be catalyzed by Bdh from Clostridium autoethanogenum (AGY75962) (SEQ ID NO: 62). Clostridium ljungdahlii and Clostridium ragsdalei likely have enzymes with similar activity. Escherichia coli does not have known native activity for this step.

[0071] Step 16 shows the conversion of 3-hydroxybutyrate to 3-hydroxybutyrylaldehyde. This step may be catalyzed by aldehyde:ferredoxin oxidoreductase (EC 1.2.7.5). The aldehyde:ferredoxin oxidoreductase (AOR) may be, for example, AOR from Clostridium autoethanogenum (WP_013238665.1; WP_013238675.1) (SEQ ID NOs: 63 and 64, respectively) or AOR from Clostridium ljungdahlii (ADK15073.1; ADK15083.1) (SEQ ID NOs: 65 and 66, respectively). In further embodiments, the aldehyde:ferredoxin oxidoreductase may be or may be derived, for example, from any of the following sources, the sequences of which are publically available:

TABLE-US-00001 Description Microrganism Accession GeneID aldehyde:ferredoxin oxidoreductase Acidilobus saccharovorans 345-15 NC_014374.1 9498931 aldehyde:ferredoxin oxidoreductase Acidilobus saccharovorans 345-15 NC_014374.1 9499504 aldehyde:ferredoxin oxidoreductase Acidilobus saccharovorans 345-15 NC_014374.1 9499550 aldehyde:ferredoxin oxidoreductase Acidilobus saccharovorans 345-15 NC_014374.1 9498997 aldehyde:ferredoxin oxidoreductase Aciduliprofundum boonei T469 NC_013926.1 8828075 aldehyde:ferredoxin oxidoreductase Aciduliprofundum boonei T469 NC_013926.1 8828511 aldehyde:ferredoxin oxidoreductase Aciduliprofundum boonei T469 NC_013926.1 8828305 aldehyde:ferredoxin oxidoreductase Aciduliprofundum boonei T469 NC_013926.1 8827762 aldehyde:ferredoxin oxidoreductase Aciduliprofundum boonei T469 NC_013926.1 8827370 aldehyde:ferredoxin oxidoreductase Aciduliprofundum sp. MAR08-339 NC_019942.1 14306579 aldehyde:ferredoxin oxidoreductase Aciduliprofundum sp. MAR08-339 NC_019942.1 14306982 aldehyde:ferredoxin oxidoreductase Aciduliprofundum sp. MAR08-339 NC_019942.1 14306639 aldehyde:ferredoxin oxidoreductase Aciduliprofundum sp. MAR08-339 NC_019942.1 14307339 aldehyde:ferredoxin oxidoreductase Aeropyrum pernix K1 NC_000854.2 1444491 aldehyde:ferredoxin oxidoreductase Archaeoglobus fulgidus DSM 4304 NC_000917.1 1483287 aldehyde:ferredoxin oxidoreductase Archaeoglobus fulgidus DSM 4304 NC_000917.1 1483233 aldehyde:ferredoxin oxidoreductase Archaeoglobus fulgidus DSM 4304 NC_000917.1 1483554 aldehyde:ferredoxin oxidoreductase Archaeoglobus fulgidus DSM 4304 NC_000917.1 1485513 aldehyde:ferredoxin oxidoreductase Archaeoglobus profundus DSM NC_013741.1 8738726 5631 aldehyde:ferredoxin oxidoreductase Archaeoglobus profundus DSM NC_013741.1 8740019 5631 aldehyde:ferredoxin oxidoreductase Archaeoglobus sulfaticallidus NC_021169.1 15392228 PM70-1 aldehyde:ferredoxin oxidoreductase Archaeoglobus sulfaticallidus NC_021169.1 15393814 PM70-1 aldehyde:ferredoxin oxidoreductase Archaeoglobus sulfaticallidus NC_021169.1 15391826 PM70-1 aldehyde:ferredoxin oxidoreductase Archaeoglobus sulfaticallidus NC_021169.1 15393763 PM70-1 aldehyde:ferredoxin oxidoreductase Archaeoglobus sulfaticallidus NC_021169.1 15393491 PM70-1 aldehyde:ferredoxin oxidoreductase Archaeoglobus veneficus SNP6 NC_015320.1 10393142 aldehyde:ferredoxin oxidoreductase Archaeoglobus veneficus SNP6 NC_015320.1 10395048 aldehyde:ferredoxin oxidoreductase Caldisphaera lagunensis DSM NC_019791.1 14212403 15908 aldehyde:ferredoxin oxidoreductase Caldisphaera lagunensis DSM NC_019791.1 14211524 15908 aldehyde:ferredoxin oxidoreductase Caldisphaera lagunensis DSM NC_019791.1 14212092 15908 aldehyde:ferredoxin oxidoreductase Caldisphaera lagunensis DSM NC_019791.1 14212561 15908 aldehyde:ferredoxin oxidoreductase Caldivirga maquilingensis IC-167 NC_009954.1 5710116 aldehyde:ferredoxin oxidoreductase Caldivirga maquilingensis IC-167 NC_009954.1 5710117 aldehyde:ferredoxin oxidoreductase Caldivirga maquilingensis IC-167 NC_009954.1 5709088 aldehyde:ferredoxin oxidoreductase Caldivirga maquilingensis IC-167 NC_009954.1 5708891 aldehyde:ferredoxin oxidoreductase Caldivirga maquilingensis IC-167 NC_009954.1 5710478 aldehyde:ferredoxin oxidoreductase Caldivirga maquilingensis IC-167 NC_009954.1 5710457 aldehyde:ferredoxin oxidoreductase Caldivirga maquilingensis IC-167 NC_009954.1 5709696 aldehyde:ferredoxin oxidoreductase Candidatus Caldiarchaeum NC_022786.1 17602865 subterraneum aldehyde:ferredoxin oxidoreductase Candidatus Korarchaeum NC_010482.1 6094361 cryptofilum OPF8 aldehyde:ferredoxin oxidoreductase Candidatus Korarchaeum NC_010482.1 6094198 cryptofilum OPF8 aldehyde:ferredoxin oxidoreductase Candidatus Korarchaeum NC_010482.1 6093546 cryptofilum OPF8 aldehyde:ferredoxin oxidoreductase Candidatus Korarchaeum NC_010482.1 6093319 cryptofilum OPF8 aldehyde:ferredoxin oxidoreductase Candidatus Korarchaeum NC_010482.1 6094057 cryptofilum OPF8 aldehyde:ferredoxin oxidoreductase Candidatus Korarchaeum NC_010482.1 6093563 cryptofilum OPF8 aldehyde:ferredoxin oxidoreductase Chloroflexus aurantiacus J-10-fl NC_010175.1 5828639 aldehyde:ferredoxin oxidoreductase Clostridium acetobutylicum ATCC NC_003030 .1 1118201 824 aldehyde:ferredoxin oxidoreductase Clostridium botulinum A sfr. ATCC NC_009495.1 5187636 3502 aldehyde:ferredoxin oxidoreductase Clostridium botulinum A str. Hall NC_009698.1 5400593 aldehyde:ferredoxin oxidoreductase Desulfovibrio vulgaris str. NC_002937.3 2796664 Hildenborough aldehyde:ferredoxin oxidoreductase Desulfovibrio vulgaris str. NC_002937.3 2795337 Hildenborough aldehyde:ferredoxin oxidoreductase Desulfurococcus fermentans DSM NC_018001.1 13061477 16532 aldehyde:ferredoxin oxidoreductase Desulfurococcus fermentans DSM NC_018001.1 13061068 16532 aldehyde:ferredoxin oxidoreductase Desulfurococcus fermentans DSM NC_018001.1 13062247 16532 aldehyde:ferredoxin oxidoreductase Desulfurococcus kamchatkensis NC_011766.1 7171099 1221n aldehyde:ferredoxin oxidoreductase Desulfurococcus kamchatkensis NC_011766.1 7171759 1221n aldehyde:ferredoxin oxidoreductase Desulfurococcus kamchatkensis NC_011766.1 7170725 1221n aldehyde:ferredoxin oxidoreductase Desulfurococcus mucosus DSM NC_014961.1 10152801 2162 aldehyde:ferredoxin oxidoreductase Ferroglobus placidus DSM 10642 NC_013849.1 8778536 aldehyde:ferredoxin oxidoreductase Ferroglobus placidus DSM 10642 NC_013849.1 8779007 aldehyde:ferredoxin oxidoreductase Ferroglobus placidus DSM 10642 NC_013849.1 8778940 aldehyde:ferredoxin oxidoreductase Ferroglobus placidus DSM 10642 NC_013849.1 8779639 aldehyde:ferredoxin oxidoreductase Ferroglobus placidus DSM 10642 NC_013849.1 8778820 aldehyde:ferredoxin oxidoreductase Ferroglobus placidus DSM 10642 NC_013849.1 8778745 aldehyde:ferredoxin oxidoreductase Ferroglobus placidus DSM 10642 NC_013849.1 8779874 aldehyde:ferredoxin oxidoreductase Fervidicoccus fontis Kam940 NC_017461.1 12449263 aldehyde:ferredoxin oxidoreductase Fervidicoccus fontis Kam940 NC_017461.1 12449994 aldehyde:ferredoxin oxidoreductase Fervidicoccus fontis Kam940 NC_017461.1 12449294 aldehyde:ferredoxin oxidoreductase Fervidicoccus fontis Kam940 NC_017461.1 12449682 aldehyde:ferredoxin oxidoreductase Geobacter sulfurreducens PCA NC_002939.5 2685730 aldehyde:ferredoxin oxidoreductase Geobacter sulfurreducens PCA NC_002939.5 2687039 aldehyde:ferredoxin oxidoreductase Halalkalicoccus jeotgali B3 NC_014297.1 9418623 aldehyde:ferredoxin oxidoreductase Halalkalicoccus jeotgali B3 NC_014297.1 9418760 aldehyde:ferredoxin oxidoreductase Halalkalicoccus jeotgali B3 NC_014297.1 9420819 aldehyde:ferredoxin oxidoreductase Halalkalicoccus jeotgali B3 NC_014297.1 9418748 aldehyde:ferredoxin oxidoreductase Haloarcula hispanica ATCC 33960 NC_015948.1 11051410 aldehyde:ferredoxin oxidoreductase Haloarcula hispanica ATCC 33960 NC_015948.1 11050783 aldehyde:ferredoxin oxidoreductase Haloarcula hispanica ATCC 33960 NC_015948.1 11051433 aldehyde:ferredoxin oxidoreductase Haloarcula hispanica N601 NC_023013.1 23805333 aldehyde:ferredoxin oxidoreductase Haloarcula hispanica N601 NC_023013.1 23805138 aldehyde:ferredoxin oxidoreductase Haloarcula hispanica N601 NC_023013.1 23804665 aldehyde:ferredoxin oxidoreductase Haloarcula marismortui ATCC NC_006396.1 3127969 43049 aldehyde:ferredoxin oxidoreductase Haloarcula marismortui ATCC NC_006396.1 3129232 43049 aldehyde:ferredoxin oxidoreductase Haloferax mediterranei ATCC NC_017941.2 13028168 33500 aldehyde:ferredoxin oxidoreductase Haloferax mediterranei ATCC NC_017941.2 13028399 33500 aldehyde:ferredoxin oxidoreductase Haloferax volcanii DS2 NC_013964.1 8919329 aldehyde:ferredoxin oxidoreductase Haloferax volcanii DS2 NC_013964.1 8919033 aldehyde:ferredoxin oxidoreductase Haloferax volcanii DS2 NC_013967.1 8926544 aldehyde:ferredoxin oxidoreductase Halogeomefricum borinquense DSM NC_014735.1 9989054 11551 aldehyde:ferredoxin oxidoreductase Halogeomefricum borinquense DSM NC_014729.1 9994424 11551 aldehyde:ferredoxin oxidoreductase Halogeomefricum borinquense DSM NC_014729.1 9992444 11551 aldehyde:ferredoxin oxidoreductase halophilic archaeon DL31 NC_015954.1 11095016 aldehyde:ferredoxin oxidoreductase halophilic archaeon DL31 NC_015954.1 11095541 aldehyde:ferredoxin oxidoreductase halophilic archaeon DL31 NC_015954.1 11094595 aldehyde:ferredoxin oxidoreductase halophilic archaeon DL31 NC_015954.1 11096497 aldehyde:ferredoxin oxidoreductase halophilic archaeon DL31 NC_015954.1 11094563 aldehyde:ferredoxin oxidoreductase halophilic archaeon DL31 NC_015954.1 11095602 aldehyde:ferredoxin oxidoreductase Halopiger xanaduensis SH-6 NC_015666.1 10799161 aldehyde:ferredoxin oxidoreductase Halopiger xanaduensis SH-6 NC_015658.1 10795465 aldehyde:ferredoxin oxidoreductase Halopiger xanaduensis SH-6 NC_015666.1 10798686 aldehyde:ferredoxin oxidoreductase Halopiger xanaduensis SH-6 NC_015666.1 10796679 aldehyde:ferredoxin oxidoreductase Halorubrum lacusprofundi ATCC NC_012029.1 7400122 49239 aldehyde:ferredoxin oxidoreductase Halorubrum lacusprofundi ATCC NC_012029.1 7400291 49239 aldehyde:ferredoxin oxidoreductase Halorubrum lacusprofundi ATCC NC_012029.1 7400689

49239 aldehyde:ferredoxin oxidoreductase Haloterrigena turkmenica DSM NC_013744.1 8744461 5511 aldehyde:ferredoxin oxidoreductase Haloterrigena turkmenica DSM NC_013744.1 8744695 5511 aldehyde:ferredoxin oxidoreductase Haloterrigena turkmenica DSM NC_013743.1 8740954 5511 aldehyde:ferredoxin oxidoreductase Haloterrigena turkmenica DSM NC_013745.1 8745418 5511 aldehyde:ferredoxin oxidoreductase Haloterrigena turkmenica DSM NC_013743.1 8742968 5511 aldehyde:ferredoxin oxidoreductase Haloterrigena turkmenica DSM NC_013743.1 8741246 5511 aldehyde:ferredoxin oxidoreductase Haloterrigena turkmenica DSM NC_013743.1 8741269 5511 aldehyde:ferredoxin oxidoreductase Haloterrigena turkmenica DSM NC_013745.1 8745313 5511 aldehyde:ferredoxin oxidoreductase Hyperthermus butylicus DSM 5456 NC_008818.1 4781896 aldehyde:ferredoxin oxidoreductase Hyperthermus butylicus DSM 5456 NC_008818.1 4782266 aldehyde:ferredoxin oxidoreductase Hyperthermus butylicus DSM 5456 NC_008818.1 4782804 aldehyde:ferredoxin oxidoreductase Hyperthermus butylicus DSM 5456 NC_008818.1 4781774 aldehyde:ferredoxin oxidoreductase Ignicoccus hospitalis KIN4/I NC_009776.1 5562477 aldehyde:ferredoxin oxidoreductase Ignicoccus hospitalis KIN4/I NC_009776.1 5562774 aldehyde:ferredoxin oxidoreductase Ignisphaera aggregans DSM 17230 NC_014471.1 9716798 aldehyde:ferredoxin oxidoreductase Methanocaldococcus jannaschii NC_000909.1 1452083 DSM 2661 aldehyde:ferredoxin oxidoreductase Methanocella arvoryzae MRE50 NC_009464.1 5142690 aldehyde:ferredoxin oxidoreductase Methanocella arvoryzae MRE50 NC_009464.1 5143773 aldehyde:ferredoxin oxidoreductase Methanocella conradii HZ254 NC_017034.1 11972399 aldehyde:ferredoxin oxidoreductase Methanocella conradii HZ254 NC_017034.1 11971349 aldehyde:ferredoxin oxidoreductase Methanocella paludicola SANAE NC_013665.1 8680711 aldehyde:ferredoxin oxidoreductase Methanocella paludicola SANAE NC_013665.1 8680676 aldehyde:ferredoxin oxidoreductase Methanocorpusculum labreanum Z NC_008942.1 4795790 aldehyde:ferredoxin oxidoreductase Methanoculleus marisnigri JR1 NC_009051.1 4847673 aldehyde:ferredoxin oxidoreductase Methanohalobium evestigatum Z- NC_014253.1 9347460 7303 aldehyde:ferredoxin oxidoreductase Methanohalobium evestigatum Z- NC_014253.1 9347022 7303 aldehyde:ferredoxin oxidoreductase Methanolobus psychrophilus R15 NC_018876.1 13845119 aldehyde:ferredoxin oxidoreductase Methanomethylovorans hollandica NC_019977.1 14408029 DSM 15978 aldehyde:ferredoxin oxidoreductase Methanosaeta harundinacea 6Ac NC_017527.1 12511443 aldehyde:ferredoxin oxidoreductase Methanosaeta thermophila PT NC_008553.1 4462364 aldehyde:ferredoxin oxidoreductase Methanosalsum zhilinae DSM 4017 NC_015676.1 10822365 aldehyde:ferredoxin oxidoreductase Methanosarcina acetivorans C2A NC_003552.1 1475882 aldehyde:ferredoxin oxidoreductase Methanosarcina acetivorans C2A NC_003552.1 1474856 aldehyde:ferredoxin oxidoreductase Methanosarcina acetivorans C2A NC_003552.1 1473602 aldehyde:ferredoxin oxidoreductase Methanosarcina barkeri str. Fusaro NC_007355.1 3625763 aldehyde:ferredoxin oxidoreductase Methanosarcina mazei Go1 NC_003901.1 1479263 aldehyde:ferredoxin oxidoreductase Methanosarcina mazei Go1 NC_003901.1 1481668 aldehyde:ferredoxin oxidoreductase Methanosarcina mazei Go1 NC_003901.1 1480987 aldehyde:ferredoxin oxidoreductase Methanosarcina mazei Tuc01 NC_020389.1 14656065 aldehyde:ferredoxin oxidoreductase Methanosarcina mazei Tuc01 NC_020389.1 14656771 aldehyde:ferredoxin oxidoreductase Methanosarcina mazei Tuc01 NC_020389.1 14654304 aldehyde:ferredoxin oxidoreductase Methanosphaerula palustris E1-9c NC_011832.1 7271108 aldehyde:ferredoxin oxidoreductase Methanospirillum hungatei JF-1 NC_007796.1 3924565 aldehyde:ferredoxin oxidoreductase Methylomicrobium alcaliphilum 20Z NC_016112.1 11361147 aldehyde:ferredoxin oxidoreductase Moorella thermoacetica ATCC NC_007644.1 3831332 39073 aldehyde:ferredoxin oxidoreductase Moorella thermoacetica ATCC NC_007644.1 3830998 39073 aldehyde:ferredoxin oxidoreductase Moorella thermoacetica ATCC NC_007644.1 3831866 39073 aldehyde:ferredoxin oxidoreductase Natrialba magadii ATCC 43099 NC_013922.1 8824961 aldehyde:ferredoxin oxidoreductase Natrialba magadii ATCC 43099 NC_013922.1 8823392 aldehyde:ferredoxin oxidoreductase Natrialba magadii ATCC 43099 NC_013923.1 8826737 aldehyde:ferredoxin oxidoreductase Natrialba magadii ATCC 43099 NC_013922.1 8825516 aldehyde:ferredoxin oxidoreductase Natrinema pellirubrum DSM 15624 NC_019962.1 14335278 aldehyde:ferredoxin oxidoreductase Natrinema pellirubrum DSM 15624 NC_019962.1 14333050 aldehyde:ferredoxin oxidoreductase Natrinema pellirubrum DSM 15624 NC_019962.1 14333754 aldehyde:ferredoxin oxidoreductase Natrinema sp. J7-2 NC_018224.1 13349954 aldehyde:ferredoxin oxidoreductase Natronobacterium gregoryi SP2 NC_019792.1 14210296 aldehyde:ferredoxin oxidoreductase Natronobacterium gregoryi SP2 NC_019792.1 14207133 aldehyde:ferredoxin oxidoreductase Natronobacterium gregoryi SP2 NC_019792.1 14209682 aldehyde:ferredoxin oxidoreductase Natronobacterium gregoryi SP2 NC_019792.1 14207576 aldehyde:ferredoxin oxidoreductase Natronobacterium gregoryi SP2 NC_019792.1 14206941 aldehyde:ferredoxin oxidoreductase Natronobacterium gregoryi SP2 NC_019792.1 14206532 aldehyde:ferredoxin oxidoreductase Natronococcus occultus SP4 NC_019974.1 14403316 aldehyde:ferredoxin oxidoreductase Natronococcus occultus SP4 NC_019974.1 14405255 aldehyde:ferredoxin oxidoreductase Natronococcus occultus SP4 NC_019974.1 14403781 aldehyde:ferredoxin oxidoreductase Natronococcus occultus SP4 NC_019974.1 14402014 aldehyde:ferredoxin oxidoreductase Natronomonas moolapensis 8.8.11 NC_020388.1 14651997 aldehyde:ferredoxin oxidoreductase Natronomonas moolapensis 8.8.11 NC_020388.1 14652892 aldehyde:ferredoxin oxidoreductase Natronomonas moolapensis 8.8.11 NC_020388.1 14651999 aldehyde:ferredoxin oxidoreductase Natronomonas pharaonis DSM 2160 NC_007427.1 3694680 aldehyde:ferredoxin oxidoreductase Natronomonas pharaonis DSM 2160 NC_007426.1 3702508 aldehyde:ferredoxin oxidoreductase Natronomonas pharaonis DSM 2160 NC_007426.1 3702507 aldehyde:ferredoxin oxidoreductase Natronomonas pharaonis DSM 2160 NC_007426.1 3702509 aldehyde:ferredoxin oxidoreductase Pyrobaculum aerophilum str. IM2 NC_003364.1 1464236 aldehyde:ferredoxin oxidoreductase Pyrobaculum aerophilum str. IM2 NC_003364 .1 1464102 aldehyde:ferredoxin oxidoreductase Pyrobaculum aerophilum str. IM2 NC_003364.1 1465126 aldehyde:ferredoxin oxidoreductase Pyrobaculum aerophilum str. IM2 NC_003364.1 1465445 aldehyde:ferredoxin oxidoreductase Pyrobaculum arsenaticum DSM NC_009376.1 5055904 13514 aldehyde:ferredoxin oxidoreductase Pyrobaculum arsenaticum DSM NC_009376.1 5055700 13514 aldehyde:ferredoxin oxidoreductase Pyrobaculum arsenaticum DSM NC_009376.1 5054881 13514 aldehyde:ferredoxin oxidoreductase Pyrobaculum arsenaticum DSM NC_009376.1 5054644 13514 aldehyde:ferredoxin oxidoreductase Pyrobaculum arsenaticum DSM NC_009376.1 5054547 13514 aldehyde:ferredoxin oxidoreductase Pyrobaculum calidifontis JCM NC_009073.1 4910224 11548 aldehyde:ferredoxin oxidoreductase Pyrobaculum calidifontis JCM NC_009073.1 4908822 11548 aldehyde:ferredoxin oxidoreductase Pyrobaculum calidifontis JCM NC_009073.1 4909927 11548 aldehyde:ferredoxin oxidoreductase Pyrobaculum calidifontis JCM NC_009073.1 4910099 11548 aldehyde:ferredoxin oxidoreductase Pyrobaculum islandicum DSM 4184 NC_008701.1 4617364 aldehyde:ferredoxin oxidoreductase Pyrobaculum islandicum DSM 4184 NC_008701.1 4616724 aldehyde:ferredoxin oxidoreductase Pyrobaculum islandicum DSM 4184 NC_008701.1 4617494 aldehyde:ferredoxin oxidoreductase Pyrobaculum neutrophilum V24Sta NC_010525.1 6165427 aldehyde:ferredoxin oxidoreductase Pyrobaculum neutrophilum V24Sta NC_010525.1 6164958 aldehyde:ferredoxin oxidoreductase Pyrobaculum neutrophilum V24Sta NC_010525.1 6164976 aldehyde:ferredoxin oxidoreductase Pyrobaculum oguniense TE7 NC_016885.1 11853778 aldehyde:ferredoxin oxidoreductase Pyrobaculum oguniense TE7 NC_016885.1 11854024 aldehyde:ferredoxin oxidoreductase Pyrobaculum oguniense TE7 NC_016885.1 11856490 aldehyde:ferredoxin oxidoreductase Pyrobaculum oguniense TE7 NC_016885.1 11856176 aldehyde:ferredoxin oxidoreductase Pyrobaculum oguniense TE7 NC_016885.1 11854908 aldehyde:ferredoxin oxidoreductase Pyrobaculum sp. 1860 NC_016645.1 11594868 aldehyde:ferredoxin oxidoreductase Pyrobaculum sp. 1860 NC_016645.1 11596631 aldehyde:ferredoxin oxidoreductase Pyrobaculum sp. 1860 NC_016645.1 11594049 aldehyde:ferredoxin oxidoreductase Pyrococcus abyssi GE5 NC_000868.1 1496313 aldehyde:ferredoxin oxidoreductase Pyrococcus abyssi GE5 NC_000868.1 1495669 aldehyde:ferredoxin oxidoreductase Pyrococcus abyssi GE5 NC_000868.1 1496580 aldehyde:ferredoxin oxidoreductase Pyrococcus abyssi GE5 NC_000868.1 1495287 aldehyde:ferredoxin oxidoreductase Pyrococcus furiosus COM1 NC_018092.1 13302148 aldehyde:ferredoxin oxidoreductase Pyrococcus furiosus COM1 NC_018092.1 13301806 aldehyde:ferredoxin oxidoreductase Pyrococcus furiosus COM1 NC_018092.1 13301219 aldehyde:ferredoxin oxidoreductase Pyrococcus furiosus COM1 NC_018092.1 13300785 aldehyde:ferredoxin oxidoreductase Pyrococcus furiosus DSM 3638 NC_003413.1 1468181 aldehyde:ferredoxin oxidoreductase Pyrococcus furiosus DSM 3638 NC_003413.1 1469073 aldehyde:ferredoxin oxidoreductase Pyrococcus furiosus DSM 3638 NC_003413.1 1469843 aldehyde:ferredoxin oxidoreductase Pyrococcus horikoshii OT3 NC_000961.1 1443218 aldehyde:ferredoxin oxidoreductase Pyrococcus horikoshii OT3 NC_000961.1 1443341 aldehyde:ferredoxin oxidoreductase Pyrococcus horikoshii OT3 NC_000961.1 1443932

aldehyde:ferredoxin oxidoreductase Pyrococcus horikoshii OT3 NC_000961.1 1443598 aldehyde:ferredoxin oxidoreductase Pyrococcus sp. NA2 NC_015474.1 10555029 aldehyde:ferredoxin oxidoreductase Pyrococcus sp. NA2 NC_015474.1 10554020 aldehyde:ferredoxin oxidoreductase Pyrococcus sp. NA2 NC_015474.1 10555341 aldehyde:ferredoxin oxidoreductase Pyrococcus sp. ST04 NC_017946.1 13022107 aldehyde:ferredoxin oxidoreductase Pyrococcus sp. ST04 NC_017946.1 13022436 aldehyde:ferredoxin oxidoreductase Pyrococcus sp. ST04 NC_017946.1 13021314 aldehyde:ferredoxin oxidoreductase Pyrococcus yayanosii CH1 NC_015680.1 10837518 aldehyde:ferredoxin oxidoreductase Pyrococcus yayanosii CH1 NC_015680.1 10837112 aldehyde:ferredoxin oxidoreductase Pyrococcus yayanosii CH1 NC_015680.1 10837264 aldehyde:ferredoxin oxidoreductase Pyrolobus fumarii 1A NC_015931.1 11138144 aldehyde:ferredoxin oxidoreductase Pyrolobus fumarii 1A NC_015931.1 11138776 aldehyde:ferredoxin oxidoreductase Pyrolobus fumarii 1A NC_015931.1 11139127 aldehyde:ferredoxin oxidoreductase Rhodospirillum rubrum ATCC NC_007643.1 3833668 11170 aldehyde:ferredoxin oxidoreductase Staphylothermus hellenicus DSM NC_014205.1 9234557 12710 aldehyde:ferredoxin oxidoreductase Staphylothermus hellenicus DSM NC_014205.1 9233414 12710 aldehyde:ferredoxin oxidoreductase Staphylothermus hellenicus DSM NC_014205.1 9234134 12710 aldehyde:ferredoxin oxidoreductase Staphylothermus hellenicus DSM NC_014205.1 9234110 12710 aldehyde:ferredoxin oxidoreductase Staphylothermus marinus F1 NC_009033.1 4907444 aldehyde:ferredoxin oxidoreductase Staphylothermus marinus F1 NC_009033.1 4907343 aldehyde:ferredoxin oxidoreductase Thermanaerovibrio NC_013522.1 8630284 acidaminovorans DSM 6589 aldehyde:ferredoxin oxidoreductase Thermanaerovibrio NC_013522.1 8630027 acidaminovorans DSM 6589 aldehyde:ferredoxin oxidoreductase Thermanaerovibrio NC_013522.1 8630623 acidaminovorans DSM 6589 aldehyde:ferredoxin oxidoreductase Thermoanaerobacter wiegelii NC_015958.1 11082596 Rt8.B1 aldehyde:ferredoxin oxidoreductase Thermococcus barophilus MP NC_014804.1 10041639 aldehyde:ferredoxin oxidoreductase Thermococcus barophilus MP NC_014804.1 10041106 aldehyde:ferredoxin oxidoreductase Thermococcus barophilus MP NC_014804.1 10042460 aldehyde:ferredoxin oxidoreductase Thermococcus cleftensis NC_018015.1 13037745 aldehyde:ferredoxin oxidoreductase Thermococcus cleftensis NC_018015.1 13038896 aldehyde:ferredoxin oxidoreductase Thermococcus cleftensis NC_018015.1 13037242 aldehyde:ferredoxin oxidoreductase Thermococcus gammatolerans EJ3 NC_012804.1 7988317 aldehyde:ferredoxin oxidoreductase Thermococcus gammatolerans EJ3 NC_012804.1 7987451 aldehyde:ferredoxin oxidoreductase Thermococcus kodakarensis KOD1 NC_006624.1 3233851 aldehyde:ferredoxin oxidoreductase Thermococcus kodakarensis KOD1 NC_006624.1 3233735 aldehyde:ferredoxin oxidoreductase Thermococcus litoralis DSM 5473 NC_022084.1 16550741 aldehyde:ferredoxin oxidoreductase Thermococcus litoralis DSM 5473 NC_022084.1 16548761 aldehyde:ferredoxin oxidoreductase Thermococcus litoralis DSM 5473 NC_022084.1 16550885 aldehyde:ferredoxin oxidoreductase Thermococcus onnurineus NA1 NC_011529.1 7018383 aldehyde:ferredoxin oxidoreductase Thermococcus onnurineus NA1 NC_011529.1 7016739 aldehyde:ferredoxin oxidoreductase Thermococcus onnurineus NA1 NC_011529.1 7017051 aldehyde:ferredoxin oxidoreductase Thermococcus onnurineus NA1 NC_011529.1 7017476 aldehyde:ferredoxin oxidoreductase Thermococcus sibiricus MM 739 NC_012883.1 8096638 aldehyde:ferredoxin oxidoreductase Thermococcus sibiricus MM 739 NC_012883.1 8096005 aldehyde:ferredoxin oxidoreductase Thermococcus sibiricus MM 739 NC_012883.1 8096629 aldehyde:ferredoxin oxidoreductase Thermococcus sibiricus MM 739 NC_012883.1 8095463 aldehyde:ferredoxin oxidoreductase Thermococcus sibiricus MM 739 NC_012883.1 8096131 aldehyde:ferredoxin oxidoreductase Thermococcus sibiricus MM 739 NC_012883.1 8096636 aldehyde:ferredoxin oxidoreductase Thermococcus sp. 4557 NC_015865.1 11015504 aldehyde:ferredoxin oxidoreductase Thermococcus sp. 4557 NC_015865.1 11015249 aldehyde:ferredoxin oxidoreductase Thermococcus sp. 4557 NC_015865.1 11015571 aldehyde:ferredoxin oxidoreductase Thermococcus sp. AM4 NC_016051.1 7419050 aldehyde:ferredoxin oxidoreductase Thermococcus sp. AM4 NC_016051.1 7418514 aldehyde:ferredoxin oxidoreductase Thermococcus sp. AM4 NC_016051.1 7420292 aldehyde:ferredoxin oxidoreductase Thermodesulfovibrio yellowstonii NC_011296.1 6941429 DSM 11347 aldehyde:ferredoxin oxidoreductase Thermodesulfovibrio yellowstonii NC_011296.1 6943174 DSM 11347 aldehyde:ferredoxin oxidoreductase Thermodesulfovibrio yellowstonii NC_011296.1 6941905 DSM 11347 aldehyde:ferredoxin oxidoreductase Thermofilum pendens Hrk 5 NC_008698.1 4602054 aldehyde:ferredoxin oxidoreductase Thermofilum pendens Hrk 5 NC_008698.1 4601386 aldehyde:ferredoxin oxidoreductase Thermofilum pendens Hrk 5 NC_008698.1 4600878 aldehyde:ferredoxin oxidoreductase Thermofilum pendens Hrk 5 NC_008698.1 4600730 aldehyde:ferredoxin oxidoreductase Thermofilum sp. 1910b NC_022093.1 16572780 aldehyde:ferredoxin oxidoreductase Thermofilum sp. 1910b NC_022093.1 16572926 aldehyde:ferredoxin oxidoreductase Thermofilum sp. 1910b NC_022093.1 16573009 aldehyde:ferredoxin oxidoreductase Thermofilum sp. 1910b NC_022093.1 16574342 aldehyde:ferredoxin oxidoreductase Thermogladius cellulolyticus 1633 NC_017954.1 13012904 aldehyde:ferredoxin oxidoreductase Thermoplasma acidophilum DSM NC_002578.1 1456355 1728 aldehyde:ferredoxin oxidoreductase Thermoplasma acidophilum DSM NC_002578.1 1456646 1728 aldehyde:ferredoxin oxidoreductase Thermoplasma vokanium GSS1 NC_002689.2 1441901 aldehyde:ferredoxin oxidoreductase Thermoplasma vokanium GSS1 NC_002689.2 1441379 aldehyde:ferredoxin oxidoreductase Thermoproteus tenax Kra 1 NC_016070.1 11262174 aldehyde:ferredoxin oxidoreductase Thermoproteus tenax Kra 1 NC_016070.1 11262275 aldehyde:ferredoxin oxidoreductase Thermoproteus tenax Kra 1 NC_016070.1 11262652 aldehyde:ferredoxin oxidoreductase Thermoproteus tenax Kra 1 NC_016070.1 11262926 aldehyde:ferredoxin oxidoreductase Thermoproteus uzoniensis 768-20 NC_015315.1 10361668 aldehyde:ferredoxin oxidoreductase Thermoproteus uzoniensis 768-20 NC_015315.1 10361250 aldehyde:ferredoxin oxidoreductase Thermoproteus uzoniensis 768-20 NC_015315.1 10360972 aldehyde:ferredoxin oxidoreductase Thermosphaera aggregans DSM NC_014160.1 9165115 11486 aldehyde:ferredoxin oxidoreductase Thermosphaera aggregans DSM NC_014160.1 9165462 11486 aldehyde:ferredoxin oxidoreductase Thermus thermophilus HB8 NC_006461.1 3168554 aldehyde:ferredoxin oxidoreductase Thermus thermophilus HB8 NC_006461.1 3168612 aldehyde:ferredoxin oxidoreductase Vukanisaeta disfributa DSM 14429 NC_014537.1 9753145 aldehyde:ferredoxin oxidoreductase Vukanisaeta disfributa DSM 14429 NC_014537.1 9750947 aldehyde:ferredoxin oxidoreductase Vukanisaeta disfributa DSM 14429 NC_014537.1 9750989 aldehyde:ferredoxin oxidoreductase Vukanisaeta disfributa DSM 14429 NC_014537.1 9753486 aldehyde:ferredoxin oxidoreductase Vukanisaeta disfributa DSM 14429 NC_014537.1 9751414 aldehyde:ferredoxin oxidoreductase Vukanisaeta moutnovskia 768-28 NC_015151.1 10288238 aldehyde:ferredoxin oxidoreductase Vukanisaeta moutnovskia 768-28 NC_015151.1 10288894 aldehyde:ferredoxin oxidoreductase Vukanisaeta moutnovskia 768-28 NC_015151.1 10288574 aldehyde:ferredoxin oxidoreductase Vukanisaeta moutnovskia 768-28 NC_015151.1 10288827 aldehyde:ferredoxin oxidoreductase Vukanisaeta moutnovskia 768-28 NC_015151.1 10288607 aldehyde:ferredoxin oxidoreductase Vukanisaeta moutnovskia 768-28 NC_015151.1 10288523 aldehyde:ferredoxin oxidoreductase Vukanisaeta moutnovskia 768-28 NC_015151.1 10288815

[0072] AOR catalyzes the reaction of an acid and reduced ferredoxin to form an aldehyde and oxidized ferredoxin. In acetogens, this reaction can be coupled to oxidation CO (via CO dehydrogenase, EC 1.2.7.4) or hydrogen (via ferredoxin-dependent hydrogenase, EC 1.12.7.2 or 1.12.1.4) that both yield reduced ferredoxin (Kopke, Curr Opin Biotechnol 22: 320-325, 2011; Kopke, PNAS USA, 107: 13087-13092, 2010). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei have native activity for this step. However, overexpression of endogenous AOR or introduction of an exogenous AOR in Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei may be desirable to enhance product yields. Alternatively, exogenous AOR may be introduced into a microorganism that does not natively comprise AOR, e.g., E. coli. In particular, the co-expression of Ptb-Buk and AOR (and, optionally, Adh) may enable such a microorganism to produce new non-native products.

[0073] Step 17 shows the conversion of 3-hydroxybutyrylaldehyde to 1,3-butanediol. This step may be catalyzed by alcohol dehydrogenase (EC 1.1.1.1. or 1.1.1.2.). Alcohol dehydrogenase can convert an aldehyde and NAD(P)H to an alcohol and NAD(P). The alcohol dehydrogenase may be, for example, Adh from Clostridium autoethanogenum (AGY76060.1) (SEQ ID NO: 67), Clostridium ljungdahlii (ADK17019.1) (SEQ ID NO: 68), or Clostridium ragsdalei, BdhB from Clostridium acetobutylicum (NP_349891.1) (SEQ ID NO: 69), Bdh from Clostridium beijerinckii (WP_041897187.1) (SEQ ID NO: 70), Bdh1 from Clostridium ljungdahlii (YP_003780648.1) (SEQ ID NO: 71), Bdh1 from Clostridium autoethanogenum (AGY76060.1) (SEQ ID NO: 72), Bdh2 from Clostridium ljungdahlii (YP_003782121.1) (SEQ ID NO: 73), Bdh2 from Clostridium autoethanogenum (AGY74784.1) (SEQ ID NO: 74), AdhE1 from Clostridium acetobutylicum (NP_149325.1) (SEQ ID NO: 75), AdhE2 from Clostridium acetobutylicum (NP_149199.1) (SEQ ID NO: 76), AdhE from Clostridium beijerinckii (WP_041893626.1) (SEQ ID NO: 77), AdhE1 from Clostridium autoethanogenum (WP_023163372.1) (SEQ ID NO: 78), or AdhE2 from Clostridium autoethanogenum (WP_023163373.1) (SEQ ID NO: 79). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei have native activity for this step. However, overexpression of endogenous alcohol dehydrogenase or introduction of an exogenous alcohol dehydrogenase in Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei may be desirable to enhance product yields. Escherichia coli likely does not have native activity for this step.

[0074] Step 18 shows the conversion of 3-hydroxybutyryl-CoA to 3-hydroxybutyrylaldehyde. This step may be catalyzed by butyraldehyde dehydrogenase (EC 1.2.1.57). The butyraldehyde dehydrogenase may be, for example, Bld from Clostridium saccharoperbutylacetonicum (AAP42563.1) (SEQ ID NO: 80). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0075] Step 19 shows the conversion of 3-hydroxybutyryl-CoA to 2-hydroxyisobutyryl-CoA. This step may be catalyzed by 2-hydroxyisobutyryl-CoA mutase (EC 5.4.99.-). The 2-hydroxyisobutyryl-CoA mutase may be, for example, HcmAB from Aquincola tertiaricarbonis (AFK77668.1, large subunit; AFK77665.1, small subunit) (SEQ ID NOs: 81 and 82, respectively) or HcmAB from Kyrpidia tusciae (WP_013074530.1, large subunit; WP_013074531.1, small subunit) (SEQ ID NOs: 83 and 84, respectively). Chaperone MeaB (AFK77667.1, Aquincola tertiaricarbonis; WP_013074529.1, Kyrpidia tusciae) (SEQ ID NOs: 85 and 86, respectively) has been described to improve activity of HcmAB by reactivating HcmAB, although MeaB is not required for HcmAB function (Yaneva, J Biol Chem, 287: 15502-15511, 2012). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0076] Step 20 shows the conversion of 2-hydroxyisobutyryl-CoA to 2-hydroxyisobutyrate. This step may be catalyzed by phosphate butyryltransferase (EC 2.3.1.19)+butyrate kinase (EC 2.7.2.7). Exemplary sources for phosphate butyryltransferase and butyrate kinase are described elsewhere in this application. Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0077] Step 21 shows the conversion of acetyl-CoA to succinyl-CoA. This step encompasses a number of enzymatic reactions involved in the reductive TCA pathway, which is natively present in many bacteria, including Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei (and Escherichia coli) (Brown, Biotechnol Biofuels, 7: 40, 2014; U.S. Pat. No. 9,297,026). Enzymes involved in the conversion of acetyl-CoA to succinyl-CoA may include pyruvate:ferredoxin oxidoreductase (PFOR) (EC 1.2.7.1), pyruvate carboxylase (PYC) (EC 6.4.1.1), malic enzyme/malate dehydrogenase (EC 1.1.1.38, EC 1.1.1.40), pyruvate phosphate dikinase (PPDK) (EC:2.7.9.1), PEP carboxykinase (PCK) (EC 4.1.1.49), fumarate hydratase/fumerase (EC 4.2.1.2), fumarate reductase (EC 1.3.5.1)/succinate dehydrogenase (EC 1.3.5.4), and succinyl-CoA synthetase (EC 6.2.1.5). The pyruvate:ferredoxin oxidoreductase may be, for example, from Clostridium autoethanogenum (AGY75153, AGY77232) or Escherichia coli (NP_415896). The pyruvate carboxylase may be, for example, from Clostridium autoethanogenum (AGY75817). The malic enzyme/malate dehydrogenase may be, for example, from Clostridium autoethanogenum (AGY76687) or Escherichia coli (NP_416714, NP_417703). The pyruvate phosphate dikinase (PPDK) may be, for example, from Clostridium autoethanogenum (AGY76274, AGY77114). The PEP carboxykinase (PCK) may be, for example, from Clostridium autoethanogenum (AGY76928) or Escherichia coli (NP_417862). The fumarate hydratase/fumerase may be, for example, from Clostridium autoethanogenum (AGY76121, AGY76122) or Escherichia coli (NP_416128, NP_416129, NP_418546). The fumarate reductase/succinate dehydrogenase may be, for example, from Clostridium autoethanogenum (AGY74573, AGY74575, AGY75257, AGY77166) or Escherichia coli (NP_415249, NP_415250, NP_415251, NP_415252, NP_418575, NP_418576, NP_418577, NP_418578). The succinyl-CoA synthetase may be, for example, from Escherichia coli (NP_415256, NP_415257).

[0078] Step 22 shows shows the conversion of acetyl-CoA and succinyl-CoA to 3-oxo-adipyl-CoA. This step may be catalyzed by .beta.-ketoadipyl-CoA thiolase (EC 2.3.1.16). The ketoisovalerate oxidoreductase may be, for example, PaaJ from Escherichia coli (WP_001206190.1). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0079] Step 23 shows the conversion of 3-oxo-adipyl-CoA to 3-hydroxyadipyl-CoA. This step may be catalyzed by 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157) or acetoacetyl-CoA hydratase (EC 4.2.1.119). The 3-hydroxybutyryl-CoA dehydrogenase or acetoacetyl-CoA hydratase may be, for example, Hbd from Clostridium beijerinckii (WP_011967675.1) (SEQ ID NO: 55), Hbd from Clostridium acetobutylicum (NP_349314.1) (SEQ ID NO: 56), Hbd1 from Clostridium kluyveri (WP_011989027.1) (SEQ ID NO: 57), or PaaH1 from Cupriavidus necator (WP_010814882.1). Of note, PhaB is R-specific and Hbd is S-specific. Additionally, Hbd1 from Clostridium kluyveri is NADPH-dependent and Hbd from Clostridium acetobutylicum and Clostridium beijerinckii are NADH-dependent. Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0080] Step 24 shows the conversion of 3-hydroxyadipyl-CoA to 2,3-dehydroadipyl-CoA. This step may be catalyzed by an enoyl-CoA hydratase (EC: 4.2.1.17) or enoyl-CoA reductase (EC: 1.3.1.38). The enoyl-CoA hydratase or enoyl-CoA reductase may be, for example, Crt from C. acetobutylicum (NP_349318.1) or PhaJ from Aeromonas caviae (O32472) (Seq. ID No. 52). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0081] Step 25 shows the conversion of 2,3-dehydroadipyl-CoA to adipyl-CoA. This step may be catalyzed by trans-2-enoyl-CoA reductase (EC 1.3.8.1, EC 1.3.1.86, EC 1.3.1.85, EC 1.3.1.44). The trans-2-enoyl-CoA reductase may be, for example, Bcd from C. acetobutylicum (NP_349317.1) that forms a complex with electron flavoproteins EtfAB (NP_349315, NP_349316), Ccr from Streptomyces collinus (AAA92890), Ccr from Rhodobacter sphaeroides (YP_354044.1), Ter from Treponema denticola (NP_971211.1), or Ter from Euglena gracilis (AY741582.1). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0082] Step 26 shows the conversion of adipyl-CoA to adipic acid. This step may be catalyzed by phosphate butyryltransferase (EC 2.3.1.19)+butyrate kinase (EC 2.7.2.7). Exemplary sources for phosphate butyryltransferase and butyrate kinase are described elsewhere in this application. Native enzymes in Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei (or Escherichia coli), such as thioesterases from Clostridium autoethanogenum, may catalyze this step and result in the production of some amount of downstream products. However, introduction of an exogenous enzyme or overexpression of an endogenous enzyme may be required to produce downstream products at desirable levels. Additionally, in certain embodiments, a disruptive mutation may be introduced to an endogenous enzyme, such as an endogenous thioesterase, to reduce or eliminate competition with introduced Ptb-Buk.

[0083] Step 27 shows the conversion of shows the conversion of 3-hydroxbutyryl-CoA to crotonyl-CoA. This step may be catalyzed by a crotonyl-CoA hydratase (crotonase) (EC 4.2.1.17) or crotonyl-CoA reductase (EC 1.3.1.38). The crotonyl-CoA hydratase (crotonase) or crotonyl-CoA reductase may be, for example, Crt from C. acetobutylicum (NP_349318.1) (SEQ ID NO: 52) or PhaJ from Aeromonas caviae (O32472). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0084] Step 28 shows the conversion of crotonyl-CoA to crotonate. This step may be catalyzed by phosphate butyryltransferase (EC 2.3.1.19)+butyrate kinase (EC 2.7.2.7). Exemplary sources for phosphate butyryltransferase and butyrate kinase are described elsewhere in this application. Native enzymes in Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei (or Escherichia coli), such as thioesterases from Clostridium autoethanogenum, may catalyze this step and result in the production of some amount of downstream products. However, introduction of an exogenous enzyme or overexpression of an endogenous enzyme may be required to produce downstream products at desirable levels. Additionally, in certain embodiments, a disruptive mutation may be introduced to an endogenous enzyme, such as an endogenous thioesterase, to reduce or eliminate competition with introduced Ptb-Buk.

[0085] Step 29 shows the conversion of crotonate to crotonaldehyde. This step may be catalyzed by aldehyde:ferredoxin oxidoreductase (EC 1.2.7.5). Exemplary sources for aldehyde:ferredoxin oxidoreductases are described elsewhere in this application. AOR catalyzes the reaction of an acid and reduced ferredoxin to form an aldehyde and oxidized ferredoxin. In acetogens, this reaction can be coupled to oxidation CO (via CO dehydrogenase, EC 1.2.7.4) or hydrogen (via ferredoxin-dependent hydrogenase, EC 1.12.7.2 or 1.12.1.4) that both yield reduced ferredoxin (Kopke, Curr Opin Biotechnol 22: 320-325, 2011; Kopke, PNAS USA, 107: 13087-13092, 2010). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei have native activity for this step. However, overexpression of endogenous AOR or introduction of an exogenous AOR in Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei may be desirable to enhance product yields. AOR of Pyrococcus furiosus has been demonstrated activity converting crotonaldehyde and crotonate (Loes, J Bacteriol, 187: 7056-7061, 2005). Alternatively, exogenous AOR may be introduced into a microorganism that does not natively comprise AOR, e.g., E. coli. In particular, the co-expression of Ptb-Buk and AOR (and, optionally, Adh) may enable such a microorganism to produce new non-native products.

[0086] Step 30 shows the conversion of crotonaldehyde to 2-buten-1-ol. This step may be catalyzed by alcohol dehydrogenase (EC 1.1.1.1. or 1.1.1.2.). Alcohol dehydrogenase can convert an aldehyde and NAD(P)H to an alcohol and NAD(P). The alcohol dehydrogenase may be, for example, Adh from Clostridium autoethanogenum (AGY76060.1) (SEQ ID NO: 67), Clostridium ljungdahlii (ADK17019.1) (SEQ ID NO: 68), or Clostridium ragsdalei, BdhB from Clostridium acetobutylicum (NP_349891.1) (SEQ ID NO: 69), Bdh from Clostridium beijerinckii (WP_041897187.1) (SEQ ID NO: 70), Bdh1 from Clostridium ljungdahlii (YP_003780648.1) (SEQ ID NO: 71), Bdh1 from Clostridium autoethanogenum (AGY76060.1) (SEQ ID NO: 72), Bdh2 from Clostridium ljungdahlii (YP_003782121.1) (SEQ ID NO: 73), Bdh2 from Clostridium autoethanogenum (AGY74784.1) (SEQ ID NO: 74), AdhE1 from Clostridium acetobutylicum (NP_149325.1) (SEQ ID NO: 75), AdhE2 from Clostridium acetobutylicum (NP_149199.1) (SEQ ID NO: 76), AdhE from Clostridium beijerinckii (WP_041893626.1) (SEQ ID NO: 77), AdhE1 from Clostridium autoethanogenum (WP_023163372.1) (SEQ ID NO: 78), or AdhE2 from Clostridium autoethanogenum (WP_023163373.1) (SEQ ID NO: 79). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei have native activity for this step. However, overexpression of endogenous alcohol dehydrogenase or introduction of an exogenous alcohol dehydrogenase in Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei may be desirable to enhance product yields. Escherichia coli likely does not have native activity for this step.

[0087] Step 31 shows the conversion of crotonyl-CoA to butyryl-CoA. This step may be catalyzed by butyryl-CoA dehydrogenase or trans-2-enoyl-CoA reductase (EC 1.3.8.1, EC 1.3.1.86, EC 1.3.1.85, EC 1.3.1.44). The butyryl-CoA dehydrogenase or trans-2-enoyl-CoA reductase may be, for example, Bcd from C. acetobutylicum (NP_349317.1) that forms a complex with electron flavoproteins EtfAB (NP_349315, NP_349316), Ccr from Streptomyces collinus (AAA92890), Ccr from Rhodobacter sphaeroides (YP_354044.1), Ter from Treponema denticola (NP_971211.1), or Ter from Euglena gracilis (AY741582.1). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0088] Step 32 shows the conversion of butyryl-CoA to acetobutyryl-CoA. This step may be catalyzed by thiolase or acyl-CoA acetyltransferase (EC 2.3.1.9). The thiolase may be, for example, ThlA from Clostridium acetobutylicum (WP_010966157.1) (SEQ ID NO: 1), ThlA1 from Clostridium kluyveri (EDK35681), ThlA2 from Clostridium kluyveri (EDK35682), ThlA3 from Clostridium kluyveri (EDK35683), PhaA from Cupriavidus necator (WP_013956452.1) (SEQ ID NO: 2), BktB from Cupriavidus necator (WP_011615089.1) (SEQ ID NO: 3), or AtoB from Escherichia coli (NP_416728.1) (SEQ ID NO: 4). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli has native activity for this step.

[0089] Step 33 shows the conversion of acetobutyryl-CoA to acetobutyrate. This step may be catalyzed by phosphate butyryltransferase (EC 2.3.1.19)+butyrate kinase (EC 2.7.2.7). Exemplary sources for phosphate butyryltransferase and butyrate kinase are described elsewhere in this application. Native enzymes in Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei (or Escherichia coli), such as thioesterases from Clostridium autoethanogenum, may catalyze this step and result in the production of some amount of downstream products. However, introduction of an exogenous enzyme or overexpression of an endogenous enzyme may be required to produce downstream products at desirable levels. Additionally, in certain embodiments, a disruptive mutation may be introduced to an endogenous enzyme, such as an endogenous thioesterase, to reduce or eliminate competition with introduced Ptb-Buk.

[0090] Step 34 shows the conversion of acetobutyrate to acetylacetone. This step may be catalyzed by an acetoacetate decarboxylase (EC 4.1.1.4). The acetoacetate decarboxylase may be, for example, Adc from Clostridium beijerinckii (WP_012059998.1) (SEQ ID NO: 14). This step may also be catalyzed by an alpha-ketoisovalerate decarboxylase (EC 4.1.1.74). The alpha-ketoisovalerate decarboxylase may be, for example, KivD from Lactococcus lactis (SEQ ID NO: 15). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Additionally, Escherichia coli does not have known native activity for this step. Rarely, conversion of acetoacetate to acetone may occur spontaneously. However, spontaneous conversion is highly inefficient and unlikely to result in the production of downstream products at desirable levels.

[0091] Step 35 shows the conversion of acetylacetone to 3-methyl-2-butanol. This step may be catalyzed by a primary:secondary alcohol dehydrogenase (EC 1.1.1.2). The primary:secondary alcohol dehydrogenase may be, for example, SecAdh from Clostridium autoethanogenum (AGY74782.1) (SEQ ID NO: 16), SecAdh from Clostridium ljungdahlii (ADK15544.1) (SEQ ID NO: 17), SecAdh from Clostridium ragsdalei (WP_013239134.1) (SEQ ID NO: 18), or SecAdh from Clostridium beijerinckii (WP_026889046.1) (SEQ ID NO: 19). This step may also be catalyzed by a primary:secondary alcohol dehydrogenase (EC 1.1.1.80), such as SecAdh from Thermoanaerobacter brokii (3FSR_A) (SEQ ID NO: 20). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei have native activity for this step (Kopke, Appl Environ Microbiol, 80: 3394-3403, 2014). However, Escherichia coli does not have known native activity for this step. Knocking down or knocking out this enzyme in Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei results in the production and accumulation of acetylacetone rather than 3-methyl-2-butanol (WO 2015/085015).

[0092] Step 36 shows the conversion of acetobutyryl-CoA to 3-hydroxyhexanoyl-CoA. This step may be catalyzed by 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157) or acetoacetyl-CoA hydratase (EC 4.2.1.119). The 3-hydroxybutyryl-CoA dehydrogenase or acetoacetyl-CoA hydratase may be, for example, Hbd from Clostridium beijerinckii (WP_011967675.1) (SEQ ID NO: 55), Hbd from Clostridium acetobutylicum (NP_349314.1) (SEQ ID NO: 56), Hbd1 from Clostridium kluyveri (WP_011989027.1) (SEQ ID NO: 57), Hbd2 from Clostridium kluyveri (EDK34807), or PaaH1 from Cupriavidus necator (WP_010814882.1). Of note, PhaB is R-specific and Hbd is S-specific. Additionally, Hbd1 from Clostridium kluyveri is NADPH-dependent and Hbd from Clostridium acetobutylicum and Clostridium beijerinckii are NADH-dependent. Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0093] Step 37 shows the conversion of 3-hydroxyhexanoyl-CoA to 3-hydroxyhexanoate. This step may be catalyzed by phosphate butyryltransferase (EC 2.3.1.19)+butyrate kinase (EC 2.7.2.7). Exemplary sources for phosphate butyryltransferase and butyrate kinase are described elsewhere in this application. Native enzymes in Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei (or Escherichia coli), such as thioesterases from Clostridium autoethanogenum, may catalyze this step and result in the production of some amount of downstream products. However, introduction of an exogenous enzyme or overexpression of an endogenous enzyme may be required to produce downstream products at desirable levels. Additionally, in certain embodiments, a disruptive mutation may be introduced to an endogenous enzyme, such as an endogenous thioesterase, to reduce or eliminate competition with introduced Ptb-Buk.

[0094] Step 38 shows the conversion of 3-hydroxyhexanoate to 1,3-hexaldehyde. This step may be catalyzed by aldehyde:ferredoxin oxidoreductase (EC 1.2.7.5). Exemplary sources for aldehyde:ferredoxin oxidoreductases are described elsewhere in this application. AOR catalyzes the reaction of an acid and reduced ferredoxin to form an aldehyde and oxidized ferredoxin. In acetogens, this reaction can be coupled to oxidation CO (via CO dehydrogenase, EC 1.2.7.4) or hydrogen (via ferredoxin-dependent hydrogenase, EC 1.12.7.2 or 1.12.1.4) that both yield reduced ferredoxin (Kopke, Curr Opin Biotechnol 22: 320-325, 2011; Kopke, PNAS USA, 107: 13087-13092, 2010). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei have native activity for this step. However, overexpression of endogenous AOR or introduction of an exogenous AOR in Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei may be desirable to enhance product yields. Alternatively, exogenous AOR may be introduced into a microorganism that does not natively comprise AOR, e.g., E. coli. In particular, the co-expression of Ptb-Buk and AOR (and, optionally, Adh) may enable such a microorganism to produce new non-native products.

[0095] Step 39 shows the conversion of 1,3-hexaldehyde to 1,3-hexanediol. This step may be catalyzed by alcohol dehydrogenase (EC 1.1.1.1. or 1.1.1.2.). Alcohol dehydrogenase can convert an aldehyde and NAD(P)H to an alcohol and NAD(P). The alcohol dehydrogenase may be, for example, Adh from Clostridium autoethanogenum (AGY76060.1) (SEQ ID NO: 67), Clostridium ljungdahlii (ADK17019.1) (SEQ ID NO: 68), or Clostridium ragsdalei, BdhB from Clostridium acetobutylicum (NP_349891.1) (SEQ ID NO: 69), Bdh from Clostridium beijerinckii (WP_041897187.1) (SEQ ID NO: 70), Bdh1 from Clostridium ljungdahlii (YP_003780648.1) (SEQ ID NO: 71), Bdh1 from Clostridium autoethanogenum (AGY76060.1) (SEQ ID NO: 72), Bdh2 from Clostridium ljungdahlii (YP_003782121.1) (SEQ ID NO: 73), Bdh2 from Clostridium autoethanogenum (AGY74784.1) (SEQ ID NO: 74), AdhE1 from Clostridium acetobutylicum (NP_149325.1) (SEQ ID NO: 75), AdhE2 from Clostridium acetobutylicum (NP_149199.1) (SEQ ID NO: 76), AdhE from Clostridium beijerinckii (WP_041893626.1) (SEQ ID NO: 77), AdhE1 from Clostridium autoethanogenum (WP_023163372.1) (SEQ ID NO: 78), or AdhE2 from Clostridium autoethanogenum (WP_023163373.1) (SEQ ID NO: 79). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei have native activity for this step. However, overexpression of endogenous alcohol dehydrogenase or introduction of an exogenous alcohol dehydrogenase in Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei may be desirable to enhance product yields. Escherichia coli likely does not have native activity for this step.

[0096] Step 40 shows the conversion of acetoacetyl-CoA to 3-hydroxy-3-methylglutaryl-CoA. This step may be catalyzed by a hydroxymethylglutaryl-CoA synthase (HMG-CoA synthase) (EC 2.3.3.10). HMG-CoA synthases are widespread across many genera and kingdoms of life and include, e.g., MvaS from Staphylococcus aureus (WP_053014863.1), ERG13 from Saccharomyces cerevisiae (NP_013580.1), HMGCS2 from Mus musculus (NP_032282.2), and many other members of the EC 2.3.3.10 group of enzymes. Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0097] Step 41 shows the conversion of 3-hydroxy-3-methylglutanoyl-CoA to 3-methylgluconyl-CoA. This step may be catalyzed by a 3-hydroxybutyryl-CoA dehydratase (EC 4.2.1.55). The 3-hydroxybutyryl-CoA dehydratase may be, for example, LiuC from Myxococcus xanthus (WP_011553770.1). This step may also be catalyzed by a short-chain-enoyl-CoA hydratase (EC 4.2.1.150) or an enoyl-CoA hydratase (EC 4.2.1.17). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0098] Step 42 shows the conversion of 3-methylgluconyl-CoA to 2-methylcrotonyl-CoA. This step may be catalyzed by a methylcrotonyl-CoA decarboxylase (with high structural similarity to glutaconate-CoA transferase (EC 2.8.3.12)), e.g., aibAB from Myxococcus xanthus (WP_011554267.1 and WP_011554268.1). This step may also be catalyzed by a methylcrotonoyl-CoA carboxylase (EC 6.4.1.4), e.g., LiuDB from Pseudomonas aeruginosa (NP_250702.1 and NP_250704.1) or MCCA and MCCB from Arabidopsis thaliana (NP_563674.1 and NP_567950.1). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0099] Step 43 shows the conversion of methylcrotonyl-CoA to isovaleryl-CoA. This step may be catalyzed by an oxidoreductase, zinc-binding dehydrogenase. This oxidoreductase, zinc-binding dehydrogenase may be, for example, AibC from Myxococcus xanthus (WP_011554269.1). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not have known native activity for this step. Escherichia coli does not have known native activity for this step.

[0100] Step 44 shows the conversion of isovaleryl-CoA to isovalerate. This step may be catalyzed by CoA-transferase (i.e., acetyl-CoA:acetoacetyl-CoA transferase) (EC 2.8.3.9). The CoA-transferase may be, for example, CtfAB, a heterodimer comprising subunits CtfA and CtfB, from Clostridium beijerinckii (CtfA, WP_012059996.1) (SEQ ID NO: 5) (CtfB, WP_012059997.1) (SEQ ID NO: 6). This step may also be catalyzed by thioesterase (EC 3.1.2.20). The thioesterase may be, for example, TesB from Escherichia coli (NP_414986.1) (SEQ ID NO: 7). This step may also be catalyzed by a putative thioesterase, e.g., from Clostridium autoethanogenum or Clostridium ljungdahlii. In particular, three putative thioesterases have been identified in Clostridium autoethanogenum: (1) "thioesterase 1" (AGY74947.1; annotated as palmitoyl-CoA hydrolase; SEQ ID NO: 8), (2) "thioesterase 2" (AGY75747.1; annotated as 4-hydroxybenzoyl-CoA thioesterase; SEQ ID NO: 9), and (3) "thioesterase 3" (AGY75999.1; annotated as putative thioesterase; SEQ ID NO: 10). Three putative thioesterases have also been identified in Clostridium ljungdahlii: (1) "thioesterase 1" (ADK15695.1; annotated as predicted acyl-CoA thioesterase 1; SEQ ID NO: 11), (2) "thioesterase 2" (ADK16655.1; annotated as predicted thioesterase; SEQ ID NO: 12), and (3) "thioesterase 3" (ADK16959.1; annotated as predicted thioesterase; SEQ ID NO: 13). This step may also be catalyzed by phosphate butyryltransferase (EC 2.3.1.19)+butyrate kinase (EC 2.7.2.7). Exemplary sources for phosphate butyryltransferase and butyrate kinase are described elsewhere in this application. Native enzymes in Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei (or Escherichia coli), such as thioesterases from Clostridium autoethanogenum, may catalyze this step and result in the production of some amount of downstream products. However, introduction of an exogenous enzyme or overexpression of an endogenous enzyme may be required to produce downstream products at desirable levels. Additionally, in certain embodiments, a disruptive mutation may be introduced to an endogenous enzyme, such as an endogenous thioesterase, to reduce or eliminate competition with introduced Ptb-Buk.

[0101] Step 45 shows the conversion of isovalerate to isovaleraldehyde. This step may be catalyzed by aldehyde:ferredoxin oxidoreductase (EC 1.2.7.5). The aldehyde:ferredoxin oxidoreductase (AOR) may be, for example, AOR from Clostridium autoethanogenum (WP_013238665.1; WP_013238675.1) (SEQ ID NOs: 63 and 64, respectively) or AOR from Clostridium ljungdahlii (ADK15073.1; ADK15083.1) (SEQ ID NOs: 65 and 66, respectively). Further exemplary sources for aldehyde:ferredoxin oxidoreductases are described elsewhere in this application. Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei have native activity for this step. However, overexpression of endogenous AOR or introduction of an exogenous AOR in Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei may be desirable to enhance product yields. Alternatively, exogenous AOR may be introduced into a microorganism that does not natively comprise AOR, e.g., E. coli. In particular, the co-expression of Ptb-Buk and AOR (and, optionally, Adh) may enable such a microorganism to produce new non-native products.

[0102] Step 46 shows the conversion of isovaleraldehyde to isoamyl alcohol. This step may be catalyzed by alcohol dehydrogenase (EC 1.1.1.1. or 1.1.1.2.). Alcohol dehydrogenase can convert an aldehyde and NAD(P)H to an alcohol and NAD(P). The alcohol dehydrogenase may be, for example, Adh from Clostridium autoethanogenum (AGY76060.1) (SEQ ID NO: 67), Clostridium ljungdahlii (ADK17019.1) (SEQ ID NO: 68), or Clostridium ragsdalei, BdhB from Clostridium acetobutylicum (NP_349891.1) (SEQ ID NO: 69), Bdh from Clostridium beijerinckii (WP_041897187.1) (SEQ ID NO: 70), Bdh1 from Clostridium ljungdahlii (YP_003780648.1) (SEQ ID NO: 71), Bdh1 from Clostridium autoethanogenum (AGY76060.1) (SEQ ID NO: 72), Bdh2 from Clostridium ljungdahlii (YP_003782121.1) (SEQ ID NO: 73), Bdh2 from Clostridium autoethanogenum (AGY74784.1) (SEQ ID NO: 74), AdhE1 from Clostridium acetobutylicum (NP_149325.1) (SEQ ID NO: 75), AdhE2 from Clostridium acetobutylicum (NP_149199.1) (SEQ ID NO: 76), AdhE from Clostridium beijerinckii (WP_041893626.1) (SEQ ID NO: 77), AdhE1 from Clostridium autoethanogenum (WP_023163372.1) (SEQ ID NO: 78), or AdhE2 from Clostridium autoethanogenum (WP_023163373.1) (SEQ ID NO: 79). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei have native activity for this step. However, overexpression of endogenous alcohol dehydrogenase or introduction of an exogenous alcohol dehydrogenase in Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei may be desirable to enhance product yields. Escherichia coli likely does not have native activity for this step.

[0103] Step 47 shows the conversion of isovaleryl-CoA to isovaleraldehyde. This step may be catalyzed by butyraldehyde dehydrogenase (EC 1.2.1.57). The butyraldehyde dehydrogenase may be, for example, Bld from Clostridium saccharoperbutylacetonicum (AAP42563.1) (SEQ ID NO: 80). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei likely do not have native activity for this step. Escherichia coli does not have known native activity for this step.

Overview of Ptb-Buk

[0104] The invention provides new pathways utilizing the Ptb-Buk enzyme system. In nature, this enzyme system is found in a range of butyrate producing microorganisms, such as butyrate-producing Clostridia or Butyrivibrio. In particular, phosphate butyryltransferase (Ptb) (EC 2.3.1.19) natively catalyzes the reaction of butanoyl-CoA+phosphate to form CoA+butanoyl phosphate and butyrate kinase (Buk) (EC 2.7.2.7) natively catalyzes the reaction of butanoyl phosphate and ADP to form butyrate (butanoate) and ATP. Accordingly, these enzymes together (Ptb-Buk) natively catalyze the conversion of butanoyl-CoA to butyrate and generate one ATP via substrate level-phosphorylation (FIG. 2). However, the inventors have discovered that Ptb is promiscuous and is capable of accepting a variety of acyl-CoAs and enoyl-CoAs as substrates, such that Ptb-Buk may be used to convert a number of acyl-CoAs and enoyl-CoAs to their corresponding acids or alkenates, respectively, while simultaneously generating ATP. It has been reported Ptb is active on a range of acyl-CoAs including acetoacetyl-CoA, in vitro (Thompson, Appl Environ Microbiol, 56: 607-613, 1990). It has not previously been shown that acetoacetyl-phosphate could be a substrate for Buk. Although Buk is known to accept a broad substrate range (Liu, Appl Microbiol Biotechnol, 53: 545-552, 2000), no activity has been shown in vivo.

[0105] Additionally, the inventors have discovered that the introduction of exogenous Ptb-Buk enables certain microorganisms to produce useful products, including acetone, isopropanol, isobutylene, 3-hydroxybutyrate, 1,3-butanediol, and 2-hydroxyisobutyrate, as well as other products such as propionate, caproate, and octonate.

[0106] New pathways that rely on Ptb-Buk offer several major advantages over other known and existing pathway routes for production of products that rely on a CoA-transferase--as in the classic Clostridial acetone-butanol-ethanol (ABE) fermentation pathway--or a thioesterase (Jones, Microbiol Rev, 50: 484-524, 1986; Matsumoto, Appl Microbiol Biotechnol, 97: 205-210, 2013; May, Metabol Eng, 15: 218-225, 2013) (FIG. 3). In particular, these new pathways (1) are not dependent on the presence or production of particular molecules, such as organic acids, e.g., butyrate or acetate, required for the CoA-transferase reaction and (2) allow for generation of ATP via substrate level phosphorylation that would not be conserved in a thioesterase or CoA-transferase reaction. The same advantages also apply when using the Ptb-Buk system for other reactions, such as the conversion of 3-hydroxybutyryl-CoA to 3-hydroxybutyrate. Thus, these new pathways have the potential to yield much higher production titers and rates by generating additional energy and producing target products without co-production of undesired byproducts, such as acetate.

[0107] Particularly on a commercial scale, it is not desirable for microorganisms to produce acetate (or other organic acids required for the CoA transferase reaction) as byproduct, since acetate diverts carbon away from target products and thus affects the efficiency and yield of target products. Additionally, acetate may be toxic to microorganisms and/or may serve as a substrate for the growth of contaminating microorganisms. Furthermore, the presence of acetate makes it more difficult to recover and separate target products and to control fermentation conditions to favor the production of target products.

[0108] ATP generation through substrate level phosphorylation can be used as a driving force for product synthesis, especially in ATP-limited systems. In particular, acetogenic bacteria are known to live on the thermodynamic edge of life (Schuchmann, Nat Rev Microbiol, 12: 809-821, 2014). As such, all acetogenic microorganisms isolated to date have been described to produce acetate (Drake, Acetogenic Prokaryotes, In: The Prokaryotes, 3.sup.rd edition, pages 354-420, New York, N.Y., Springer, 2006) since the production of acetate provides the microorganism with an option to directly generate ATP from substrate level phosphorylation via Pta (phosphotransacetylase) (EC 2.3.1.8) and Ack (acetate kinase) (EC 2.7.2.1). Although mechanisms such as membrane gradients and electro bifurcation enzymes coupled to ion or proton translocating systems, e.g., the Rnf complex (Schuchmann, Nat Rev Microbiol, 12: 809-821, 2014), conserve ATP in these microorganisms, direct ATP generation remains critical for their survival. As a result, when introducing heterologous pathways that do not allow for ATP generation, acetate is produced as a byproduct (Schiel-Bengelsdorf, FEBS Lett, 586: 2191-2198, 2012). The Ptb-Buk pathways described herein, however, provide an alternative mechanism for the microorganism to generate ATP via substrate level phosphorylation and, therefore, avoid acetate production. In particular, acetate-forming enzymes, such as Pta-Ack, that would otherwise be essential (Nagarajan, Microb Cell Factories, 12: 118, 2013) can be replaced with Ptb-Buk as an alternative means of ATP generation. Since the microorganism can then rely on ATP generation via Ptb-Buk, this system provides a driving force that ensures maximum flux through the new pathways that use Ptb-Buk. The generation of ATP may also be crucial for downstream pathways that require ATP. For example, fermentative production of isobutylene from acetone requires ATP. While the complete pathway from acetyl-CoA to isobutylene is ATP-consuming when using a CoA-transferase or a thioesterase, the pathway is energy neutral when using Ptb-Buk.

[0109] Exemplary sources for Ptb and Buk are provided. However, it should be appreciated that other suitable sources for Ptb and Buk may be available. Additionally, Ptb and Buk may be engineered to improve activity and/or genes encoding Ptb-Buk may be codon-optimized for expression in particular host microorganisms.

[0110] The phosphate butyryltransferase may be or may be derived, for example, from any of the following sources, the sequences of which are publically available:

TABLE-US-00002 Description Microorganism Accession phosphate butyryltransferase Closfridium sp. EKQ52186 phosphate butyryltransferase Closfridium sp. WP_009167896 phosphate butyryltransferase Closfridium WP_015390396 saccharoperbutylacetonicum phosphate butyryltransferase Closfridium WP_022743598 saccharobutylicum phosphate butyryltransferase Closfridium beijerinckii WP_026886639 phosphate butyryltransferase Closfridium beijerinckii WP_041893500 phosphate butyryltransferase Closfridium butyricum WP_003410761 phosphate butyryltransferase Clostridium sp. CDB14331 phosphate butyryltransferase Closfridium botulinum WP_049180512 phosphate butyryltransferase Closfridium sp. CDB74819 phosphate butyryltransferase Closfridium paraputrificum WP_027098882 phosphate butyryltransferase Closfridium sp. WP_024615655 phosphate butyryltransferase Closfridium celatum WP_005211129 phosphate butyryltransferase Clostridium baratii WP_039312969 phosphate butyryltransferase Closfridium intestinale WP_021800215 phosphate butyryltransferase Closfridium sp. WP_042402499 phosphate butyryltransferase Closfridium sp. WP_032117069 phosphate butyryltransferase Closfridium perfringens ABG85761 phosphate butyryltransferase Closfridium botulinum WP_003374233 phosphate butyryltransferase Closfridium perfringens WP_004460499 phosphate butyryltransferase Closfridium perfringens WP_003454254 phosphate butyryltransferase Closfridium perfringens WP_041707926 phosphate butyryltransferase Closfridium perfringens BAB82054 phosphate butyryltransferase Clostridium sp. WP_008681116 phosphate butyryltransferase Closfridium chauvoei WP_021876993 phosphate butyryltransferase Closfridium colicanis WP_002598839 phosphate butyryltransferase Closfridium cadaveris WP_027637778 phosphate butyryltransferase Closfridium acetobutylicum WP_010966357 phosphate butyryltransferase Closfridium pasteurianum WP_015617430 phosphate butyryltransferase Closfridium arbusti WP_010238988 phosphate butyryltransferase Closfridium pasteurianum WP_003445696 phosphate butyryltransferase Clostridium scatologenes WP_029160341 phosphate butyryltransferase Closfridium sp. WP_032120461 phosphate butyryltransferase Closfridium drakei WP_032078800 phosphate butyryltransferase Closfridium sp. WP_021281241 phosphate butyryltransferase Closfridium argentinense WP_039635970 phosphate butyryltransferase Closfridium akagii WP_026883231 phosphate butyryltransferase Closfridium sp. WP_053242611 phosphate butyryltransferase Clostridium carboxidivorans WP_007063154 phosphate butyryltransferase Closfridium sp. WP_035292411 phosphate butyryltransferase Closfridium sulfidigenes WP_035133394 phosphate butyryltransferase Closfridium tetanomorphum WP_035147564 phosphate butyryltransferase Closfridium WP_027633206 hydrogeniformans phosphate butyryltransferase Closfridium sp. WP_040212965 phosphate butyryltransferase Candidatus Clostridium WP_040327613 phosphate butyryltransferase Closfridium sp. WP_040192242 phosphate butyryltransferase Closfridium sp. WP_050606427 phosphate butyryltransferase Closfridium lundense WP_027625137 phosphate butyryltransferase Closfridium algidicarnis WP_029451333 phosphate butyryltransferase Closfridium sp. WP_035306567 phosphate butyryltransferase Closfridium acetobutylicum AAA75486 phosphate butyryltransferase Closfridium botulinum WP_025775938 phosphate butyryltransferase Closfridium botulinum WP_045541062 phosphate butyryltransferase Closfridium botulinum WP_003357252 phosphate butyryltransferase Closfridium botulinum WP_030037192 phosphate butyryltransferase Closfridium bornimense WP_044039341 phosphate butyryltransferase Closfridium botulinum WP_041346554 phosphate butyryltransferase Closfridium sp. WP_053468896 phosphate butyryltransferase Closfridiales bacterium WP_034572261 phosphate butyryltransferase Closfridium tetani WP_023439553 phosphate butyryltransferase Closfridiales bacterium ERI95297 phosphate butyryltransferase Closfridium botulinum WP_047403027 phosphate butyryltransferase Closfridium tetani WP_011100667 phosphate butyryltransferase Closfridium tetani WP_035111554 phosphate butyryltransferase Closfridium senegalense WP_010295062 phosphate butyryltransferase Caloramator sp. WP_027307587 phosphate butyryltransferase Thermobrachium celere WP_018661036 phosphate butyryltransferase Closfridium cellulovorans WP_010073683 phosphate butyryltransferase Coprococcus comes CDB84786 phosphate butyryltransferase Coprococcus comes WP_008371924 phosphate butyryltransferase Eubacterium sp. CCZ03827 phosphate butyryltransferase Closfridium sp. CCZ05442 phosphate butyryltransferase Caloramator australicus WP_008907395 phosphate butyryltransferase Closfridium sp. CCY59505 phosphate butyryltransferase Lachnospiraceae bacterium WP_035626368 phosphate butyryltransferase Lachnospiraceae bacterium WP_027440767 phosphate butyryltransferase Fervidicella metallireducens WP_035381340 phosphate butyryltransferase Closfridium sp. CCX89274 phosphate butyryltransferase Eubacterium xylanophilum WP_026834525 phosphate butyryltransferase Roseburia sp. CDF44203 phosphate butyryltransferase Butyrivibrio crossotus WP_005600912 phosphate butyryltransferase Lachnospiraceae bacterium WP_027117626 phosphate butyryltransferase Closfridium sp. CDA68345 phosphate butyryltransferase Peptosfreptococcaceae WP_026899905 bacterium phosphate butyryltransferase Butyrivibrio crossotus CCY77124 phosphate butyryltransferase Closfridium sp. CDE44914 phosphate butyryltransferase Coprococcus eutactus WP_004853197 phosphate butyryltransferase Firmicutes bacterium CCY23248 phosphate butyryltransferase Lachnospiraceae bacterium WP_027111007 phosphate butyryltransferase Lachnospiraceae bacterium WP_016293387 phosphate butyryltransferase Closfridium sp. WP_046822491

[0111] In a preferred embodiment, the phosphate butyryltransferase is Ptb from Clostridium acetobutylicum (WP_010966357; SEQ ID NO: 87) or Clostridium beijerinckii (WP_026886639; SEQ ID NO: 88) (WP_041893500; SEQ ID NO: 89). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not natively contain phosphate butyryltransferase.

[0112] The butyrate kinase may be or may be derived, for example, from any of the following sources, the sequences of which are publically available:

TABLE-US-00003 Description Microorganism Accession butyrate kinase Closfridium pasteurianum ALB48406 butyrate kinase Closfridium sp. CDB14330 butyrate kinase Closfridium sp. CDB74820 butyrate kinase Closfridium sp. EKQ52187 butyrate kinase Closfridium perfringens Q0SQKO butyrate kinase Closfridium sp. WP_002582660 butyrate kinase Closfridium colicanis WP_002598838 butyrate kinase Closfridium botuhnum WP_003371719 butyrate kinase Closfridium perfringens WP_003454444 butyrate kinase Closfridium perfringens WP_004459180 butyrate kinase Closfridium celatum WP_005211128 butyrate kinase Closfridium sp. WP_008681112 butyrate kinase Closfridium sp. WP_008681114 butyrate kinase Closfridium sp. WP_009167897 butyrate kinase Closfridium perfringens WP_011010889 butyrate kinase Closfridium beijerinckii WP_011967556 butyrate kinase Closfridium botuhnum WP_012422882 butyrate kinase Closfridium botuhnum WP_012450845 butyrate kinase Closfridium saccharoperbutylacetonicum WP_015390397 butyrate kinase Closfridium beijerinckii WP_017209677 butyrate kinase Closfridium botuhnum WP_017825911 butyrate kinase Closfridium chauvoei WP_021876994 butyrate kinase Closfridium saccharobutylicum WP_022743599 butyrate kinase Closfridium sp. WP_024615656 butyrate kinase Closfridium perfringens WP_025648345 butyrate kinase Closfridium beijerinckii WP_026886638 butyrate kinase Closfridium paraputrificum WP_027098883 butyrate kinase Closfridium sp. WP_032117070 butyrate kinase Closfridium botulinum WP_035786166 butyrate kinase Closfridium baratii WP_039312972 butyrate kinase Closfridium diolis WP_039772701 butyrate kinase Closfridium botulinum WP_041082388 butyrate kinase Closfridium beijerinckii WP_041893502 butyrate kinase Closfridium sp. WP_042402497 butyrate kinase Closfridium baratii WP_045725505 butyrate kinase Closfridium perfringens WP_049039634 butyrate kinase Closfridium botulinum WP_049180514 butyrate kinase Closfridium botulinum WP_053341511 butyrate kinase Closfridium butyricum ABU40948 butyrate kinase Closfridium sp. CDE44915 butyrate kinase Closfridium senegalense WP_010295059 butyrate kinase Closfridium intestinale WP_021800216 butyrate kinase Eubacterium venfriosum WP_005363839 butyrate kinase Closfridiales bacterium WP_021657038 butyrate kinase Closfridium sp. WP_021281242 butyrate kinase Clostridium sporogenes WP_045520059 butyrate kinase Closfridium sp. WP_050606428 butyrate kinase Closfridium botulinum WP_012048334 butyrate kinase Closfridium botulinum WP_012343352 butyrate kinase Closfridium botulinum WP_003401518 butyrate kinase Closfridium argentinense WP_039635972 butyrate kinase Closfridium botulinum WP_003357547 butyrate kinase Closfridium hydrogeniformans WP_027633205 butyrate kinase Closfridium botulinum WP_033066487 butyrate kinase Roseburia sp. CDF44202 butyrate kinase Lachnospiraceae bacterium WP_027111008 butyrate kinase Closfridium sp. CDA68344 butyrate kinase Lachnospiraceae bacterium WP_022782491 butyrate kinase Closfridium botulinum WP_012101111 butyrate kinase Closfridium carboxidivorans WP_007063155 butyrate kinase Closfridium botulinum WP_041346556 butyrate kinase Closfridium drakei WP_032078801 butyrate kinase Closfridium sp. WP_032120462 butyrate kinase Closfridium sp. WP_053468897 butyrate kinase Firmicutes bacterium CCZ27888 butyrate kinase Closfridium sp. WP_035306569 butyrate kinase Coprococcus comes CDB84787 butyrate kinase Closfridium sp. WP_035292410 butyrate kinase Closfridium sp. CCX89275 butyrate kinase Closfridium sp. WP_040212963 butyrate kinase Closfridium pasteurianum WP_003445697 butyrate kinase Closfridium sp. WP_053242610 butyrate kinase Lachnospiraceae bacterium WP_016299320 butyrate kinase Lachnospiraceae bacterium WP_022785085 butyrate kinase Lachnospiraceae bacterium WP_016281561 butyrate kinase Eubacterium sp. CDA28786 butyrate kinase Clostridium scatologenes WP_029160342 butyrate kinase Lachnospiraceae bacterium WP_016228168 butyrate kinase Closfridium pasteurianum WP_015617429 butyrate kinase Closfridium algidicarnis WP_029451332 butyrate kinase Lachnospiraceae bacterium WP_016293388 butyrate kinase Closfridium sulfidigenes WP_035133396 butyrate kinase Closfridium tetani WP_011100666 butyrate kinase Closfridium tetanomorphum WP_035147567 butyrate kinase Subdoligranulum variabile WP_007045828 butyrate kinase Eubacterium sp. CCZ03826 butyrate kinase Firmicutes bacterium CDF07483 butyrate kinase Eubacterium sp. CDB13677 butyrate kinase Closfridium sp. WP_008400594 butyrate kinase Closfridium tetani WP_023439552 butyrate kinase Closfridiales bacterium WP_022787536 butyrate kinase Lachnospiraceae bacterium WP_027434709 butyrate kinase Firmicutes bacterium CCY23249 butyrate kinase Closfridium acetobutylicum WP_010966356

[0113] In a preferred embodiment, the butyrate kinase is Buk from Clostridium acetobutylicum (WP_010966356; SEQ ID NO: 90) or Clostridium beijerinckii (WP_011967556; SEQ ID NO: 91) (WP_017209677; SEQ ID NO: 92) (WP_026886638; SEQ ID NO: 93) (WP_041893502; SEQ ID NO: 94). Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei do not natively contain butyrate kinase.

[0114] Since Ptb-Buk has been shown to function on a broad range of substrates it is reasonable to assume that if Ptb-Buk does not exhibit any activity and a desired substrate it can be engineered to achieve activity on the substrate in question. A strategy could be (but would not be limited to) rational design based on available crystal structures of Ptb and Buk with and without a bound substrate where the binding pocket would be changed to accommodate the new substrate or through saturation mutagenesis. When activity is obtained, it can be further improved through iterative cycles of enzyme engineering. These engineering efforts would be combined with assays to test enzyme activity. These types of strategies have previously proven effective (see, e.g., Huang, Nature, 537: 320-327, 2016; Khoury, Trends Biotechnol, 32: 99-109, 2014; Packer, Nature Rev Genetics, 16: 379-394, 2015; Privett, PNAS USA, 109: 3790-3795, 2012).

[0115] To improve substrate specificity of Ptb-Buk towards a specific acyl-CoA substrate, Ptb-Buk variants from public databases or generated Ptb-Buk mutants (for example, from directed evolution) can be screened using a high throughput assay, namely overexpressing Ptb-Buk enzyme pairs in E. coli, adding a test substrate, and screening for ATP production with a bioluminescence assay. The assay can use the well-established practice of correlating ATP concentration with firefly luciferase enzyme bioluminescence. The amenability of this assay to multi-well plate formats would facilitate efficient screening of substrate preference across new Ptb-Buk combinations (FIG. 33).

[0116] By screening for ATP production rather than depletion of substrate or accumulation of product, the assay avoids measuring spontaneous hydrolysis of the CoA group. However, an alternative approach described in literature, is to use free CoA can be measured using the established assay using Ellman's reagent (5,5'-dithiobis-(2-nitrobenzoic acid) or DTNB) (Thompson, Appl Environ Microbiol, 56: 607-613, 1990.) in order to estimate the coupling efficiency of the Ptb-Buk reactions (FIG. 33). Acyl-CoAs and corresponding free acids and phospho-intermediates can also be measured during the validation phase using LC-MS/MS.

[0117] In a high-throughput screening approach, it is difficult gather kinetic data due to the labor involved in protein quantification. Instead, for each preparation of E. coli lysate containing Ptb-Buk enzymes, the activity against each substrate of interest (measured as luminescence per unit time) can be compared to the activity against the positive control substrate (butyryl-CoA) and against acetyl-CoA (the physiological substrate that will likely provide the greatest competition for enzyme active sites against target acyl-CoA).

[0118] In order to ensure that the assay is not biased due to native phosphotransacetylase (Pta) and/or acetate kinase (Ack) activity, the assay can also be evaluated in an E. coli strain where pta and/or ack genes have been knocked out.

Production of Acetone and Isopropanol

[0119] Acetone and isopropanol are important industrial solvents with a combined market size of 8 million tons and a global market value of $8.5-11 billion. In addition, acetone and isopropanol are precursors to valuable downstream products, including polymethyl methacrylate (PMMA), which has a global market value of $7 billion, isobutylene, which has a global market value of $25-29 billion, and propylene, which has a global market value of $125 billion. Additionally, a route from acetone to jet fuel has recently been reported. Currently, industrial acetone production is directly linked to petrochemical phenol production, as it is a by-product of the cumene process. Around 92% of acetone output by volume is a co-product of phenol production from cumene. This has significant implications on both environment and market. In the cumene process, per mol phenol produced one mol of sodium sulfite accumulates posing a serious waste management problem and a challenge to natural environments and human health. The world market demand for phenol is expected to stagnate or decline, while the demand for acetone is predicted to rise. Alternative phenol production routes from direct oxidation of benzene are in development and expected to commercialize soon; this could result in a complete elimination of acetone production.

[0120] Acetone has been produced at industrial scale for almost 100 years, as a by-product of butanol in ABE fermentation. While industrial ABE fermentation declined in the second half of the 20.sup.th century due to low oil prices and high sugar costs, it has recently revived, with several commercial plants built during the last few years. Multiple groups have also demonstrated acetone production from sugar in heterologous hosts that express the corresponding enzymes from ABE fermentation organisms, in particular E. coli and yeast through metabolic engineering and synthetic biology approaches by several academic groups. However, low yields and high costs associated the pre-treatment needed to release the polysaccharide-component of biomass make the production of acetone via standard fermentation uneconomic as current biochemical conversion technologies do not utilize the lignin component of biomass, which can constitute up to 40% of this material.

[0121] The invention provides a microorganism capable of producing acetone or precursors thereof from a substrate. The invention further provides a method of producing acetone or precursors thereof by culturing such a microorganism in the presence of a substrate. In preferred embodiments, the microorganism is derived from a parental microorganism selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. However, the microorganism may also be derived from an entirely different microorganism, e.g., Escherichia coli. The enzymatic pathways described for the production of acetone may comprise endogenous enzymes and, where endogenous enzyme activity is absent or low, exogenous enzymes.

[0122] Acetone via steps 1, 2, and 3: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 2, and 3, whereby the microorganism is capable of producing acetone or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 2 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 2, and 3 are described elsewhere in this application. If the microorganism is derived from a parental microorganism that natively contains a primary:secondary alcohol dehydrogenase capable of converting acetone to isopropanol (step 4) (e.g., Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei), the microorganism may be modified to knock down or knock out the expression of primary:secondary alcohol dehydrogenase (e.g., by disrupting the gene encoding the primary:secondary alcohol dehydrogenase), such that the microorganism produces acetone without converting it to isopropanol (WO 2015/085015).

[0123] Acetone via steps 1, 13, 14, 15, and 3: In one embodiment, the invention provides a microorganism comprising exogenous enzymes for steps 1, 13, 14, 15, and 3, whereby the microorganism is capable of producing acetone or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 14 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 14, 15, and 3 are described elsewhere in this application. If the microorganism is derived from a parental microorganism that natively contains a primary:secondary alcohol dehydrogenase capable of converting acetone to isopropanol (step 4) (e.g., Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei), the microorganism may be modified to knock down or knock out the expression of primary: secondary alcohol dehydrogenase (e.g., by disrupting the gene encoding the primary:secondary alcohol dehydrogenase), such that the microorganism produces acetone without converting it to isopropanol (WO 2015/085015).

[0124] In one embodiment, the microorganism may comprise more than one pathway for the production of acetone.

[0125] The invention provides a microorganism capable of producing isopropanol or precursors thereof from a substrate. The invention further provides a method of producing isopropanol or precursors thereof by culturing such a microorganism in the presence of a substrate. In preferred embodiments, the microorganism is derived from a parental microorganism selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. However, the microorganism may also be derived from an entirely different microorganism, e.g., Escherichia coli. The enzymatic pathways described for the production of isopropanol may comprise endogenous enzymes and, where endogenous enzyme activity is absent or low, exogenous enzymes.

[0126] Isopropanol via steps 1, 2, 3, and 4: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 2, 3, and 4, whereby the microorganism is capable of producing isopropanol or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 2 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 2, 3, and 4 are described elsewhere in this application. If the microorganism is derived from a parental microorganism that natively contains a primary:secondary alcohol dehydrogenase capable of converting acetone to isopropanol (step 4) (e.g., Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei), introduction of an exogenous enzyme for step 4 is not required to produce isopropanol. However, modification of the microorganism, for example, to overexpress a native primary:secondary alcohol dehydrogenase may result in enhanced production of isopropanol.

[0127] Isopropanol via steps 1, 13, 14, 15, 3, and 4: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 13, 14, 15, 3, and 4, whereby the microorganism is capable of producing isopropanol or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 14 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 14, 15, 3, and 4 are described elsewhere in this application. If the microorganism is derived from a parental microorganism that natively contains a primary:secondary alcohol dehydrogenase capable of converting acetone to isopropanol (step 4) (e.g., Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei), introduction of an exogenous enzyme for step 4 is not required to produce isopropanol. However, modification of the microorganism, for example, to overexpress a native primary:secondary alcohol dehydrogenase may result in enhanced production of isopropanol.

[0128] In one embodiment, the microorganism may comprise more than one pathway for the production of isopropanol.

Production of Isobutylene

[0129] Isobutylene is a major chemical building block with a market size of over 15 million tons and a global market value of $25-29 billion. Beyond its use in chemistry and as a fuel additive (15 Mt/yr), isobutylene may be converted to isooctane, a high performance, drop-in fuel for gasoline cars. Global Bioenergies has filed patent applications on the fermentative production of isobutene (i.e., isobutylene) from acetone, but none of the disclosed routes involve Ptb-Buk (WO 2010/001078; EP 2295593; WO 2011/076691; van Leeuwen, Appl Microbiol Biotechnol, 93: 1377-1387, 2012).

[0130] The invention provides a microorganism capable of producing isobutylene or precursors thereof from a substrate. The invention further provides a method of producing isobutylene or precursors thereof by culturing such a microorganism in the presence of a substrate. In preferred embodiments, the microorganism is derived from a parental microorganism selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. However, the microorganism may also be derived from an entirely different microorganism, e.g., Escherichia coli. The enzymatic pathways described for the production of isobutylene may comprise endogenous enzymes and, where endogenous enzyme activity is absent or low, exogenous enzymes.

[0131] FIG. 1 shows two alternative routes to isobutylene. The first involves the production of isobutylene via steps 1, 2, 3, 5, and 6. The second involves the production of isobutylene via steps 1, 2, 3, 7, 8, and 6. Steps 2 and 8 may be catalyzed by Ptb-Buk. Accordingly, each route may involve Ptb-Buk.

[0132] Isobutylene via steps 1, 2, 3, 5, and 6: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 2, 3, 5, and 6, whereby the microorganism is capable of producing isobutylene or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 2 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 2, 3, 5, and 6 are described elsewhere in this application. If the microorganism is derived from a parental microorganism that natively contains a primary: secondary alcohol dehydrogenase capable of converting acetone to isopropanol (step 4) (e.g., Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei), the microorganism may be modified to knock down or knock out the expression of primary:secondary alcohol dehydrogenase (e.g., by disrupting the gene encoding the primary:secondary alcohol dehydrogenase) to prevent the conversion of acetone to isopropanol and maximize the conversion of acetone to isobutylene.

[0133] Isobutylene via steps 1, 2, 3, 7, 8, and 6: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 2, 3, 7, 8, and 6, whereby the microorganism is capable of producing isobutylene or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 2 and/or step 8 are catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 2, 3, 7, 8, and 6 are described elsewhere in this application. If the microorganism is derived from a parental microorganism that natively contains a primary:secondary alcohol dehydrogenase capable of converting acetone to isopropanol (step 4) (e.g., Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei), the microorganism may be modified to knock down or knock out the expression of primary: secondary alcohol dehydrogenase (e.g., by disrupting the gene encoding the primary:secondary alcohol dehydrogenase) to prevent the conversion of acetone to isopropanol and maximize the conversion of acetone to isobutylene.

Production of 3-Hydroxybutyrate

[0134] 3-Hydroxybutyrate (3-HB) is a four carbon carboxylic acid in the family of betahydroxy acids. 3-hydroxybutyrate is a cosmetic ingredient for oily skin clarification, an intermediate for anti-aging cream formulations, an intermediate for polyhydroxybutyrate (PHB), a biodegradable polymer resin, and co-monomer with other polyhydroxy acids for novel bioplastics. Additionally, 3-hydroxybutyrate has specialty applications in biocompatible and biodegradable nanocomposites, particularly for medical implants, intermediate for C3/C4 chemicals, chiral building blocks, and fine chemicals. Although the production of (R)- and (S)-3-hydroxybutyrate by recombinant E. coli grown on glucose, the production of 3-hydroxybutyrate has not been demonstrated from microorganisms grown on gaseous substrates (Tseng, Appl Environ Microbiol, 75: 3137-3145, 2009). Notably, the system previously demonstrated in E. coli was not directly transferrable to acetogens, including C. autoethanogenum, due to the presence of native thioesterases in acetogens. Although E. coli also has a thioesterase TesB that can act on 3-HB-CoA, Tseng showed that background activity is minimal (<0.1 g/L). While in E. coli production of stereopure isomers were reported, the inventors surprisingly found that a mix of isomers were produced in C. autoethanogenum. Without being bound to this theory, this is likely a result of native isomerase activity. This enables the combination of an (S)-specific 3-hydroxybutyryl-CoA dehydrogenase (Hbd) to be combined with the (R)-specific Ptb-Buk for optimized production. To produce stereopure isomers, this activity can be knocked-out. Taken together, it this invention enables to produce several g/L of 3-HB compared to low production in E. coli and using Ptb-Buk any combination of (R)- or (S)-specific 3-hydroxybutyryl-CoA dehydrogenase and native Clostridium autoethanogenum thioesterase.

[0135] The invention provides a microorganism capable of producing 3-hydroxybutyrate or precursors thereof from a substrate. The invention further provides a method of producing 3-hydroxybutyrate or precursors thereof by culturing such a microorganism in the presence of a substrate. In preferred embodiments, the microorganism is derived from a parental microorganism selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. However, the microorganism may also be derived from an entirely different microorganism, e.g., Escherichia coli. The enzymatic pathways described for the production of 3-hydroxybutyrate may comprise endogenous enzymes and, where endogenous enzyme activity is absent or low, exogenous enzymes.

[0136] FIG. 1 shows two alternative routes to 3-hydroxybutyrate. The first involves the production of 3-hydroxybutyrate via steps 1, 2, and 15. The second involves the production of 3-hydroxybutyrate via steps 1, 13, and 14. Steps 2 and 14 may be catalyzed by Ptb-Buk. Accordingly, each route may involve Ptb-Buk. In one embodiment, the microorganism may comprise more than one pathway for the production of 3-hydroxybutyrate, wherein Ptb-Buk may catalyze more than one step (e.g., steps 2 and 14).

[0137] 3-Hydroxybutyrate via steps 1, 2, and 15: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 2, and 15, whereby the microorganism is capable of producing 3-hydroxybutyrate or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 2 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 2, and 15 are described elsewhere in this application.

[0138] 3-Hydroxybutyrate via steps 1, 13, and 14: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 13, and 14, whereby the microorganism is capable of producing 3-hydroxybutyrate or precursors thereof from substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 14 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, and 14 are described elsewhere in this application.

Production of 1, 3-Butanediol

[0139] 1,3-Butanediol (1,3-BDO) is commonly used as a solvent for food flavoring agents and is a co-monomer used in certain polyurethane and polyester resins. More importantly, 1,3-butanediol may be catalytically converted to 1,3-butadiene (Makshina, Chem Soc Rev, 43: 7917-7953, 2014). Butadiene is used to produce rubber, plastics, lubricants, latex, and other products. While much of the butadiene produced today is used for the rubber in automobile tires, it can also be used to produce adiponitrile, which can be used in the manufacture of nylon 6,6. Global demand for butadiene is on the rise. In 2011, there was an estimated 10.5 million tons of demand, valued at $40 billion.

[0140] The invention provides a microorganism capable of producing 1,3-butanediol or precursors thereof from a substrate. The invention further provides a method of producing 1,3-butanediol or precursors thereof by culturing such a microorganism in the presence of substrate. In preferred embodiments, the microorganism is derived from a parental microorganism selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. However, the microorganism may also be derived from an entirely different microorganism, e.g., Escherichia coli. The enzymatic pathways described for the production of 1,3-butanediol may comprise endogenous enzymes and, where endogenous enzyme activity is absent or low, exogenous enzymes.

[0141] In certain embodiments, the microorganism may produce 1,3-butanediol without co-production of ethanol (or with production of only a small amount of ethanol, e.g., less than 0.1-1.0 g/L ethanol or less than 1-10 g/L ethanol).

[0142] FIG. 1 shows three alternative routes to 1,3-butanediol. The first involves the production of 1,3-butanediol via steps 1, 2, 15, 16, and 17. The second involves the production of 1,3-butanediol via steps 1, 13, 14, 16, and 17. The third involves the production of 1,3-butanediol via steps 1, 13, 18, and 17. Steps 2 and 14 may be catalyzed by Ptb-Buk. Accordingly, at least the first and second routes may involve Ptb-Buk. In one embodiment, the microorganism may comprise more than one pathway for the production of 1,3-butanediol. In a related embodiment, the Ptb-Buk may catalyze more than one step (e.g., steps 2 and 14).

[0143] 1,3-Butanediol via steps 1, 2, 15, 16, and 17: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 2, 15, 16, and 17, whereby the microorganism is capable of producing 1,3-butanediol or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 2 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 2, 15, 16, and 17 are described elsewhere in this application.

[0144] 1,3-Butanediol via steps 1, 13, 14, 16, and 17: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 13, 14, 16, and 17, whereby the microorganism is capable of producing 1,3-butanediol or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 14 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 14, 16, and 17 are described elsewhere in this application.

[0145] 1,3-Butanediol via steps 1, 13, 18, and 17: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 13, 18, and 17, whereby the microorganism is capable of producing 1,3-butanediol or precursors thereof from a substrate, such as a gaseous substrate (FIG. 11). Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. Exemplary types and sources of enzymes for steps 1, 13, 18, and 17 are described elsewhere in this application. A similar route has been demonstrated in E. coli, but not in acetogens such as Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei (Kataoka, J Biosci Bioeng, 115: 475-480, 2013). Although the use of Ptb-Buk results in the production of (R)-1,3-butanediol, this route, which does not require the use of Ptb-Buk, may result in the production of (S)-1,3-butanediol.

Production of 2-Hydroxyisobutyrate

[0146] 2-Hydroxyisobutyrate (2-HIB) is a four carbon carboxylic acid that may serve as a building block for many types of polymers. The methyl ester of methacrylic acid, which can be synthesized by dehydration of 2-hydroxyisobutyrate or via the corresponding amide, is polymerized to polymethylmethacrylate (PMMA) for the production of acrylic glass, durable coatings, and inks. For this compound alone, the global market exceeds 3 million tons. Other branched C4 carboxylic acids, e.g., chloro- and amino-derivatives of 2-hydroxyisobutyrate, as well as isobutylene glycol and its oxide, are also used in polymers and for many other applications.

[0147] The stereospecificity of the Ptb-Buk system is particularly useful in overcoming the limitations of the current state of art with respect to the production of 2-hydroxyisobutyrate. Both Ptb-Buk and thioesterases are promiscuous, such that side activity with 3-hydroxybutyryl-CoA may divert resources away from target pathways for the production of 2-hydroxyisobutyryl-CoA (see, e.g., FIG. 1 and FIG. 8). However, Ptb-Buk is able to distinguish between stereoisomers and will act on (R)-3-hydroxybutyryl-CoA, but not on (S)-3-hydroxybutyryl-CoA. In contrast, thioesterases are not able to distinguish between 3-hydroxybutyryl-CoA stereoisomers. In a preferred embodiment, an (S)-specific acetoacetyl-CoA hydratase (EC 4.2.1.119) (step 13) is chosen in combination with the Ptb-Buk (step 20) to avoid losses to 3-hydroxybutyrate and maximize 2-hydroxyisobutyrate yield (FIG. 8). The (S)-specific form of 3-hydroxybutyryl-CoA is also the preferred substrate for the 2-hydroxyisobutyryl-CoA mutase (EC 5.4.99.-) (step 19) (Yaneva, J Biol Chem, 287: 15502-15511, 2012).

[0148] The invention provides a microorganism capable of producing 2-hydroxyisobutyrate or precursors thereof from a substrate. The invention further provides a method of producing 2-hydroxyisobutyrate or precursors thereof by culturing such a microorganism in the presence of a substrate. In preferred embodiments, the microorganism is derived from a parental microorganism selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. However, the microorganism may also be derived from an entirely different microorganism, e.g., Escherichia coli. The enzymatic pathways described for the production of 2-hydroxyisobutyrate may comprise endogenous enzymes and, where endogenous enzyme activity is absent or low, exogenous enzymes.

[0149] 2-Hydroxyisobutyrate via steps 1, 13, 19, and 20: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 13, 19, and 20, whereby the microorganism is capable of producing 2-hydroxyisobutyrate or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 20 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 19, and 20 are described elsewhere in this application.

[0150] In certain embodiments, the invention also provides a microorganism capable of producing 2-hydroxybutyrate (2-HB) or precursors thereof from a substrate. The invention further provides a method of producing 2-hydroxybutyrate or precursors thereof by culturing such a microorganism in the presence of a substrate. Without wishing to be bound by any particular theory, the inventors believe the observed production of 2-hydroxybutyrate is attributable to nonspecific mutase activity in microorganisms such as Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei.

Production of Adipic Acid

[0151] Adipic acid is the most important dicarboxylic acid with an estimated market of greater US $4.5 billion with about 2.5 billion kgs produced annually. Over 60% of produced adipic acid is being used as monomer precursor for the production of nylon and the global market for adipic acid is expected to reach US $7.5 billion by 2019. Currently, adipic acid is almost exclusively produced petrochemically, e.g. by carbonylation of butadiene.

[0152] The invention provides a microorganism capable of producing adipic acid or precursors thereof from a substrate (FIG. 34). The invention further provides a method of producing adipic acid or precursors thereof by culturing such a microorganism in the presence of a substrate. In preferred embodiments, the microorganism is derived from a parental microorganism selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. However, the microorganism may also be derived from an entirely different microorganism, e.g., Escherichia coli. The enzymatic pathways described for the production of adipic acid may comprise endogenous enzymes and, where endogenous enzyme activity is absent or low, exogenous enzymes.

[0153] Adipic acid via steps 22, 23, 24, 25, and 26: In one embodiment, the invention provides a microorganism comprising enzymes for steps 22, 23, 24, 25, and 26, whereby the microorganism is capable of producing adipic acid or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 26 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 22, 23, 24, 25, and 26 are described elsewhere in this application.

[0154] Adipic acid via steps 21, 22, 23, 24, 25, and 26: In one embodiment, the invention provides a microorganism comprising enzymes for steps 21, 22, 23, 24, 25, and 26, whereby the microorganism is capable of producing adipic acid or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 26 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 21, 22, 23, 24, 25, and 26 are described elsewhere in this application.

[0155] In one embodiment, the microorganism may comprise more than one pathway for the production of adipic acid.

Production of 1, 3-Hexanediol

[0156] The invention provides a microorganism capable of producing 1,3-hexanediol or precursors thereof from a substrate (FIG. 35). The invention further provides a method of producing 1,3-hexanediol or precursors thereof by culturing such a microorganism in the presence of a substrate. In preferred embodiments, the microorganism is derived from a parental microorganism selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. However, the microorganism may also be derived from an entirely different microorganism, e.g., Escherichia coli. The enzymatic pathways described for the production of 1,3-hexanediol may comprise endogenous enzymes and, where endogenous enzyme activity is absent or low, exogenous enzymes.

[0157] The pathways depicted in FIG. 35 begin with 3-hydroxybutyryl-CoA, which may be produced via steps 1 and 13, as depicted in FIG. 1.

[0158] 1,3-Hexanediol via steps 1, 13, 27, 31, 32, 36, 37, 38, and 39: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 13, 27, 31, 32, 36, 37, 38, and 39, whereby the microorganism is capable of producing 1,3-hexanediol or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 37 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 27, 31, 32, 36, 37, 38, and 39 are described elsewhere in this application.

Production of 3-Methyl-2-butanol

[0159] The invention provides a microorganism capable of producing 3-methyl-2-butanol or precursors thereof from a substrate (FIG. 35). The invention further provides a method of producing 3-methyl-2-butanol or precursors thereof by culturing such a microorganism in the presence of a substrate. In preferred embodiments, the microorganism is derived from a parental microorganism selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. However, the microorganism may also be derived from an entirely different microorganism, e.g., Escherichia coli. The enzymatic pathways described for the production of 3-methyl-2-butanol may comprise endogenous enzymes and, where endogenous enzyme activity is absent or low, exogenous enzymes.

[0160] The pathways depicted in FIG. 35 begin with 3-hydroxybutyryl-CoA, which may be produced via steps 1 and 13, as depicted in FIG. 1.

[0161] 3-Methyl-2-butanol via steps 1, 13, 27, 31, 32, 33, 34, and 35: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 13, 27, 31, 32, 33, 34, and 35, whereby the microorganism is capable of producing 3-methyl-2-butanol or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 33 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 27, 31, 32, 33, 34, and 35 are described elsewhere in this application.

Production of 2-Buten-1-ol

[0162] The invention provides a microorganism capable of producing 2-buten-1-ol or precursors thereof from a substrate (FIG. 35). The invention further provides a method of producing 2-buten-1-ol or precursors thereof by culturing such a microorganism in the presence of a substrate. In preferred embodiments, the microorganism is derived from a parental microorganism selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. However, the microorganism may also be derived from an entirely different microorganism, e.g., Escherichia coli. The enzymatic pathways described for the production of 2-buten-1-ol may comprise endogenous enzymes and, where endogenous enzyme activity is absent or low, exogenous enzymes.

[0163] The pathways depicted in FIG. 35 begin with 3-hydroxybutyryl-CoA, which may be produced via steps 1 and 13, as depicted in FIG. 1.

[0164] 2-Buten-1-ol via steps 1, 13, 27, 28, 29, and 30: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 13, 27, 28, 29, and 30, whereby the microorganism is capable of producing 2-buten-1-ol or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 28 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 27, 28, 29, and 30 are described elsewhere in this application.

Production of Isovalerate

[0165] The invention provides a microorganism capable of producing isovalerate or precursors thereof from a substrate (FIG. 36). The invention further provides a method of producing isovalerate or precursors thereof by culturing such a microorganism in the presence of a substrate. In preferred embodiments, the microorganism is derived from a parental microorganism selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. However, the microorganism may also be derived from an entirely different microorganism, e.g., Escherichia coli. The enzymatic pathways described for the production of isovalerate may comprise endogenous enzymes and, where endogenous enzyme activity is absent or low, exogenous enzymes.

[0166] Isovalerate via steps 1, 40, 41, 42, 43, and 44: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 40, 41, 42, 43, and 44, whereby the microorganism is capable of producing isovalerate or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 44 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 40, 41, 42, 43, and 44 are described elsewhere in this application.

Production of Isoamyl Alcohol

[0167] The invention provides a microorganism capable of producing isoamyl alcohol or precursors thereof from a substrate (FIG. 36). The invention further provides a method of producing isoamyl alcohol or precursors thereof by culturing such a microorganism in the presence of a substrate. In preferred embodiments, the microorganism is derived from a parental microorganism selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. However, the microorganism may also be derived from an entirely different microorganism, e.g., Escherichia coli. The enzymatic pathways described for the production of isoamyl alcohol may comprise endogenous enzymes and, where endogenous enzyme activity is absent or low, exogenous enzymes.

[0168] Isoamyl alcohol via steps 1, 40, 41, 42, 43, 44, 45, and 46: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 40, 41, 42, 43, 44, 45, and 46, whereby the microorganism is capable of producing isoamyl alcohol or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. In a preferred embodiment, step 44 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 40, 41, 42, 43, 44, 45, and 46 are described elsewhere in this application.

[0169] Isoamyl alcohol via steps 1, 40, 41, 42, 43, 47 and 46: In one embodiment, the invention provides a microorganism comprising enzymes for steps 1, 40, 41, 42, 43, 47 and 46, whereby the microorganism is capable of producing isoamyl alcohol or precursors thereof from a substrate, such as a gaseous substrate. Typically, at least one of the enzymes in this pathway is exogenous to the microorganism. Exemplary types and sources of enzymes for steps 1, 40, 41, 42, 43, 47 and 46 are described elsewhere in this application.

[0170] In one embodiment, the microorganism may comprise more than one pathway for the production of isoamyl alcohol.

Production of Additional Products

[0171] The invention provides a microorganism comprising exogenous Ptb-Buk and exogenous or endogenous aldehyde:ferredoxin oxidoreductase (AOR). Such a microorganism may produce, for example, 1-propanol, 1-butanol, 1-hexanol, and 1-octanol or precursors thereof from acetyl-CoA generated, for example, from a gaseous substrate (FIG. 32). The invention further provides a method of producing 1-propanol, 1-butanol, 1-hexanol, and 1-octanol or precursors thereof by culturing such a microorganism in the presence of a gaseous substrate. Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei natively comprise AOR. However, AOR may be overexpressed in such microorganisms in combination with expression of exogenous Ptb-Buk. Alternatively, exogenous AOR and exogenous Ptb-Buk may be expressed in a microorganism other than Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei, such as Escherichia coli.

Production of Precursors and Intermediates

[0172] The pathways depicted in FIGS. 1, 34, 35, and 36 may be modified to produce precursors or intermediates of the aforementioned products. In particular, partial enzymatic pathways for any of the pathways described herein may be inserted in a host microorganism to obtain production of precursors or intermediates.

Definitions and Background

[0173] The term "genetic modification" or "genetic engineering" broadly refers to manipulation of the genome or nucleic acids of a microorganism. Likewise, the term "genetically engineered" refers to a microorganism comprising a manipulated genome or nucleic acids. Methods of genetic modification of include, for example, heterologous gene expression, gene or promoter insertion or deletion, nucleic acid mutation, altered gene expression or inactivation, enzyme engineering, directed evolution, knowledge-based design, random mutagenesis methods, gene shuffling, and codon optimization.

[0174] "Recombinant" indicates that a nucleic acid, protein, or microorganism is the product of genetic modification, engineering, or recombination. Generally, the term "recombinant" refers to a nucleic acid, protein, or microorganism that contains or is encoded by genetic material derived from multiple sources, such as two or more different strains or species of microorganisms. As used herein, the term "recombinant" may also be used to describe a microorganism that comprises a mutated nucleic acid or protein, including a mutated form of an endogenous nucleic acid or protein.

[0175] "Endogenous" refers to a nucleic acid or protein that is present or expressed in the wild-type or parental microorganism from which the microorganism of the invention is derived. For example, an endogenous gene is a gene that is natively present in the wild-type or parental microorganism from which the microorganism of the invention is derived. In one embodiment, the expression of an endogenous gene may be controlled by an exogenous regulatory element, such as an exogenous promoter.

[0176] "Exogenous" refers to a nucleic acid or protein that is not present in the wild-type or parental microorganism from which the microorganism of the invention is derived. In one embodiment, an exogenous gene or enzyme may be derived from a heterologous (i.e., different) strain or species and introduced to or expressed in the microorganism of the invention. In another embodiment, an exogenous gene or enzyme may be artificially or recombinantly created and introduced to or expressed in the microorganism of the invention. Exogenous nucleic acids may be adapted to integrate into the genome of the microorganism of the invention or to remain in an extra-chromosomal state in the microorganism of the invention, for example, in a plasmid.

[0177] "Enzyme activity," or simply "activity," refers broadly to enzymatic activity, including, but not limited, to the activity of an enzyme, the amount of an enzyme, or the availability of an enzyme to catalyze a reaction. Accordingly, "increasing" enzyme activity includes increasing the activity of an enzyme, increasing the amount of an enzyme, or increasing the availability of an enzyme to catalyze a reaction. Similarly, "decreasing" enzyme activity includes decreasing the activity of an enzyme, decreasing the amount of an enzyme, or decreasing the availability of an enzyme to catalyze a reaction.

[0178] With respect to enzyme activity, a "substrate" is a molecule upon which an enzyme acts and a "product" is a molecule produced by the action of an enzyme. A "native substrate," therefore, is a molecule upon which an enzyme natively acts in a wild-type microorganism and a "native product" is a molecule natively produced by the action of the enzyme in the wild-type microorganism. For example, butanoyl-CoA is the native substrate of Ptb and butanoyl phosphate and is the native substrate of Buk. Additionally, butanoyl phosphate is the native product of Ptb and butyrate (butanoate) is the native product of Buk. Likewise, a "non-native substrate" is a molecule upon which an enzyme does not natively act in a wild-type microorganism and a "non-native product" is a molecule not natively produced by the action of the enzyme in the wild-type microorganism. An enzyme that is capable of acting on multiple different substrates, whether native or non-native, is typically referred to as a "promiscuous" enzyme. The inventors have discovered that Ptb is promiscuous and is capable of accepting a variety of acyl-CoAs and enoyl-CoAs as substrates, such that Ptb-Buk may be used to convert a number of acyl-CoAs and enoyl-CoAs to their corresponding acids or alkenates, respectively, while simultaneously generating ATP. Thus, in preferred embodiments, the Ptb-Buk of the invention acts on non-native substrates (i.e., substrates other than butanoyl-CoA and/or butanoyl phosphate) to produce non-native products (i.e., products other than butanoyl phosphate and/or butyrate (butanoate)).

[0179] The term "butyryl-CoA" may be used interchangeably herein with "butanoyl-CoA."

[0180] The term "energy-generating" or the like may be used interchangeably herein with "energy-conserving" or the like. Both of these terms are commonly used in the literature.

[0181] "Mutated" refers to a nucleic acid or protein that has been modified in the microorganism of the invention compared to the wild-type or parental microorganism from which the microorganism of the invention is derived. In one embodiment, the mutation may be a deletion, insertion, or substitution in a gene encoding an enzyme. In another embodiment, the mutation may be a deletion, insertion, or substitution of one or more amino acids in an enzyme.

[0182] In particular, a "disruptive mutation" is a mutation that reduces or eliminates (i.e., "disrupts") the expression or activity of a gene or enzyme. The disruptive mutation may partially inactivate, fully inactivate, or delete the gene or enzyme. The disruptive mutation may be a knockout (KO) mutation. The disruptive mutation may be any mutation that reduces, prevents, or blocks the biosynthesis of a product produced by an enzyme. The disruptive mutation may include, for example, a mutation in a gene encoding an enzyme, a mutation in a genetic regulatory element involved in the expression of a gene encoding an enzyme, the introduction of a nucleic acid which produces a protein that reduces or inhibits the activity of an enzyme, or the introduction of a nucleic acid (e.g., antisense RNA, siRNA, CRISPR) or protein which inhibits the expression of an enzyme. The disruptive mutation may be introduced using any method known in the art.

[0183] Introduction of a disruptive mutation results in a microorganism of the invention that produces no target product or substantially no target product or a reduced amount of target product compared to the parental microorganism from which the microorganism of the invention is derived. For example, the microorganism of the invention may produce no target product or at least about 1%, 3%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95% less target product than the parental microorganism. For example, the microorganism of the invention may produce less than about 0.001, 0.01, 0.10, 0.30, 0.50, or 1.0 g/L target product.

[0184] "Codon optimization" refers to the mutation of a nucleic acid, such as a gene, for optimized or improved translation of the nucleic acid in a particular strain or species. Codon optimization may result in faster translation rates or higher translation accuracy. In a preferred embodiment, the genes of the invention are codon optimized for expression in Clostridium, particularly Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. In a further preferred embodiment, the genes of the invention are codon optimized for expression in Clostridium autoethanogenum LZ1561, which is deposited under DSMZ accession number DSM23693.

[0185] "Overexpressed" refers to an increase in expression of a nucleic acid or protein in the microorganism of the invention compared to the wild-type or parental microorganism from which the microorganism of the invention is derived. Overexpression may be achieved by any means known in the art, including modifying gene copy number, gene transcription rate, gene translation rate, or enzyme degradation rate.

[0186] The term "variants" includes nucleic acids and proteins whose sequence varies from the sequence of a reference nucleic acid and protein, such as a sequence of a reference nucleic acid and protein disclosed in the prior art or exemplified herein. The invention may be practiced using variant nucleic acids or proteins that perform substantially the same function as the reference nucleic acid or protein. For example, a variant protein may perform substantially the same function or catalyze substantially the same reaction as a reference protein. A variant gene may encode the same or substantially the same protein as a reference gene. A variant promoter may have substantially the same ability to promote the expression of one or more genes as a reference promoter.

[0187] Such nucleic acids or proteins may be referred to herein as "functionally equivalent variants." By way of example, functionally equivalent variants of a nucleic acid may include allelic variants, fragments of a gene, mutated genes, polymorphisms, and the like. Homologous genes from other microorganisms are also examples of functionally equivalent variants. These include homologous genes in species such as Clostridium acetobutylicum, Clostridium beijerinckii, or Clostridium ljungdahlii, the details of which are publicly available on websites such as Genbank or NCBI. Functionally equivalent variants also include nucleic acids whose sequence varies as a result of codon optimization for a particular microorganism. A functionally equivalent variant of a nucleic acid will preferably have at least approximately 70%, approximately 80%, approximately 85%, approximately 90%, approximately 95%, approximately 98%, or greater nucleic acid sequence identity (percent homology) with the referenced nucleic acid. A functionally equivalent variant of a protein will preferably have at least approximately 70%, approximately 80%, approximately 85%, approximately 90%, approximately 95%, approximately 98%, or greater amino acid identity (percent homology) with the referenced protein. The functional equivalence of a variant nucleic acid or protein may be evaluated using any method known in the art.

[0188] Nucleic acids may be delivered to a microorganism of the invention using any method known in the art. For example, nucleic acids may be delivered as naked nucleic acids or may be formulated with one or more agents, such as liposomes. The nucleic acids may be DNA, RNA, cDNA, or combinations thereof, as is appropriate. Restriction inhibitors may be used in certain embodiments. Additional vectors may include plasmids, viruses, bacteriophages, cosmids, and artificial chromosomes. In a preferred embodiment, nucleic acids are delivered to the microorganism of the invention using a plasmid. By way of example, transformation (including transduction or transfection) may be achieved by electroporation, ultrasonication, polyethylene glycol-mediated transformation, chemical or natural competence, protoplast transformation, prophage induction, or conjugation. In certain embodiments having active restriction enzyme systems, it may be necessary to methylate a nucleic acid before introduction of the nucleic acid into a microorganism.

[0189] Furthermore, nucleic acids may be designed to comprise a regulatory element, such as a promoter, to increase or otherwise control expression of a particular nucleic acid. The promoter may be a constitutive promoter or an inducible promoter. Ideally, the promoter is a Wood-Ljungdahl pathway promoter, a ferredoxin promoter, a pyruvate:ferredoxin oxidoreductase promoter, an Rnf complex operon promoter, an ATP synthase operon promoter, or a phosphotransacetylase/acetate kinase operon promoter.

[0190] A "microorganism" is a microscopic organism, especially a bacterium, archea, virus, or fungus. The microorganism of the invention is typically a bacterium. As used herein, recitation of "microorganism" should be taken to encompass "bacterium."

[0191] A "parental microorganism" is a microorganism used to generate a microorganism of the invention. The parental microorganism may be a naturally-occurring microorganism (i.e., a wild-type microorganism) or a microorganism that has been previously modified (i.e., a mutant or recombinant microorganism). The microorganism of the invention may be modified to express or overexpress one or more enzymes that were not expressed or overexpressed in the parental microorganism. Similarly, the microorganism of the invention may be modified to contain one or more genes that were not contained by the parental microorganism. The microorganism of the invention may also be modified to not express or to express lower amounts of one or more enzymes that were expressed in the parental microorganism. In one embodiment, the parental microorganism is Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. In a preferred embodiment, the parental microorganism is Clostridium autoethanogenum LZ1561, which is deposited under DSMZ accession number DSM23693.

[0192] The term "derived from" indicates that a nucleic acid, protein, or microorganism is modified or adapted from a different (e.g., a parental or wild-type) nucleic acid, protein, or microorganism, so as to produce a new nucleic acid, protein, or microorganism. Such modifications or adaptations typically include insertion, deletion, mutation, or substitution of nucleic acids or genes. Generally, the microorganism of the invention is derived from a parental microorganism. In one embodiment, the microorganism of the invention is derived from Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. In a preferred embodiment, the microorganism of the invention is derived from Clostridium autoethanogenum LZ1561, which is deposited under DSMZ accession number DSM23693.

[0193] The microorganism of the invention may be further classified based on functional characteristics. For example, the microorganism of the invention may be or may be derived from a C1-fixing microorganism, an anaerobe, an acetogen, an ethanologen, a carboxydotroph, and/or a methanotroph. Table 1 provides a representative list of microorganisms and identifies their functional characteristics.

TABLE-US-00004 TABLE 1 C1- Anaer- Ace- Ethanol- Auto- Carboxy- Meth- fixing obe togen ogen troph dotroph anotroph Acetobacterium woodii + + + +/- .sup.1 - - - Alkalibaculum bacchii + + + + + + - Blautia producta + + + - + + - Butyri bacterium methylotrophicum + + + + + + - Clostridium aceticum + + + - + + - Clostridium autoethanogenum + + + + + + - Clostridium carboxidivorans + + + + + + - Clostridium coskatii + + + + + + - Clostridium drakei + + + - + + - Clostridium formicoaceticum + + + - + + - Clostridium ljungdahlii + + + + + + - Clostridium magnum + + + - + +/- .sup.2 - Clostridium ragsdalei + + + + + + - Clostridium scatologenes + + + - + + - Eubacterium limosum + + + - + + - Moorella thermautotrophica + + + + + + - Moorella thermoacetica (formerly + + + - .sup.3 + + - Clostridium thermoaceticum) Oxobacter pfennigii + + + - + + - Sporomusa ovata + + + - + +/- .sup.4 - Sporomusa silvacetica + + + - + +/- .sup.5 - Sporomusa sphaeroides + + + - + +/- .sup.6 - Thermoanaerobacter kiuvi + + + - + - - .sup.1 Acetobacterium woodi can produce ethanol from fructose, but not from gas. .sup.2 It has not been investigated whether Clostridium magnum can grow on CO. .sup.3 One strain of Moorella thermoacetica, Moorella sp. HUC22-1, has been reported to produce ethanol from gas. .sup.4 It has not been investigated whether Sporomusa ovata can grow on CO. .sup.5 It has not been investigated whether Sporomusa silvacetica can grow on CO. .sup.6 It has not been investigated whether Sporomusa sphaeroides can grow on CO.

[0194] "C1" refers to a one-carbon molecule, for example, CO, CO.sub.2, CH.sub.4, or CH.sub.3OH. "C1-oxygenate" refers to a one-carbon molecule that also comprises at least one oxygen atom, for example, CO, CO.sub.2, or CH.sub.3OH. "C1-carbon source" refers a one carbon-molecule that serves as a partial or sole carbon source for the microorganism of the invention. For example, a C1-carbon source may comprise one or more of CO, CO.sub.2, CH.sub.4, CH.sub.3OH, or CH.sub.2O.sub.2. Preferably, the C1-carbon source comprises one or both of CO and CO.sub.2. A "C1-fixing microorganism" is a microorganism that has the ability to produce one or more products from a C1-carbon source. Typically, the microorganism of the invention is a C1-fixing bacterium. In a preferred embodiment, the microorganism of the invention is derived from a C1-fixing microorganism identified in Table 1.

[0195] An "anaerobe" is a microorganism that does not require oxygen for growth. An anaerobe may react negatively or even die if oxygen is present above a certain threshold. Typically, the microorganism of the invention is an anaerobe. In a preferred embodiment, the microorganism of the invention is derived from an anaerobe identified in Table 1.

[0196] An "acetogen" is a microorganism that produces or is capable of producing acetate (or acetic acid) as a product of anaerobic respiration. Typically, acetogens are obligately anaerobic bacteria that use the Wood-Ljungdahl pathway as their main mechanism for energy conservation and for synthesis of acetyl-CoA and acetyl-CoA-derived products, such as acetate (Ragsdale, Biochim Biophys Acta, 1784: 1873-1898, 2008). Acetogens use the acetyl-CoA pathway as a (1) mechanism for the reductive synthesis of acetyl-CoA from CO.sub.2, (2) terminal electron-accepting, energy conserving process, (3) mechanism for the fixation (assimilation) of CO.sub.2 in the synthesis of cell carbon (Drake, Acetogenic Prokaryotes, In: The Prokaryotes, 3.sup.rd edition, p. 354, New York, N.Y., 2006). All naturally occurring acetogens are C1-fixing, anaerobic, autotrophic, and non-methanotrophic. Typically, the microorganism of the invention is an acetogen. In a preferred embodiment, the microorganism of the invention is derived from an acetogen identified in Table 1.

[0197] An "ethanologen" is a microorganism that produces or is capable of producing ethanol. Typically, the microorganism of the invention is an ethanologen. In a preferred embodiment, the microorganism of the invention is derived from an ethanologen identified in Table 1.

[0198] An "autotroph" is a microorganism capable of growing in the absence of organic carbon. Instead, autotrophs use inorganic carbon sources, such as CO and/or CO.sub.2. Typically, the microorganism of the invention is an autotroph. In a preferred embodiment, the microorganism of the invention is derived from an autotroph identified in Table 1.

[0199] A "carboxydotroph" is a microorganism capable of utilizing CO as a sole source of carbon. Typically, the microorganism of the invention is a carboxydotroph. In a preferred embodiment, the microorganism of the invention is derived from a carboxydotroph identified in Table 1.

[0200] A "methanotroph" is a microorganism capable of utilizing methane as a sole source of carbon and energy. In certain embodiments, the microorganism of the invention is derived from a methanotroph.

[0201] More broadly, the microorganism of the invention may be derived from any genus or species identified in Table 1.

[0202] In a preferred embodiment, the microorganism of the invention is derived from the cluster of Clostridia comprising the species Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei. These species were first reported and characterized by Abrini, Arch Microbiol, 161: 345-351, 1994 (Clostridium autoethanogenum), Tanner, Int J System Bacteriol, 43: 232-236, 1993 (Clostridium ljungdahlii), and Huhnke, WO 2008/028055 (Clostridium ragsdalei).

[0203] These three species have many similarities. In particular, these species are all C1-fixing, anaerobic, acetogenic, ethanologenic, and carboxydotrophic members of the genus Clostridium. These species have similar genotypes and phenotypes and modes of energy conservation and fermentative metabolism. Moreover, these species are clustered in clostridial rRNA homology group I with 16S rRNA DNA that is more than 99% identical, have a DNA G+C content of about 22-30 mol %, are gram-positive, have similar morphology and size (logarithmic growing cells between 0.5-0.7.times.3-5 .mu.m), are mesophilic (grow optimally at 30-37.degree. C.), have similar pH ranges of about 4-7.5 (with an optimal pH of about 5.5-6), lack cytochromes, and conserve energy via an Rnf complex. Also, reduction of carboxylic acids into their corresponding alcohols has been shown in these species (Perez, Biotechnol Bioeng, 110:1066-1077, 2012). Importantly, these species also all show strong autotrophic growth on CO-containing gases, produce ethanol and acetate (or acetic acid) as main fermentation products, and produce small amounts of 2,3-butanediol and lactic acid under certain conditions.

[0204] However, these three species also have a number of differences. These species were isolated from different sources: Clostridium autoethanogenum from rabbit gut, Clostridium ljungdahlii from chicken yard waste, and Clostridium ragsdalei from freshwater sediment. These species differ in utilization of various sugars (e.g., rhamnose, arabinose), acids (e.g., gluconate, citrate), amino acids (e.g., arginine, histidine), and other substrates (e.g., betaine, butanol). Moreover, these species differ in auxotrophy to certain vitamins (e.g., thiamine, biotin). These species have differences in nucleic and amino acid sequences of Wood-Ljungdahl pathway genes and proteins, although the general organization and number of these genes and proteins has been found to be the same in all species (Kopke, Curr Opin Biotechnol, 22: 320-325, 2011).

[0205] Thus, in summary, many of the characteristics of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei are not specific to that species, but are rather general characteristics for this cluster of C1-fixing, anaerobic, acetogenic, ethanologenic, and carboxydotrophic members of the genus Clostridium. However, since these species are, in fact, distinct, the genetic modification or manipulation of one of these species may not have an identical effect in another of these species. For instance, differences in growth, performance, or product production may be observed.

[0206] The microorganism of the invention may also be derived from an isolate or mutant of Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. Isolates and mutants of Clostridium autoethanogenum include JA1-1 (DSM10061) (Abrini, Arch Microbiol, 161: 345-351, 1994), LBS1560 (DSM19630) (WO 2009/064200), and LZ1561 (DSM23693). Isolates and mutants of Clostridium ljungdahlii include ATCC 49587 (Tanner, Int J Syst Bacteriol, 43: 232-236, 1993), PETCT (DSM13528, ATCC 55383), ERI-2 (ATCC 55380) (U.S. Pat. No. 5,593,886), C-01 (ATCC 55988) (U.S. Pat. No. 6,368,819), O-52 (ATCC 55989) (U.S. Pat. No. 6,368,819), and OTA-1 (Tirado-Acevedo, Production of bioethanol from synthesis gas using Clostridium ljungdahlii, PhD thesis, North Carolina State University, 2010). Isolates and mutants of Clostridium ragsdalei include PI 1 (ATCC BAA-622, ATCC PTA-7826) (WO 2008/028055).

[0207] In some embodiments, however, the microorganism of the invention is a microorganism other than Clostridium autoethanogenum, Clostridium ljungdahlii, or Clostridium ragsdalei. For example, the microorganism may be selected from the group consisting of Escherichia coli, Saccharomyces cerevisiae, Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium saccharbutyricum, Clostridium saccharoperbutylacetonicum, Clostridium butyricum, Clostridium diolis, Clostridium kluyveri, Clostridium pasterianium, Clostridium novyi, Clostridium difficile, Clostridium thermocellum, Clostridium cellulolyticum, Clostridium cellulovorans, Clostridium phytofermentans, Lactococcus lactis, Bacillus subtilis, Bacillus licheniformis, Zymomonas mobilis, Klebsiella oxytoca, Klebsiella pneumonia, Corynebacterium glutamicum, Trichoderma reesei, Cupriavidus necator, Pseudomonas putida, Lactobacillus plantarum, and Methylobacterium extorquens.

[0208] "Substrate" refers to a carbon and/or energy source for the microorganism of the invention. Typically, the substrate is gaseous and comprises a C1-carbon source, for example, CO, CO.sub.2, and/or CH.sub.4. Preferably, the substrate comprises a C1-carbon source of CO or CO+CO.sub.2. The substrate may further comprise other non-carbon components, such as H.sub.2, N.sub.2, or electrons.

[0209] The substrate generally comprises at least some amount of CO, such as about 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 mol % CO. The substrate may comprise a range of CO, such as about 20-80, 30-70, or 40-60 mol % CO. Preferably, the substrate comprises about 40-70 mol % CO (e.g., steel mill or blast furnace gas), about 20-30 mol % CO (e.g., basic oxygen furnace gas), or about 15-45 mol % CO (e.g., syngas). In some embodiments, the substrate may comprise a relatively low amount of CO, such as about 1-10 or 1-20 mol % CO. The microorganism of the invention typically converts at least a portion of the CO in the substrate to a product. In some embodiments, the substrate comprises no or substantially no CO.

[0210] The substrate may comprise some amount of H.sub.2. For example, the substrate may comprise about 1, 2, 5, 10, 15, 20, or 30 mol % H.sub.2. In some embodiments, the substrate may comprise a relatively high amount of H.sub.2, such as about 60, 70, 80, or 90 mol % H.sub.2. In further embodiments, the substrate comprises no or substantially no H.sub.2.

[0211] The substrate may comprise some amount of CO.sub.2. For example, the substrate may comprise about 1-80 or 1-30 mol % CO.sub.2. In some embodiments, the substrate may comprise less than about 20, 15, 10, or 5 mol % CO.sub.2. In another embodiment, the substrate comprises no or substantially no CO.sub.2.

[0212] Although the substrate is typically gaseous, the substrate may also be provided in alternative forms. For example, the substrate may be dissolved in a liquid saturated with a CO-containing gas using a microbubble dispersion generator. By way of further example, the substrate may be adsorbed onto a solid support.

[0213] The substrate and/or C1-carbon source may be a waste gas obtained as a byproduct of an industrial process or from some other source, such as from automobile exhaust fumes or biomass gasification. In certain embodiments, the industrial process is selected from the group consisting of ferrous metal products manufacturing, such as a steel mill manufacturing, non-ferrous products manufacturing, petroleum refining processes, coal gasification, electric power production, carbon black production, ammonia production, methanol production, and coke manufacturing. In these embodiments, the substrate and/or C1-carbon source may be captured from the industrial process before it is emitted into the atmosphere, using any convenient method.

[0214] The substrate and/or C1-carbon source may be syngas, such as syngas obtained by gasification of coal or refinery residues, gasification of biomass or lignocellulosic material, or reforming of natural gas. In another embodiment, the syngas may be obtained from the gasification of municipal solid waste or industrial solid waste.

[0215] The composition of the substrate may have a significant impact on the efficiency and/or cost of the reaction. For example, the presence of oxygen (O.sub.2) may reduce the efficiency of an anaerobic fermentation process. Depending on the composition of the substrate, it may be desirable to treat, scrub, or filter the substrate to remove any undesired impurities, such as toxins, undesired components, or dust particles, and/or increase the concentration of desirable components.

[0216] The microorganism of the invention may be cultured to produce one or more products. For instance, Clostridium autoethanogenum produces or can be engineered to produce ethanol (WO 2007/117157), acetate (WO 2007/117157), butanol (WO 2008/115080 and WO 2012/053905), butyrate (WO 2008/115080), 2,3-butanediol (WO 2009/151342), lactate (WO 2011/112103), butene (WO 2012/024522), butadiene (WO 2012/024522), methyl ethyl ketone (2-butanone) (WO 2012/024522 and WO 2013/185123), ethylene (WO 2012/026833), acetone (WO 2012/115527), isopropanol (WO 2012/115527), lipids (WO 2013/036147), 3-hydroxypropionate (3-HP) (WO 2013/180581), isoprene (WO 2013/180584), fatty acids (WO 2013/191567), 2-butanol (WO 2013/185123), 1,2-propanediol (WO 2014/0369152), and 1-propanol (WO 2014/0369152). In addition to one or more target products, the microorganism of the invention may also produce ethanol, acetate, and/or 2,3-butanediol. In certain embodiments, microbial biomass itself may be considered a product.

[0217] A "native product" is a product produced by a genetically unmodified microorganism. For example, ethanol, acetate, and 2,3-butanediol are native products of Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei. A "non-native product" is a product that is produced by a genetically modified microorganism, but is not produced by a genetically unmodified microorganism from which the genetically modified microorganism is derived.

[0218] The terms "intermediate" and "precursor," which may be referred to interchangeably herein, refer to a molecular entity in an enzymatic pathway upstream of an observed or target product.

[0219] "Selectivity" refers to the ratio of the production of a target product to the production of all fermentation products produced by a microorganism. The microorganism of the invention may be engineered to produce products at a certain selectivity or at a minimum selectivity. In one embodiment, a target product account for at least about 5%, 10%, 15%, 20%, 30%, 50%, or 75% of all fermentation products produced by the microorganism of the invention. In one embodiment, the target product accounts for at least 10% of all fermentation products produced by the microorganism of the invention, such that the microorganism of the invention has a selectivity for the target product of at least 10%. In another embodiment, the target product accounts for at least 30% of all fermentation products produced by the microorganism of the invention, such that the microorganism of the invention has a selectivity for the target product of at least 30%.

[0220] "Increasing the efficiency," "increased efficiency," and the like include, but are not limited to, increasing growth rate, product production rate or volume, product volume per volume of substrate consumed, or product selectivity. Efficiency may be measured relative to the performance of parental microorganism from which the microorganism of the invention is derived.

[0221] Typically, the culture is performed in a bioreactor. The term "bioreactor" includes a culture/fermentation device consisting of one or more vessels, towers, or piping arrangements, such as a continuous stirred tank reactor (CSTR), immobilized cell reactor (ICR), trickle bed reactor (TBR), bubble column, gas lift fermenter, static mixer, or other vessel or other device suitable for gas-liquid contact. In some embodiments, the bioreactor may comprise a first growth reactor and a second culture/fermentation reactor. The substrate may be provided to one or both of these reactors. As used herein, the terms "culture" and "fermentation" are used interchangeably. These terms encompass both the growth phase and product biosynthesis phase of the culture/fermentation process.

[0222] The culture is generally maintained in an aqueous culture medium that contains nutrients, vitamins, and/or minerals sufficient to permit growth of the microorganism. Preferably the aqueous culture medium is an anaerobic microbial growth medium, such as a minimal anaerobic microbial growth medium. Suitable media are well known in the art.

[0223] The culture/fermentation should desirably be carried out under appropriate conditions for production of the target product. Typically, the culture/fermentation is performed under anaerobic conditions. Reaction conditions to consider include pressure (or partial pressure), temperature, gas flow rate, liquid flow rate, media pH, media redox potential, agitation rate (if using a continuous stirred tank reactor), inoculum level, maximum gas substrate concentrations to ensure that gas in the liquid phase does not become limiting, and maximum product concentrations to avoid product inhibition. In particular, the rate of introduction of the substrate may be controlled to ensure that the concentration of gas in the liquid phase does not become limiting, since products may be consumed by the culture under gas-limited conditions.

[0224] Operating a bioreactor at elevated pressures allows for an increased rate of gas mass transfer from the gas phase to the liquid phase. Accordingly, it is generally preferable to perform the culture/fermentation at pressures higher than atmospheric pressure. Also, since a given gas conversion rate is, in part, a function of the substrate retention time and retention time dictates the required volume of a bioreactor, the use of pressurized systems can greatly reduce the volume of the bioreactor required and, consequently, the capital cost of the culture/fermentation equipment. This, in turn, means that the retention time, defined as the liquid volume in the bioreactor divided by the input gas flow rate, can be reduced when bioreactors are maintained at elevated pressure rather than atmospheric pressure. The optimum reaction conditions will depend partly on the particular microorganism used. However, in general, it is preferable to operate the fermentation at a pressure higher than atmospheric pressure. Also, since a given gas conversion rate is in part a function of substrate retention time and achieving a desired retention time in turn dictates the required volume of a bioreactor, the use of pressurized systems can greatly reduce the volume of the bioreactor required, and consequently the capital cost of the fermentation equipment.

[0225] Target products may be separated or purified from a fermentation broth using any method or combination of methods known in the art, including, for example, fractional distillation, evaporation, pervaporation, gas stripping, phase separation, and extractive fermentation, including for example, liquid-liquid extraction. In certain embodiments, target products are recovered from the fermentation broth by continuously removing a portion of the broth from the bioreactor, separating microbial cells from the broth (conveniently by filtration), and recovering one or more target products from the broth. Alcohols and/or acetone may be recovered, for example, by distillation. Acids may be recovered, for example, by adsorption on activated charcoal. Separated microbial cells are preferably returned to the bioreactor. The cell-free permeate remaining after target products have been removed is also preferably returned to the bioreactor. Additional nutrients (such as B vitamins) may be added to the cell-free permeate to replenish the medium before it is returned to the bioreactor.

EXAMPLES

[0226] The following examples further illustrate the invention but, of course, should not be construed to limit its scope in any way.

Example 1

[0227] This example demonstrates the ability of Ptb-Buk to convert acetoacetyl-CoA to acetoacetate in E. coli in vivo and its use in production of acetone, isopropanol, 3-hydroxybutyrate, and isobutylene

[0228] Pathways that rely on the Ptb-Buk system for acetoacetate production from acetoacetyl-CoA were designed and constructed. This was done in a modular fashion using a pDUET vector system (Novagen). One module contained ptb-buk genes from C. beijerinckii NCIMB8052 (GenBank NC_009617, position 232027..234147; Cbei_0203-204; NCBI-GeneID 5291437-38) on plasmid pACYC. Another module contained the thiolase gene thlA of C. acetobutylicum (Genbank NC_001988, position 82040..83218; CA_P0078; NCBI-GeneID 1116083) and the acetoacetate decarboxylase gene adc of C. beijerinckii NCIMB8052 (Genbank NC_009617, position 4401916..4402656; Cbei_3835; NCBI-GeneID 5294996) on plasmid pCOLA. Ptb and buk genes were amplified from genomic DNA of C. beijerinckii NCIMB8052 and thlA and adc genes from an existing acetone plasmid pMTL85147-thlA-ctfAB-adc (WO 2012/115527) and cloned under control of the T7 promoter present in the pDUET vectors via restriction independent cloning with the circular polymerase extension cloning (CPEC) method (Quan, PloS One, 4:e6441, 2009).

[0229] Oligonucleotides used for amplification of ptb and buk genes:

TABLE-US-00005 SEQ ID NO: Name Sequence Direction 95 pACYCDuet-ptb- AAGTTTTTACTCATATGTAT reverse buk-pACYC-ptb-R1 ATCTCCTTCTTATACTTAAC 96 pACYCDuet-ptb- AGAAGGAGATATACATATGA forward buk-ptb-pACYC-F1 GTAAAAACTTTGATGAGTTA 97 pACYCDuet-ptb- ACCAGACTCGAGGGTACCTA reverse buk-buk-pACYC-R1 GTAAACCTTAGCTTGTTC 98 pACYCDuet-ptb- TAAGGTTTACTAGGTACCCT forward buk-pACYC-buk-F1 CGAGTCTGGTAAAGAAAC

[0230] Oligonucleotides used for amplification of thlA and adc genes:

TABLE-US-00006 SEQ ID NO: Name Sequence Direction 99 pCOLADuet-thlA- ACATATGTATATCTCCTTC reverse adc-thlA-adc-R1 TTACTAGCACTTTTCTAGC AATATTG 100 pCOLADuet-thlA- AGTAAGAAGGAGATATACA forward adc-adc-Th1A-F1 TATGTTAGAAAGTGAAGTA TCTAAAC 101 pCOLADuet-thlA- CAGACTCGAGGGTACCTTA reverse adc-adc-pCOLA-R1 TTTTACTGAAAGATAATCA TGTAC 102 pCOLADuet-thlA- TCTTTCAGTAAAATAAGGT forward adc-pCOLA-adc-F1 ACCCTCGAGTCTGGTAAAG AAAC 103 pCOLADuet-thlA- GAAGGAGATATACATATGA forward adc-thlA-pCOLA- AAGAAGTTGTAATAGCTAG F1 TG 104 pCOLADuet-thlA- ACAACTTCTTTCATATGTA reverse adc-pCOLA-thlA- TATCTCCTTCTTATACTTA R1 AC

[0231] After the plasmids pACYC-ptb-buk (SEQ ID NO: 105) and pCOLA-thlA-adc (SEQ ID NO: 106) were constructed, they were transformed individually and together into E. coli BL21 (DE3) (Novagen) and growth experiments carried out in quadruplicates in 1.5 mL cultures in 12-well plates at 28.degree. C. with 160 rpm orbital shaking using M9 minimal medium (Sambrook, Molecular Cloning: A Laboratory Manual, Vol 3, Cold Spring Harbour Press, 1989) with glucose (FIG. 4). The cultures were inoculated at an OD 600 nm of 0.1 and induced with different concentrations of IPTG (0, 50, 100 .mu.M) after 2 h of growth (FIG. 5). The plates were sealed using plate tape strips and each well was pierced with a green tipped needle to provide micro-aerobic conditions. Growth was carried out for another 64 h of induction. The experiment was repeated in triplicate.

[0232] Acetone concentrations, as well as the concentrations of other metabolites such as isobutylene, were measured using gas chromatography (GC) analysis, employing an Agilent 6890N headspace GC equipped with a Supelco polyethylene glycol (PEG) 60-.mu.m solid-phase microextraction fiber, a Restek Rtx-1 (30 m.times.0.32 .mu.m.times.5 .mu.m) column, and a flame ionization detector (FID). Samples (4 ml) were transferred into a 20-ml headspace vial, upon which the fiber was incubated (exposed) for 10 min at 50.degree. C. The sample was desorbed in the injector at 250.degree. C. for 9 min. Chromatography was performed with an oven program of 40.degree. C. (5-min hold) and 10.degree. C./min to 200.degree. C., followed by a 5-min hold at 220.degree. C. The column flow rate was 1 ml/min, with hydrogen as the carrier gas. The FID was kept at 250.degree. C., with hydrogen at 40 ml/min, air at 450 ml/min, and nitrogen at 15 ml/min as the makeup gas.

[0233] It was immediately obvious that acetone was produced in the strain carrying both the pACYC-ptb-buk and pCOLA-thlA-adc plasmids (expressing thiolase, Ptb-Buk, and acetoacetate decarboxylase). Average final acetone production of 0.19 g/L was measured, whereas no acetone was produced in a no plasmid control, media control, and single plasmid controls pACYC-ptb-buk (expressing Ptb-Buk) or pCOLA-thlA-adc plasmid (expressing thiolase and acetoacetate decarboxylase) (below reliable detection limit). The uninduced culture of the strain carrying both the pACYC-ptb-buk and pCOLA-thlA-adc plasmids (expressing thiolase, Ptb-Buk, and acetoacetate decarboxylase) did not produce appreciable amounts of acetone. [0234] Average acetone production in E. coli BL21 (DE3):

TABLE-US-00007 [0234] Strain Acetone (g/L) Thl + Ptb-Buk + Adc [E. coli BL21 (DE3) + 0.19 .+-. 0.04 pACYC-ptb-buk + pCOLA-thlA-adc] Thl + Adc alone [E. coli BL21 (DE3) + pCOLA-thlA-adc] 0 .04 .+-. 0.01 Ptb-Buk alone [E. coli BL21 (DE3) + pACYC-ptb-buk] 0.03 .+-. 0.01 No plasmid control [E. coli BL21 (DE3)] 0.04 .+-. 0.01 Media control 0.03 .+-. 0.01

[0235] This experiment clearly demonstrates that Ptb-Buk is able to perform the conversion of acetoacetyl-CoA to acetoacetate can be used in place of a CoA-transferase or a thioesterase for the production of acetone, exemplified using a route that comprises steps 1, 2, and 3 of FIG. 1.

[0236] It is well known that isopropanol can be produced from acetone by addition of a primary:secondary alcohol dehydrogenase (Kopke, Appl Environ Microbiol, 80: 3394-3403, 2014) (step 4 in FIG. 1) and that isobutylene can be produced from acetone via addition of a hydroxyisovalerate synthase (step 5 in FIG. 1) and decarboxylase (step 6 in FIG. 1) (van Leeuwen, Appl Microbiol Biotechnol, 93: 1377-1387, 2012). A pathway can be constructed that includes the above-demonstrated acetone route via Ptb-Buk with the genes thlA, ptb-buk, and adc and a primary:secondary alcohol dehydrogenase gene (e.g., Genbank accession number NC_022592, pos. 609711..610766; CAETHG_0553; NCBI-GeneID: 17333984) that would allow isopropanol production via the Ptb-Buk system in E. coli comprising steps 1, 2, 3, and 4 of FIG. 1. Similarly, a pathway can be constructed that includes the above-demonstrated acetone route via Ptb-Buk conversion of acetoacetyl-CoA to acetoacetate with the genes thlA, ptb-buk, and adc and genes for a hydroxyisovalerate synthase and decarboxylase that would allow isobutylene production via the Ptb-Buk system in E. coli comprising of steps 1, 2, 3, 5, and 6 of FIG. 1. Acetoacetate can also be converted to 3-hydroxybutyrate via a 3-hydroxybutyrate dehydrogenase Bdh. This can be combined with Ptb-Buk conversion of acetoacetyl-CoA to acetoacetate for 3-hydroxybutyrate production in a strain expressing genes thlA, ptb-buk, and bdh resulting in a pathway comprising steps 1, 2, and 15 of FIG. 1.

Example 2

[0237] This example demonstrates the ability of Ptb-Buk to convert acetoacetyl-CoA to acetoacetate in C. autoethanogenum in vivo and the use of Ptb-Buk in the production of acetone, isopropanol, 3-hydroxybutyrate, and isobutylene from a gaseous substrate.

[0238] To demonstrate that the Ptb-Buk system also allows acetone, isopropanol, or isobutylene synthesis from gaseous substrates, a plasmid was constructed that contains the same genes as in Example 1, thl+ptb-buk+adc under control of a clostridial promoter on a shuttle vector that allows expression in acetogens such as C. autoethanogenum, C. ljungdahlii or C. ragsdalei.

[0239] The pMTL plasmid is a shuttle plasmid system for introducing circular dna into Clostridia via E. coli conjugation (Heap, J Microbiol Methods, 78: 79-85, 2009. The genes of interest (i.e., hbd, phaB, thlA, ptb, buk, and aor1) were cloned into the lacZ region of the plasmids using common techniques in molecular biology including dna restriction digestion followed by ligation, and the golden gate dna assembly technology when more than one pieces of dna fragments were to be cloned simultaneously into the plasmid. The constructed plasmids are verified by DNA sequencing.

[0240] Production of acetone and isopropanol was previously demonstrated in C. autoethanogenum using a plasmid pMTL85147-thlA-ctfAB-adc encoding thl+ctfAB+adc (WO 2012/115527) under the control of a clostridial promoter from the Wood-Ljungdahl gene cluster. In this plasmid the ctfAB genes encoding the CoA transferase were replaced directly with ptb-buk genes encoding the Ptb-Buk system. This was done as described in Example 1 using the CPEC method. The resulting plasmid is pMTL85147-thlA-ptb-buk-adc.

[0241] Oligonucleotides used for the amplification of ptb-buk and cloning into pMTL8317-thl-ptb-buk-adc are described below.

TABLE-US-00008 SEQ ID NO: Name Sequence Direction 107 thlA-ptb-R1 ATTTCCTCCCTTTCTAGCACTTT reverse TCTAGCAATATTG 108 adc-buk-F1 TAAGGTTTACTAAGGAGGTTGT forward TTTATGTTAGAAAG 109 thlA-ptb-F1 GCTAGAAAAGTGCTAGAAAGG forward GAGGAAATGAACATG 110 Buk-adc-R1 AAAACAACCTCCTTAGTAAACC reverse TTAGCTTGTTCTTC

[0242] C. autoethanogenum DSM10061 and DSM23693 (a derivate of DSM10061) were sourced from DSMZ (The German Collection of Microorganisms and Cell Cultures, Inhoffenstra e 7 B, 38124 Braunschweig, Germany).

[0243] Strains were grown at 37.degree. C. in PETC medium at pH 5.6 using standard anaerobic techniques (Hungate, Meth Microbiol, 3B: 117-132, 1969; Wolfe, Adv Microb Physiol, 6: 107-146, 1971). 30 psi CO-containing steel mill gas (collected from New Zealand Steel site in Glenbrook, NZ) or a synthetic gas blend with same composition of 44% CO, 32% N.sub.2, 22% CO.sub.2, 2% H.sub.2 was used as substrate for autotrophic growth. For solid media, 1.2% bacto agar (BD, Franklin Lakes, N.J. 07417, USA) was added.

[0244] The construct was synthesized and then transformed into C. autoethanogenum via conjugation. For this, the expression vector was first introduced into the conjugative donor strain E. coli HB101+R702 (CA434) (Williams, J Gen Microbiol, 1136: 819-826, 1990) (the donor) using standard heat shock transformation. Donor cells were recovered in SOC medium (Sambrook, Molecular Cloning: A Laboratory Manual, Vol 3, Cold Spring Harbour Press, 1989) at 37.degree. C. for 1 h before being plated on to LB medium (Sambrook, Molecular Cloning: A Laboratory Manual, Vol 3, Cold Spring Harbour Press, 1989) plates containing 100 .mu.g/ml spectinomycin and 25 .mu.g/ml chloramphenicol. LB plates were incubated at 37.degree. C. overnight. The next day, 5 ml LB aliquots containing 100 .mu.g/ml spectinomycin and 25 .mu.g/ml chloramphenicol were inoculated with several donor colonies and incubated at 37.degree. C., shaking for approximately 4 h, or until the culture was visibly dense but had not yet entered stationary phase. 1.5 ml of the donor culture was harvested in a microcentrifuge tube at room temperature by centrifugation at 4000 rpm for 2 min, and the supernatant was discarded. The donor cells were gently resuspended in 500 .mu.l sterile PBS buffer (Sambrook, Molecular Cloning: A Laboratory Manual, Vol 3, Cold Spring Harbour Press, 1989) and centrifuged at 4000 rpm for 2 min and the PBS supernatant was discarded. The pellet was introduced into an anaerobic chamber and gently resuspended in 200 .mu.l during late exponential phase C. autoethanogenum culture (the recipient). The conjugation mixture (the mix of donor and recipient cells) was spotted onto PETC-MES+fructose agar plates and left to dry. When the spots were no longer visibly wet, the plates were introduced into a pressure jar, pressurized with syngas to 25-30 psi and incubated at 37.degree. C. for .about.24 h. After 24 h incubation, the conjugation mixture was removed from the plates by gently scraping it off using a 10 .mu.l inoculation loop. The removed mixture was suspended in 200-300 .mu.l PETC medium. 100 .mu.l aliquots of the conjugation mixture were plated on to PETC medium agar plates supplemented 15 .mu.g/ml thiamphenicol to select for transformants bearing the plasmid, which confers resistance to thiamphenicol via expression of chloramphenicol acetyl-transferase.

[0245] Three distinct colonies of C. autoethanogenum bearing the pMTL85147-thlA-ptb-buk-adc plasmid were inoculated into 2 mL of PETC-MES medium with 15 .mu.g/ml thiamphenicol and grown autotrophically at 37.degree. C. with 100 rpm orbital shaking for three days. Cultures were diluted to OD.sub.600 nm=0.05 in 10 mL PETC-MES medium with 15 .mu.g/ml thiamphenicol in serum bottles and grown autotrophically at 37.degree. C. with 100 rpm orbital shaking for five days, sampling daily to measure biomass and metabolites. In parallel a control strain was examined where the expression plasmid encoded only thl and adc under the control of the Wood-Ljungdahl cluster promoter, with no ctfAB or ptb-buk genes to catalyse the formation of acetoacetate from acetoacetyl-CoA (pMTL85147-thlA-adc). Cultures were sampled for five days in order to monitor metabolites and biomass accumulation.

[0246] Isopropanol concentrations as well as concentrations of ethanol, acetic acid, 2,3-butanediol and lactic acid were measured by high-performance liquid chromatography (HPLC) on an Agilent LC with refractive index (RI) detection at 35.degree. C. Samples were prepared by diluting 400 .mu.L with 100 .mu.L of 5-sulfosalicylic acid solution (1% w/v in 1 M sulphuric acid), followed by a 3 minute centrifugation at 14,000 rpm; the supernatant was transferred to a glass vial for analysis. Separation was carried out with a 10 .mu.L injection on to an Alltech IOA-2000 column (150 mm.times.6.5 mm.times.8 .mu.m) at 0.7 mL/min and 65.degree. C. under isocratic conditions, using 5 mM sulphuric acid mobile phase.

[0247] In some instances, a longer HPLC method was used to improve peak separation. In this method, isopropanol, ethanol, acetate, 2,3-butanediol, and also 3-hydroxybutyrate (which is not separated using the shorter method) concentrations were measured by high-performance liquid chromatography (HPLC) on an Agilent 1260 Infinity LC with refractive index (RI) detection at 35.degree. C. Samples were prepared by diluting 400 .mu.L with 100 .mu.L of 5-sulfosalicylic acid solution (1% w/v in 1 M sulphuric acid), followed by a 3 minute centrifugation at 14,000 rpm; the supernatant was transferred to a glass vial for analysis. Separation was carried out with a 10 .mu.L injection on to an Aminex HPX-87H column (300 mm.times.7.8 mm.times.9 .mu.m) at 0.6 mL/min and 35.degree. C. under isocratic conditions, using 5 mM sulphuric acid mobile phase.

[0248] C. autoethanogenum bearing the pMTL85147-thlA-ptb-buk-adc produced isopropanol up to 0.804 g IPA/g of biomass, whereas control strain C. autoethanogenum with pMTL85147-thlA-adc that does not contain Ptb-Buk produced no IPA (FIG. 12).

[0249] This experiment clearly demonstrates that Ptb-Buk is able to perform the conversion of acetoacetyl-CoA to acetoacetate in the isopropanol pathway when using a gaseous substrate. Ptb-Buk can be used in place of a CoA transferase or a thioesterase in a gas-fermenting acetogen such as C. autoethanogenum, exemplified using a route that comprises steps 1, 2, 3, and 4 of FIG. 1.

[0250] C. autoethanogenum contains a native primary:secondary alcohol dehydrogenase that converts acetone to isopropanol (Kopke, Appl Environ Microbiol, 80: 3394-3403, 2014). It has been demonstrated that knock-out of this gene eliminates conversion of acetone to isopropanol in C. autoethanogenum (WO 2015/085015). In background of this knock-out, it becomes possible to produce acetone (rather than isopropanol) via the Ptb-Buk system from a gaseous feedstock, using the same genes comprising steps 1, 2, and 3 of FIG. 1. Addition of hydroxyisovalerate synthase and decarboxylase genes (van Leeuwen, Appl Microbiol Biotechnol, 93: 1377-1387, 2012) to this strain would enable isobutylene production from gas in C. autoethanogenum or similar bacteria comprising of steps 1, 2, 3, 5, and 6 of FIG. 1.

[0251] Acetoacetate can also be converted to 3-hydroxybutyrate via a 3-hydroxybutyrate dehydrogenase Bdh. A 3-hydroxybutyrate dehydrogenase was identified in the genome of C. autoethanogenum (AGY75962) and other acetogens as C. ljungdahlii (ADK16920.1). This activity can be combined with Ptb-Buk (or CoA transferase) conversion of acetoacetyl-CoA to acetoacetate for 3-hydroxybutyrate production in a strain expressing genes thlA, ptb-buk (or ctfAB) and bdh resulting a pathway comprising steps 1, 2, and 15 of FIG. 1. Low levels of 3-hydroxybutyrate formation (up to 2 g/L) via this route have been demonstrated in C. autoethanogenum. These levels could be enhanced by overexpressing the Bdh gene that is only expressed in at low levels natively.

[0252] In one experiment, C. autoethanogenum was transformed with plasmid pMTL82256-thlA-ctfAB as described in Example 2. The production was monitored for 10 days from six biological replicates under autotrophic conditions as described in Example 2. The average of 3-HB after 10 days was 1.86.+-.0.14 g/L. At day 10, 1,3-butanediol was produced (from 3-HB) at an average titer of 0.38.+-.0.05 g/L (FIG. 37). No acetone or isopropanol was formed. This demonstrates that 3-HB can be produced efficiently via acetoacetate through native enzymes.

[0253] In certain embodiments, it may be desirable to knock out or knock down expression of 3-hydroxybutyrate dehydrogenases, such as Bdh, to prevent carbon drain to 3-HB and therefore boost production of products such as acetone, isopropanol, and isobutylene.

Example 3

[0254] This example demonstrates the ability of Ptb-Buk to convert (R)-3-hydroxybutyryl-CoA to (R)-3-hydroxybutyryrate in E. coli in vivo for production of (R)-hydroxybutyrate, acetone, isopropanol, or isobutylene.

[0255] Pathways were designed and constructed that rely on the Ptb-Buk system for (R)-3-hydroxybutyrate production from (R)-3-hydroxybutyryl-CoA. Additionally, a 3-hydroxybutyrate dehydrogenase (Bdh) was utilized for conversion of (R)-3-HB to acetoacetate. It has been reported that Ralstonia pickettii have two 3-hydroxybutyrate dehydrogenases Bdh1 and Bdh2 that are able to convert 3-hydroxybutyrate to acetoacetate in vitro (Takanashi, J Biosci Bioeng, 101: 501-507, 2006). One pathway was designed making use of this enzyme for acetone production (steps 1, 13, 14, 15, 3 of FIG. 1), while recycling the reducing equivalents produced in the production of (R)-3-hydroxybutyryl-CoA and the ATP generated by Ptb-Buk (FIG. 6).

[0256] The pathways were constructed in a modular fashion using the pDUET vector system (Novagen). The two modules described in example above (pACYC-ptb-buk for expression of Ptb-Buk and pCOLA-thlA-adc for expression of thiolase and acetoacetate decarboxylase) were used together with two additional modules containing either (R)-specific 3-hydroxybutyrate dehydrogenase phaB of Cupravidus necator (WP_010810131.1) alone (pCDF-phaB) and one with 3-hydroxybutyrate dehydrogenase bdh1 gene of Ralstonia pickettii (BAE72684.1) (pCDF-phaB-bdh1) in vector pCDF. Both phaB and bdh1 gene were synthesized from GeneArt and cloned under control of the T7 promoter present in via restriction independent cloning with the circular polymerase extension cloning (CPEC) method (Quan, PloS One, 4:e6441, 2009).

[0257] Oligonucleotides used for amplification of bdh1 gene:

TABLE-US-00009 SEQ ID NO: Name Sequence Direction 111 pDuet-insert2-R1 CATATGTATATCTCCTTCTTA forward TACTTAAC 112 insert2-pDuet-F1 GTTAAGTATAAGAAGGAGATA forward TACATATG 113 pDuet-insert2-F1 CCTCGAGTCTGGTAAAGAAAC forward 114 insert2-pDuet-R1 GTTTCTTTACCAGACTCGAGG forward

[0258] Oligonucleotides used for amplification of phaB gene:

TABLE-US-00010 SEQ ID NO: Name Sequence Direction 115 pCDF-phaB-pACYC- CTATTCTTTGTGTCATGGTA forward phaB-R1 TATCTCCTTATTAAAG 116 pCDF-phaB-phaB- ATAAGGAGATATACCATGAC forward pACYC-F1 ACAAAGAATAGCATAC 117 pCDF-phaB-pACYC- TGGTTTACACATGGGATAAG forward phaB-F1 ATCCGAATTCGAGCTC 118 pCDF-phaB-phaB- AGCTCGAATTCGGATCTTAT forward pACYC-R1 CCCATGTGTAAACCAC

[0259] After the plasmids pACYC-ptb-buk (SEQ ID NO: 105), pCOLA-thlA-adc (SEQ ID NO: 106), pCDF-phaB (SEQ ID NO: 119) and pCDF-phaB-bdh1 (SEQ ID NO: 120) were constructed, they were transformed individually and in combinations into E. coli BL21 (DE3) (Novagen) and growth experiments were carried out in quadruplicate in 1.5 mL cultures in 12-well plates at 28.degree. C. with 160 rpm orbital shaking using M9 minimal medium with glucose. The cultures were inoculated at an OD 600 nm of 0.1 and after 2 h of growth induced with different concentrations of IPTG (0, 50, 100 .mu.M). The plates were sealed using BioRad plate tape strips and each well pierced with a green tipped needle to provide micro-aerobic conditions. Growth was carried out for another 64 h of induction. The experiment was repeated 3 times. Metabolites were measured as described in previous examples.

[0260] Cultures containing a combination of plasmids pACYC-ptb-buk, pCOLA-thlA-adc and pCDF-phaB produced between 1.65-2.4 g/L (R)-3-hydroxybutyrate (depending on level of inducer), with only very small amounts of byproducts (FIGS. 13A-F), demonstrating the efficiency of the Ptb-Buk system to convert (R)-3-hydroxybutyryl-CoA to (R)-3-hydroxybutyryrate and support growth (FIG. 13A-F). In cultures that also expressed bdh1 (containing a combination of plasmids pACYC-ptb-buk, pCOLA-thlA-adc, and pCDF-phaB-bdh1) only small amounts of (R)-3-hydroxybutyryrate were found in the culture media, while between 0.89-1.16 g/L acetone was found (depending on level of inducer), indicating that bdh1 gene is efficient in converting (R)-3-hydroxybutyrate to acetoacetate and further to acetone. In all plasmid combinations that lack Ptb-Buk, no 3-hydroxybutyrate or acetone was found (FIG. 13A-F). In these cultures, acetate levels were significantly higher.

[0261] This experiment clearly demonstrates that Ptb-Buk is able to perform the conversion of (R)-3-hydroxybutyrate-CoA to 3-hydroxybutyrate and also that Bdh1 is able in vivo to convert 3-hydroxybutyrate further to acetoacetate by recycling the reducing equivalents produced in the production of (R)-3-hydroxybutyryl-CoA. The experiment also highlights that Ptb-Buk is able to support growth and therefore acetate production becomes unnecessary. Production of (R)-3-hydroxybutyrate formation was exemplified in a strain that comprises steps 1, 13, and 14 of FIG. 1. Production of acetone was exemplified via a route that comprises steps 1, 13, 14, 15, and 3 of FIG. 1.

[0262] It is well known that isopropanol can be produced from acetone by addition of a primary:secondary alcohol dehydrogenase (step 4 in FIG. 1) (Kopke, Appl Environ Microbiol, 80: 3394-3403, 2014) and that isobutylene can be produced from acetone via addition of a hydroxyisovalerate synthase (step 5 in FIG. 1) and decarboxylase (step 6 in FIG. 1) (van Leeuwen, Appl Microbiol Biotechnol, 93: 1377-1387, 2012). A pathway can be constructed that includes the above-demonstrated acetone route via Ptb-Buk with the genes thlA, ptb-buk, and adc and a primary:secondary alcohol dehydrogenase gene (e.g., Genbank NC_022592, pos. 609711..610766; CAETHG_0553; NCBI-GeneID: 17333984) that would allow isopropanol production via the Ptb-Buk system in E. coli (steps 1, 13, 14, 15, 3, and 4 of FIG. 1). Similarly, a pathway can be constructed that includes the above-demonstrated acetone route via Ptb-Buk with the genes thlA, ptb-buk, and adc and genes for a hydroxyisovalerate synthase and decarboxylase that would allow isobutylene production via the Ptb-Buk system in E. coli (steps 1, 13, 14, 15, 3, 5, and 6 of FIG. 1).

Example 4

[0263] This example demonstrates the production of (R)-3-hydroxybutyrate and 1,3-butanediol in C. autoethanogenum. It also demonstrates production of 1,3-butanediol in absence of 2,3-butanediol.

[0264] A strain of C. autoethanogenum was constructed in which the native pathway for 2,3-butanediol production was inactivated and replaced with genes for (R)-3-hydroxybutyryl-CoA formation. This was achieved by replacing the acetolactate decarboxylase gene (budA) on genome of C. autoethanogenum with genes for thiolase (thlA of C. acetobutylicum; GenBank NC_001988, position 82040..83218; CA_P0078; NCBI-GeneID 1116083) and (R)-specific 3-hydroxybutyrate dehydrogenase (phaB of Cupravidus necator; GenBank WP_010810131.1) resulting in strain C. autoethanogenum budA::thlAphaB.

[0265] To replace budA gene with thlA and phaB genes a plasmid, pMTL8225-budA::thlA-phaB (FIG. 14), with E. coli toxin gene mazF under tet3n0 tetracycline inducible promoter (for counter selection), .about.1 kb upstream homology arm of budA gene, thlA, phaB, ermB cassette flanked by loxP sites and .about.1 kb downstream homology arm of budA gene were assembled on plasmid pMTL-tet3no.

[0266] The .about.1 kb upstream and downstream homology arms of budA were PCR amplified from C. autoethanogenum with primers SN01/SN02 and SN07/SN08. thlA and phaB genes were PCR amplified from genomic DNA of Cupriavidus necator using primers SN03/SN04mod. The ermB cassette flanked with loxP sites was PCR amplified using primers SN05mod/SN06. tet3no promoter flanked by FseI and PmeI was synthesized and treated with restriction enzymes FseI and PmeI and cleaned. The PCR products and digested vector were assembled using GeneArt Seamless cloning kit from Life Technologies and plasmid pMTL8225-budA::thlA-phaB (SEQ ID NO: 121) with no mutations in the inserted fragments was used to transform C. autoethanogenum by conjugation as described in previous examples.

[0267] Following conjugation and selection on trimethoprim and clarithromycin, 9 colonies were streaked twice on PETC-MES agar plates with clarithromycin and anhydrotetracycline to induce the expression of mazF genes. The colonies from clarithromycin and anhydrotetracycline should have the budA genes replaced with thlA and phaB genes and ermB cassette. This was verified by PCR using primers Og31f/Og32r flanking the homology arms and KAPA polymerase (FIG. 15).

[0268] While a band of .about.3.3 kb is amplified from the wild type strain, bands of .about.5.7 kb were amplified from colonies 1, 4, 7 and 9 indicating the replacement of budA gene with thlA, phaB and ermB cassette. The above event was further confirmed by sequencing the PCR products of all 4 clones. With the resulting modification the expression of thlA and phaB genes is driven by the promoter upstream of budA gene.

TABLE-US-00011 SEQ ID NO: Description Sequence 122 SN01 ATTTACAAATTCGGCCGGCCTACCTCCTCGTA TAAATAAGATG 123 SN02 CTAGCTATTACAACTTCTTTCATATTACATTC ACCTCTATGTC 124 SN03 GACATAGAGGTGAATGTAATATGAAAGAAGTT GTAATAGCTAG 125 SN04mod GTATAGCATACATTATACGAACGGTATTATCC CATGTGTAAACCACCGT 126 SN05mod TTCGTATAATGTATGCTATACGAAGTTATCCT TAGAAGCAAACTTAAG 127 SN06 GTCTAGTGTTTTTTTCTATCAATACTCTAGAT ACCGTTCGTATAGC 128 SN07 TGTATGCTATACGAACGGTAAGTATTGATAGA AAAAAACACTAGAC 129 SN08 CAAAAAGGAGTTTAAACAAAAAGTCATAAACC TGGATAAC 130 Og31f CCGTTTCTCACAACAACAATACCAG 131 Og32r AAACCACCTTGACGATGAAACCATA

[0269] A fermentation with C. autoethanogenum budA::thlA-phaB strain was carried out. The culture was grown at 37.degree. C. under synthetic gas (50% CO, 18% CO.sub.2, 2% H.sub.2, and 30% N.sub.2) that was continuously fed into the bioreactor. The gas flow was initially set at 50 ml/min, increasing to 400 ml/min over the course of the experiment, while the agitation was increased from 200 rpm to 500 rpm. The fermentation was carried out for close to 5 days. Metabolites were measured as described in examples above.

[0270] The concentration of 1,3-butanediol and other metabolites, such as 2-hydroxyisobutyric acid, were measured using gas chromatography (GC) analysis, employing an Agilent 6890N GC equipped a Agilent CP-SIL 5CB-MS (50 m.times.0.25 .mu.m.times.0.25 .mu.m) column, autosampler and a flame ionization detector (FID). Samples were prepared by diluting 400 .mu.L of sample with 400 .mu.L of acetonitrile, followed by a 3 minute centrifugation at 14,000 rpm; the supernatant was transferred to a glass vial and the sample was dried in a Thermo SpeedVac. Once dry, the samples were then suspended in a solution of 400 .mu.L of N,O-Bistrifluoroacetamide (BSTFA) and pyridine (3:1 ratio) and heated in a sealed glass vial for 60 minutes at 60.degree. C. Samples were transferred to an autosampler for analysis using a 1 .mu.L injection, a split ration of 30 to 1, and an inlet temperature of 250.degree. C. Chromatography was performed with an oven program of 70.degree. C. (no hold) to a ramp of 3.degree. C./min to 110.degree. C. to a ramp of 15.degree. C./min to 230.degree. C., followed by a final ramp of 40.degree. C./min to 310.degree. C. with a 3-min hold. The column flow rate was 1.8 ml/min, with helium as the carrier gas. The FID was kept at 320.degree. C., with hydrogen at 40 ml/min, air at 400 ml/min, and helium at 20 ml/min as the makeup gas.

[0271] Surprisingly, up to 1.55 g/L 3-hydroxybutyrate was produced from gas in a C. autoethanogenum budA::thlA-phaB strain expressing thlA and phaB (FIG. 16). A native thioesterase may convert the formed 3-hydroxybutyryl-CoA to 3-hydroxybutyrate. In the genome sequence, three putative thioesterases were identified.

[0272] Even more surprising, it was also found that, along 3-hydroxybutyrate formation, there was also 1,3-butanediol formation of up to 150 mg/L (FIG. 16). This may be due to native aldehyde:ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase activity. Two AOR genes and several alcohol dehydrogenases are present in the genome of C. autoethanogenum (Mock, J Bacteriol, 197: 2965-2980, 2015). This reduction of 3-hydroxybutyrate is powered by reduced ferredoxin and thus can be directly coupled to CO oxidation, which provides reduced ferredoxin (CO+Fd.sub.ox.fwdarw.CO.sub.2+Fd.sub.red) (FIG. 7).

[0273] 1,3-BDO production was also demonstrated from gas via an alternative route using a butyraldehyde dehydrogenase Bld from Clostridium saccharoperbutylacetonicum (AAP42563.1) (SEQ ID NO: 80). The bld gene was synthesized and cloned together with the same thiolase (thlA of C. acetobutylicum) and (R)-specific 3-hydroxybutyrate dehydrogenase (phaB of Cupravidus necator) into a plasmid pMTL8315-Pfdx-thlA-phaB-bld (SEQ ID NO: 132). Bld and phaB genes were amplified from the above plasmid via primers in table below and cloned into existing plasmid pMTL85147-thlA (WO 2012/115527).

TABLE-US-00012 SEQ ID NO: Primer Sequence Direction 133 bld-phaB-F1 ACATGGGATAAG forward AAGGAGATATAC ATATGATAAAAG 134 bld-pMTL-R1 CGTCGACTCTAG forward ATTAACCTGCTA AAACACATCTTC 135 pMTL-bld-F1 GTGTTTTAGCAG forward GTTAATCTAGAG TCGACGTCACGC

[0274] The resulting construct was transformed into C. autoethanogenum as described above and a growth experiment was conducted in serum bottles with 50-mL PETC media and pressurized at 30 psi with CO-containing steel mill gas (collected from New Zealand Steel site in Glenbrook, NZ) or a synthetic gas blend with same composition of 44% CO, 32% N.sub.2, 22% CO.sub.2, 2% H.sub.2.

[0275] 1,3-BDO production was demonstrated via this route from gas (FIG. 17A), but production was less (up to 67 mg/L 1,3-BDO) than via the AOR route and, in contrast to the AOR route, growth was impacted when expressing the bld gene comparing to the C. autoethanogenum wild-type (FIG. 17B).

[0276] In another experiment, C. autoethanogenum transformed with plasmid pMTL83159-phaB-thlA as described in Example 2 produced 0.33 and 0.46 g/L of 3-HB and 1,3-BDO, respectively, in a bottle experiment under autotrophic conditions as described in Example 2 (FIG. 40).

Example 5

[0277] This example demonstrates the production of (S)-3-hydroxybutyrate and 1,3-butanediol in C. autoethanogenum.

[0278] A plasmid was constructed that expresses a thiolase (thlA from C. acetobutylicum; SEQ ID NO: 136) and an (S)-specific 3-hydroxybutyrate dehydrogenase (hbd1 from C. kluyveri; SEQ ID NO: 137) under either a ferredoxin promoter (P.sub.fdx isolated from C. autoethanogenum; SEQ ID NO: 138) or a pyruvate-ferredoxin oxidoreductase promoter (P.sub.pfor isolated from C. autoethanogenum; SEQ ID NO: 139). The plasmid was constructed as follows: P-hbd1-rbs2-thlA and pieced together and cloned into the pMTL83151 vector (Heap, J Microbiol Meth, 78: 79-85, 2009) by routine methods in molecular cloning, including restrictive enzyme digestion followed by ligation, overlap extension polymerase chain reaction, seamless cloning (Thermo Fisher Scientific), and GeneArt Type IIs (Thermo Fisher Scientific). The operon P-hbd1-rbs2-thlA was cloned in between restriction sites NotI and XhoI found in the multiple cloning region of the plasmid. P is the constitutive promoter which contains an intact ribosome binding site (rbs). rbs2 (SEQ ID NO: 140) is the ribosome binding site for expressing thlA. The stepwise procedures were amplification of the P, hbd1, and thlA from existing templates with primers listed below.

TABLE-US-00013 SEQ ID NO: Name Sequence Direction 141 Pfdx-F1 AAAGGTCTCCGGCCGCGCTCACTATCT forward GCGGAACC 142 Pfdx-R1 TTTGGTCTCGAATTCTGTAACACCTCC reverse TTAATTTTTAG 143 Ppfor-F1 AAAGGTCTCCGGCCGCAAAATAGTTGA forward TAATAATGCAGAG 144 Ppfor-R1 TTTGGTCTCGAATTCCTCTCCTTTTCA reverse AGCATATA 145 hbd1-F1 AAAGGTCTCGAATTCAAAGATCTATGT forward CTATTAAATCAGTTGCAG 146 hbd1-R1 TTTGGTCTCCCTCCTTTCTATTTCTAA reverse TATGCGAAAAATCCTTTACC 147 thlA-F1 AAAGGTCTCAGGAGGTGTTACATATGA forward AAGAAGTTGTAATAGCTAGTGC 148 thlA-R1 TTTGGTCTCCTCGAGTATGGATCCCTA reverse GCACTTTTCTAGCAATATTGC

[0279] The polymerase chain reactions were performed as follow using Kapa Taq PCR Kit (Kapa Biosystems). Set annealing temperature at 56.degree. C., and extension for 1 minute. Repeat PCR reaction for 30 cycles. Afterwards, PCR products were desalted using the DNA Clean & Concentrator Kit (Zymo Research Corporation).

[0280] pMTL83151 plasmid backbone was prepared by carrying out the NotI/XhoI double digestion using the FastDigest NotI and FastDigest XhoI (Thermo Fisher Scientific) following the protocol provided, followed by treatment with alkaline phosphate, using the FastAP Alkaline Phosphatase (Thermo Fisher Scientific) and the protocols provided. The digested backbone was then desalted with the DNA Clean & Concentrator Kit (Zymo Research Corporation).

[0281] The assembly of the PCR products and the plasmid backbone was carried out using the GeneArt Type IIs Kit (Thermo Fisher Scientific). The resulting plasmid was then isolated from the E. coli plasmid expression host using the QIAprep Spin Miniprep Kit (Qiagen).

[0282] To introduce the assembled plasmids pMTL8315-Pfdx-hbd1-thlA and pMTL8315-Ppfor-hbd1-thlA consisting of the operons, the plasmid was first introduced into the E. coli CA434 strain by chemical transformation. Afterwards, conjugation was performed by mixing the transformed CA434 strain with a C. autoethanogenum production host on a solid LB-agar media, and incubation in an anaerobic environment under pressure with a mix consisting of carbon monoxide and hydrogen as described in Example 2. C. autoethanogenum, after conjugation, was selected by successive growth on the solid media containing the proper antibiotic and trimethroprim to remove the remaining E. coli CA434 strain, under the anaerobic conditions.

[0283] The C. autoethanogenum strains carrying the introduced pMTL8315-Pfdx-hbd1-thlA or pMTL8315-Ppfor-hbd1-thlA plasmids consisting of the operon P-hbd1-rbs2-thlA were grown in a 10-mL PETC media in a 250-mL Schott bottle, sealed tight with rubber septum and cap, and pressurized at 30 psi with CO-containing steel mill gas (collected from New Zealand Steel site in Glenbrook, NZ) or a synthetic gas blend with same composition of 44% CO, 32% N.sub.2, 22% CO.sub.2, 2% H.sub.2. Metabolites were measured as described in previous examples.

[0284] Surprisingly, there was 3-hydroxybutyrate produced from gas in C. autoethanogenum cultures expressing thlA and hbd1 (FIG. 18A). A native thioesterase may convert the formed 3-hydroxybutyryl-CoA to 3-hydroxybutyrate. In the genome sequence, three putative thioesterases were identified. In the strain carrying pMTL8315-Pfdx-hbd1-thlA up to 2.55 g/L 3-hydroxybutyrate was found (FIG. 18A).

[0285] Even more surprising, it was also found that 3-hydroxybutyrate is over time converted to 1,3-butanediol, at the end of growth up to 1.1 g/L 1,3-butanediol was produced in strain carrying plasmid pMTL8315-Pfdx-hbd1-thlA (FIG. 18A). This may be due to native aldehyde:ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase activity. Two AOR genes and several alcohol dehydrogenases are present in the genome of C. autoethanogenum (Mock, J Bacteriol, 197: 2965-2980, 2015). This reduction of 3-hydroxybutyrate (and reduction of acetate to ethanol; FIG. 18B) is powered by reduced ferredoxin and thus can be directly coupled to CO oxidation, which provides reduced ferredoxin (CO+Fd.sub.ox.fwdarw.CO.sub.2+Fd.sub.red) (FIG. 7).

[0286] The same strain of C. autoethanogenum carrying plasmid pMTL8315-Pfdx-hbd1-thlA was also tested in continuous fermentation. Fermentation was carried out as described in previous example, but the culture was turned continuous with a dilution rate with fresh media of around 0.05 at day 2 and then increased to 1.0 at day 3. High 3-hydroxybutyrate production of up to 7 g/L was observed with 1,3-BDO production of 0.5 g/L.

[0287] To improve production of (S)-3-hydroxybutyrate and 1,3-butanediol and avoid synthesis of another form of butanediol (2,3-butanediol), plasmid pMTL-HBD-ThlA was introduced into a strain that has an inactivated 2,3-butanediol pathway where the acetolactate decarboxylase gene BudA has been deleted (U.S. Pat. No. 9,297,026). This budA knockout eliminated the major pathway to 2,3-BDO, increasing the specificity for 3-HB and 1,3-BDO production. When pMTL-HBD-ThlA was expressed in the budA deletion strain, a total of 15% C-mol was achieved for both 3-HB and 1,3-BDO (FIG. 41).

TABLE-US-00014 Selectivity (C-mol %) Acetate 14.7 Ethanol 64.9 2,3-BDO 1.3 Biomass 3.7 3-HB 10.4 1,3-BDO 5.0

[0288] As a comparison, in a strain expressing the same plasmid, pMTL83159-hbd-thlA without budA knockout, the total specificity for the production of 3-HB and 1,3-BDO at the steady state was only 6.9%

TABLE-US-00015 Selectivity (C-mol %) Acetate 0.4 Ethanol 84.3 2,3-BDO 6.2 Biomass 2.2 3-HB 3.5 1,3-BDO 3.4

Example 6

[0289] This example demonstrates that the Ptb-Buk system is efficient in C. autoethanogenum on a range of acyl-CoAs including acetoacetyl-CoA, 3-hydroxybutyryl-CoA, and 2-hydroxyisobutyryl-CoA

[0290] The Ptb-Buk system was expressed from a plasmid in C. autoethanogenum and its activity measured using a CoA hydrolysis assay. For this, ptb-buk genes from C. beijerinckii NCIMB8052 (GenBank NC_009617, position 232027..234147; Cbei_0203-204; NCBI-GeneID 5291437-38) were amplified from genomic DNA of C. beijerinckii NCIMB8052 and cloned under control of a pyruvate-ferredoxin oxidoreductase promoter (P.sub.pfor isolated from C. autoethanogenum; SEQ ID NO: 139) into pMTL82251 vector ((Heap, J Microbiol Meth, 78: 79-85, 2009) by routine methods in molecular cloning, including restrictive enzyme digestion followed by ligation, overlap extension polymerase chain reaction, seamless cloning (Thermo Fisher Scientific), and GeneArt Type IIs (Thermo Fisher Scientific) as described in Example 5. Oligonucleotides are described below.

TABLE-US-00016 SEQ ID NO: Name Sequence Direction 149 Ppfor-F2 aaacagctatgaccgcGGCCGCAAAA forward TAGT 150 Ppfor-R2 ttactcatTGGATTCCTCTCCTTT reverse 151 Ptb-Buk-F2 ggaatccaATGAGTAAAAACTTTGAT forward GAG 152 Ptb-Buk-R2 caggcctcgagatctcCTAGTAAACC reverse TTAGCTTGTTC

[0291] The resulting plasmid pMTL82256-ptb-buk (SEQ ID NO: 153) was introduced into C. autoethanogenum as described in previous examples.

[0292] Acyl-CoA hydrolysis assays were performed as follows. C. autoethanogenum cells were harvested at OD 2 (late exponential phase) by centrifugation (14,000 rpm for 1 min at 4.degree. C.). Cells were re-suspended in 500 .mu.l lysis buffer (potassium phosphate buffer, pH 8). Cells were lysed using a freeze thaw cycle (optional), sonication 6.times.30 s at amplitude 20 on ice. Samples were centrifuged for 10 min at 14,000 rpm at 4.degree. C. and the supernatant with soluble proteins was removed. The protein concentration was measured, e.g., with a Bradford assay.

[0293] The assay mix contained: 484 .mu.l of potassium phosphate buffer pH 8.0, 1 .mu.l of DTNB (final concentration of 0.1 mM), 10 .mu.l of cell lysate, and 5 .mu.l of CoA (final concentration of 500 .mu.M). All the components were mixed in a quartz cuvette (1 ml cuvette with a read length of 1 cm) except the protein. The assay was started by adding the cell lysate and following the reaction in a spectrophotometer at 405 nm, 30.degree. C. for 3 min. A control without lysate was run to measure autolysis of the acyl-CoA.

[0294] To determine activity, slope on the linear part of the curve (usually in the first 30 s), was calculated. The protein amount was normalized and slope was divided by protein amount. An extinction coefficient (14,150 M.sup.-1 cm.sup.-1) was used to calculate the specific activity in M/s/mg. The activity of the negative control was subtracted.

[0295] The assay was performed with acetoacetyl-CoA, a racemic mix of 3-hydroxybutyryl-CoA (3-HB-CoA) and 2-hydroxyisobutyryl-CoA (2-HIB-CoA). The possibility of artificially low hydrolysis rates for 3-HB-CoA and 2-HIB-CoA due to potential substrate limitation was addressed by repeating the hydrolysis assays for C. autoethanogenum lysates using different concentrations of acyl-CoA, 500 .mu.M and 200 .mu.M.

[0296] The results of the assay show significantly increased CoA hydrolysis in lysates of C. autoethanogenum carrying plasmid pMTL82256-ptb-buk expressing the Ptb-Buk system on a range of acyl-CoAs including acetoacetyl-CoA, 3-hydroxybutyryl-CoA and 2-hydroxyisobutyryl-CoA (FIGS. 20A-B). Notably, there is also CoA hydrolysis for acyl-CoAs as 2-hydroxyisobutyryl-CoA that are not hydrolysed by the C. autoethanogenum wild-type. With acetoacetyl-CoA and 3-hydroxybutyryl-CoA some native CoA hydrolysis activity was observed.

Example 7

[0297] This example demonstrates the disruption of identified native thioesterase genes improve efficiency of the Ptb-Buk and CoA transferase system by increasing the pool of available acyl-CoAs such as acetoacetyl-CoA, 3-hydroxybutyryl-CoA or 2-hydroxyisobutyryl-CoA.

[0298] In contrast to the Ptb-Buk system, where energy is conserved in the form of ATP during conversion of acyl-CoAs to their respective acids, no energy is conserved if the CoAs are simply hydrolyzed.

[0299] In hydrolase assays it was found that there is native hydrolysis activity for acetoacetyl-CoA and 3-hydroxybutyryl-CoA in C. autoethanogenum.

[0300] Acyl-CoA hydrolysis assays with acetoacetyl-CoA, a racemic mix of 3-hydroxybutyryl-CoA (3-HB-CoA) and 2-hydroxyisobutyryl-CoA (2-HIB-CoA were performed as described in previous example. The results of the assay show cleavage of acetoacetyl-CoA and 3-HB-CoA, but not 2-HIB-CoA, and confirm native activity is present in C. autoethanogenum (FIG. 11).

[0301] An analysis of the genome of C. autoethanogenum led to identification of three putative CoA-thioesterases (thioester-hydrolases) that could be responsible for to the cleavage of acetoacetyl-CoA or 3-hydroxybutyryl-CoA thioester bond. These are also present in other acetogens such as C. ljungdahlii.

TABLE-US-00017 SEQ SEQ C. ID C. ID Description Annotation autoethanogenum NO: ljungdahlii NO: thioesterase 1 Palmitoyl-CoA AGY74947.1 154 ADK15695.1 157 (CAETHG_0718) hydrolase thioesterase 2 4-Hydroxybenzoyl- AGY75747.1 155 ADK16655.1 158 (CAETHG_1524) CoA thioesterase thioesterase 3 Putative AGY75999.1 156 ADK16959.1 159 (CAETHG_1780) Thioesterase

[0302] Inactivation of these three putative CoA-thioesterases lead to higher product titers, improving efficiency of the Ptb-Buk system. The three putative thioesterases were inactivated using ClosTron technology. In brief, the targeting domain of the type II Ltr was reprogrammed using the ClosTron website and the retargeted ClosTron plasmids were ordered from DNA 2.0. The ClosTron knock out vectors pMTL007C-E2-Cau-2640-571s targeting the thioesterase 1 (CAETHG_0718), pMTL007C-E2-PBor3782-166s targeting the thioesterase 2 (CAETHG_1524), and pMTL007C-E2-PBor4039-199s targeting the thioesterase 3 (CAETHG_1780) were introduced into C. autoethanogenum using conjugation.

[0303] Selection for integration was done by selecting PETC supplemented with 5 .mu.g/ml clarithromycin and successful inactivation by integration of the type II intron was confirmed by PCR across the insertion site.

[0304] The CoA hydrolase activity on acetoacetyl-CoA of both wild type C. autoethanogenum and each of the C. autoethanogenum with one of the putative genes inactivated was measured using the assay described above. It was shown that all three strains with the inactivated putative thioesterases showed less hydrolysis activity on acetoacetyl-CoA and 3-hydroxybutyryl-CoA (FIGS. 21A-B).

[0305] To demonstrate that the decreased CoA hydrolase activity, and thus an increased pool in acetoacetyl-CoA, is beneficial for production of acetoacetyl-CoA derived products, the isopropanol plasmid pMTL85147-thlA-ctfAB-adc encoding thl+ctfAB+adc (WO 2012/115527) was introduced into the C. autoethanogenum wild-type strain and the strain with inactivated thioesterase 1. A growth experiment was carried out 40 ml PETC medium in 1 L Schott bottles in technical triplicates with Co gas at 37.degree. C. at 110 rpm shaking. Synthetic gas (50% CO, 18% CO.sub.2, 2% H.sub.2, and 30% N.sub.2) was used as sole energy and carbon source. Headspace exchanged once and gassed to 21 psi (1.5 bar) at 37.degree. C. under synthetic gas (50% CO, 18% CO.sub.2, 2% H.sub.2, and 30% N.sub.2). Samples for OD and analytics were taken twice a day.

[0306] The strain with inactivated thioesterase 3 CAETHG_1780 produced significantly higher levels of isopropanol than the wild-type (FIG. 22 and FIGS. 23A-D).

[0307] Similarly, knockout of thioesterases in C. autoethanogenum would increase the pool of 3-hydroxybutyryl-CoA, allowing more efficient utilization of 3-hydroxybutyryl-CoA by Ptb-Buk and leading to higher production of acetone, isopropanol, isobutylene, (R)-3-hydroxybutyrate, 1,3-butanediol, and/or 2-hydroxyisobutyric acid. When plasmid pMTL8315-Pfdx-hbd1-thlA of Example 5 was introduced into C. autoethanogenum strain with interrupted thioesterase 2 CAETHG_1524, 3-hydroxybutyrate synthesis was abolished (compared to the up to 2.55 g/L 3-hydroxybutyrate that were found when expressing this plasmid in the C. autoethanogenum wild type strain). No competing activity for 3-hydroxybutyryl-CoA is present in this strain.

[0308] These results demonstrate that by reducing thioesterase activity, a higher CoA pool for the Ptb-Buk system and product synthesis is available.

[0309] Additionally, the production of 3-HB and 1,3-BDO can be increased by overexpression of ptb-buk. In a control experiment, whereby C. autoethanogenum as described in Example 2 was transformed with plasmids pMTL83159-phaB-thlA from Example 4 plus pMTL82256 (Heap, J Microbiol Methods, 78: 79-85, 2009), in which the latter is an empty plasmid used as a background control, the fermentation of such strain resulted in a production of 3-HB with highest titer at 1.68 g/L at day 10 (FIG. 42A). When pMTL82256-buk-ptb, instead of the empty plasmid pMTL82256, was coexpressed with pMTL83159-phaB-thlA in C. autoethanogenum, the fermentation resulted in a higher titter of 3-HB, at 4.76 g/L, at an earlier time, day 4 (FIG. 42B).

[0310] Deletion of native thioesterases enhances the efficiency of the ptb-buk system, which has preference for (R)-3-HB-CoA. The locus of the thioesterase gene in the genome was deleted and replaced with the buk-ptb dna fragment via the common molecular biology technique known as homologous recombination. The substitution of the thioesterase gene by the buk-ptb was confirmed by PCR, followed by agarose gel electrophoresis and dna sequencing.

[0311] In a bottle experiment, when pMTL83156-phaB-thlA was expressed without ptb-buk in the thioesterase deletion mutant, described above, the average maximum titer of 3-HB produced was 0.50.+-.0.05 g/L, similar to the titer obtained using an unmodified C. autoethanogenum strain. When pMTL82256-buk-ptb was coexpressed with the pMTL83156-phaB-thlA plasmid in a thioesterase knockout strain, the production of 3-HB increased to 1.29.+-.0.10 g/L (FIG. 43).

Example 8

[0312] This example demonstrates that it is possible to eliminate acetate production system in an acetogen C. autoethanogenum with the Ptb-buk system.

[0313] All acetogenic microorganisms are described to produce acetate (Drake, Acetogenic Prokaryotes, In: The Prokaryotes, 3.sup.rd edition, pages 354-420, New York, N.Y., Springer, 2006) as the production of acetate provides the microorganism with an option to directly generate ATP from substrate level phosphorylation via Pta (phosphotransacetylase) and Ack (phosphotransacetylase-acetate kinase). Native acetate-forming enzymes such as Pta-Ack are therefore considered to be essential in acetogens (Nagarajan, Microb Cell Factories, 12: 118, 2013). Since Ptb-Buk provides an alternative means for energy generation, it becomes possible to replace the native Pta-Ack system with Ptb-Buk.

[0314] The pta and ack genes in C. autoethanogenum are in one operon. To replace pta and ack genes with ptb and buk genes a plasmid, pMTL8225-pta-ack::ptb-buk (FIG. 24), with mazF counter selection marker that is under tetracycline inducible promoter, .about.1 kb upstream homology arm, ptb, buk, ermB cassette flanked by loxP sites and .about.1 kb downstream homology arm was assembled (SEQ ID NO: 160).

[0315] The .about.1 kb upstream and downstream homology arms were PCR amplified from C. autoethanogenum with primers SN22f/SN23r and SN28f/SN29r. Ptb and buk genes were PCR amplified from pIPA_16 plasmid using primers SN24f/SN25r. The ermB cassette with loxP sites was PCR amplified using primers SN26f/SN27r. The plasmid backbone was PCR amplified with primers SN30f/SN31r. KAPA polymerase was used for all PCR amplifications. The PCR products were assembled using GeneArt Seamless cloning kit from Life Technologies and plasmid with no mutations in the insert fragments was used to transform C. autoethanogenum by conjugation as described earlier.

[0316] Following conjugation and selection on trimethoprim and clarithromycin, 7 colonies were streaked twice on PETC-MES agar plates with clarithromycin and anhydrotetracycline to induce the expression of mazF genes. The colonies from clarithromycin and anhydrotetracycline should have the pta and ack genes replaced with ptb and buk genes and ermB cassette. This was verified by PCR using primers Og29f/Og30r flanking the homology arms and KAPA polymerase (FIG. 25). While a band of .about.4.6 kb is amplified from the wildtype strain, bands of .about.5.7 kb was amplified from colonies 1 and 4-7, indicating the replacement of pta and ack genes replaced with ptb and buk genes and ermB cassette. The above event was further confirmed by sequencing the PCR products from clones 4-7.

[0317] With the resulting modification the expression of ptb and buk genes is driven by the promoter upstream of pta gene.

TABLE-US-00018 SEQ ID NO: Name Sequence 161 SN22f TTTACAAATTCGGCCGGCCAAAGATTGCTCTATGTTTAAGCT 162 SN23r CATCAAAGTTTTTACTCATCAATTTCATGTTCATTTCCTCCC T 163 SN24f AGGGAGGAAATGAACATGAAATTGATGAGTAAAAACTTTGAT GAGT 164 SN25r GTATAGCATACATTATACGAACGGTACTAGTAAACCTTAGCT TGTTCTTC 165 SN26f GAAGAACAAGCTAAGGTTTACTAGTACCGTTCGTATAATGTA TGCTATAC 166 SN27r AGAGATGAGCATTAAAAGTCAAGTCTACCGTTCGTATAGCAT ACA 167 SN28f TGTATGCTATACGAACGGTAGACTTGACTTTTAATGCTCATC TCT 168 SN29r CATGAGATTATCAAAAAGGAGTTTAAATATCTATTTTGTCCT TAGGA 169 SN30f TCCTAAGGACAAAATAGATATTTAAACTCCTTTTTGATAATC TCATG 170 SN31r AGCTTAAACATAGAGCAATCTTTGGCCGGCCGAATTTGTAAA 171 Og29f AGCCACATCCAGTAGATTGAACTTT 172 Og30r AATTCGCCCTACGATTAAAGTGGAA

[0318] The resulting strain C. autoethanogenum pta-ack::ptb-buk, in which the pta-ack operon was replaced by the ptb-buk operon was transformed as described above with the isopropanol production plasmid pMTL85147-thlA-adc from Example 2. A growth study was carried out under autotrophic conditions and analyzed for metabolic end products. No acetate production was observed, while isopropanol (up to 0.355 g/L) and 3-HB (up to 0.29 g/L) was still produced alongside ethanol and 2,3-butanediol (FIGS. 39A and 39B). This demonstrates that it is possible to produce isopropanol and 3-HB without acetate production from gaseous substrates CO and/or CO.sub.2 and H.sub.2 using the Ptb-Buk system.

[0319] If acetone rather than isopropanol is the target product, the primary:secondary alcohol dehydrogenase gene (SEQ ID NO: 17) can be further knocked out this strain C. autoethanogenum pta-ack::ptb-buk using methods described above and in detail in WO 2015/085015. Introducing plasmid pMTL85147-thlA-adc into this strain results in production of acetone at similar levels as described above for isopropanol without co-production of acetate. Ethanol, 2,3-butanediol and 3-HB may be further products.

[0320] By further knock-outs it is possible to eliminate these products as well, e.g., knock-out of the acetolactate decarboxylase gene BudA results in a strain unable to produce 2,3-butanediol (U.S. Pat. No. 9,297,026). 3-HB production may be reduced or eliminated by deletion of 3-hydroxybutyrate dehydrogenase gene Bdh (SEQ ID NO: 62).

Example 9

[0321] This example demonstrates improvement of conversion of 3-hydroxybutyrate to 1,3-BDO by overexpression of the aldehyde:ferredoxin oxidoreductase gene aor1.

[0322] The pMTL82251 plasmid backbone was used for overexpression of the C. autoethanogenum aor1 gene. The pMTL82251 plasmid was selected since it has a different replication origin and antibiotic marker, but could be co-expressed with, the plasmid used in Example 5 that contained hbd1 and thlA. Preparation of the plasmid backbone and the assembly reaction were carried out following the procedures listed above, first generating plasmid pMTL82256 by introducing the C. autoethanogenum ferredoxin promoter into plasmid pMTL82251 and then adding the aor1 genes to form plasmid pMTL82256-aor1. The following primers were used.

TABLE-US-00019 SEQ ID NO: Name Sequence Direction 173 Pfdx-F1 AAAGGTCTCCGGCCGCGCTCACTATC forward TGCGGAACC 174 Pfdx-R1 TTTGGTCTCGAATTCTGTAACACCTC reverse CTTAATTTTTAG 175 aor1-F1 AAAGGTCTCGAATTCAAAGATCTATG forward TATGGTTATGATGGTAAAGTATTAAG 176 aor1-R1 TTTGGTCTCCTCGAGTATGGATCCCTA reverse GAACTTACCTATATATTCATCTAATCC

[0323] After transforming the resulting plasmid pMTL82256-aor1 into the E. coli CA434 strain, conjugation was performed on the previous C. autoethanogenum 1,3-BDO production host. Thus, the resulting C. autoethanogenum strain carried two plasmids, one for overexpressing hbd1 and thlA, and another for aor1, under different replication origins and selection marker. The production for 1,3-BDO was characterized and quantified following the procedures above.

[0324] The results clearly show that 1,3-BDO production can be improved by overexpressing aor1. Likewise other aldehyde:ferredoxin oxidoreductase genes could be expressed in C. autoethanogenum to facilitate conversion of 3-hydroxybutyrate to 1,3-butanediol.

[0325] To improve of 1,3-BDO production, AOR was overexpressed to improve conversion of 3-HB to 3-HB-aldehyde. To do this, pMTL82256-hbd-thlA and pMTL83159-aor1 were coexpressed in C. autoethanogenum. As compared to the strain that carried pMTL82256-hbd-thlA alone, the aor1-coexpressed strain produced higher ethanol and 1,3-BDO (FIG. 44).

Example 10

[0326] This example demonstrates the stereospecificity of Ptb-Buk that allows for the production of 2-hydroxyisobutyric acid without the production of unwanted byproducts.

[0327] 2-hydroxyisobutyric acid can be produced in E. coli and C. autoethanogenum by introduction of a thiolase and a 3-hydroxybutyryl-CoA dehydrogenase to convert acetyl-CoA to 3-hydroxybutyryl-CoA, a 2-hydroxyisobutyryl-CoA mutase enzyme for conversion of 3-hydroxybutyryl-CoA to 2-hydroxyisobutyryl-CoA and an enzyme that can hydrolyse the CoA to form 2-hydroxyisobutyric acid. The 3-hydroxybutyryl-CoA dehydrogenase can either be (R)- or (S)-specific and the enzyme converting 2-hydroxyisobutyryl-CoA to 2-hydroxybutyrate according to steps 1, 13, 19, and 20 of FIG. 1. This last step can either be done via a thioesterase or the Ptb-Buk system.

[0328] Three potential candidate genes, E. coli thioesterase type II TesB, the C. autoethanogenum phosphate acetyltransferase/acetate kinase pair and the C. beijerinckii butyryltransferase/butyrate kinase pair were cloned into E. coli pDUET T7 expression vectors via methods described above and primers below.

TABLE-US-00020 SEQ ID NO: Primer Sequence 177 pETDuet-pta-ack- GGGTACCTTATTTATTTTCAACTATTTC ack-DuetI2-R1 TTTTGTATC 178 pETDuet-pta-ack- TTGAAAATAAATAAGGTACCCTCGAGTC DuetI2-ack-F1 TGGTAAAG 179 pETDuet-pta-ack- TTTTTTCCATATGTATATCTCCTTCTTA DuetI2-pta-R1 TACTTAAC 180 pETDuet-pta-ack- AGGAGATATACATATGGAAAAAATTTGG pta-DuetI2-F 1 AGTAAGGC 181 pETDuet-tesB- GAAATCATAATTAAGGTACCCTCGAGTC DuetI2-tesB-F1 TGGTAAAG 182 pETDuet-tesB- CCTGACTCATATGTATATCTCCTTCTTA DuetI2-tesB-R1 TACTTAAC 183 pETDuet-tesB- AAGAAGGAGATATACATATGAGTCAGGC tesB-DuetI2-F1 ACTTAAAA 184 pETDuet-tesB- AGGGTACCTTAATTATGATTTCTCATAA testB-DuetI2-R1 CACCTTC

[0329] The obtained plasmids pDUET-pta-ack (SEQ ID NO: 185), pDUET-ptb-buk (SEQ ID NO: 186), pDUET-tesB (SEQ ID NO: 187) and introduced into E. coli BL21 (DE3) for expression and then assayed for their activity on acetoacetyl-CoA, 3-hydroxybutyryl-CoA and 2-hydroxyisobutyryl-CoA. The results are shown in FIG. 27. E. coli BL21 has a small but measurable amount of activity on all three substrates. Pta-Ack resulted in no activity above background, while both thioesterase TesB and Ptb-Buk showed high activity on all three substrates, including 2-hydroxyisobutyryl-CoA.

[0330] The activity of both thioesterase TesB and Ptb-Buk was higher on linear acetoacetyl-CoA, 3-hydroxybutyryl-CoA than on branched 2-hydroxyisobutyryl-CoA. This creates a problem in the pathway as it results in early termination of the pathway at 3-hydroxybutyryl-CoA, in particular as activities are higher than activities on the 2-hydroxyisobutyryl-CoA mutase enzyme.

[0331] However, Ptb-Buk in contrast to thioesterases is able to distinguish between stereoisomers and will only (or preferentially) act on (R)-3-hydroxybutyryl-CoA but not on (S)-3-hydroxybutyryl-CoA. This was demonstrated by expressing the Ptb-Buk system either with ThlA and (S)-specific Hbd (FIG. 28A) or (R)-specific phaB (FIG. 28B) in the pDuet system in E. coli. The constructs were constructed as described in Examples 1 and 3. Growth studies confirmed that appreciable amounts of 3-hydroxybutyrate were only formed when Ptb-Buk was expressed in combination with the (S)-specific Hbd but not the (R)-specific phaB.

[0332] Therefore, a route via an (S)-specific 3-hydroxybutyryl-CoA dehydrogenase and the Ptb-Buk provides significant advantages, as the Ptb-Buk system (unlike thioesterases) is not active on (S)-3-hydroxybutyryl-CoA but (S)-3-hydroxybutyryl-CoA is also the preferred isomer of the 2-hydroxyisobutyryl-CoA mutase (Yaneva, J Biol Chem, 287: 15502-15511, 2012). The produced 2-hydroxyisobutyryl-CoA can then be used via the Ptb-Buk to produce 2-hydroxyisobutyric acid and (unlike thioesterases) 2-hydroxyisobutyryl-CoA hydrolysis provides additional energy (FIG. 8).

[0333] Modular constructs were designed to compare performance of the pathway. A gene cassette containing the Wood-Ljungdahl promoter in front of the genes meaB, hcmA and hcmB was codon optimized and synthesized (SEQ ID NO: 188). HcmA and hcmB encode a 2-hydroxyisobutyryl-CoA mutase and meaB a chaperon from Aquincola tertiaricarbonis, in the construct hcmA and meaB genes were fused together as one protein as described (SEQ ID NO: 189) (Yaneva, J Biol Chem, 287: 15502-15511, 2012). The gene cassette was cloned into either a plasmid containing thiolase (thlA from C. acetobutylicum; SEQ ID NO: 136) and an (S)-specific 3-hydroxybutyrate dehydrogenase (hbd from C. acetobutylicum; SEQ ID NO: 190) (pMTL83155-thlA-hbd) or an (R)-specific 3-hydroxybutyrate dehydrogenase (phaB from R. eutropha) (pMTL83155-thlA-phaB) using the restriction enzymes KpnI and NcoI to form plasmids pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB (SEQ ID NO: 191) and pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB (SEQ ID NO: 192), respectively. Sub-cloning of the codon optimized 2-hydroxyisobutyryl-CoA mutase casette in E. coli Top-10 was only successful after some initial cloning complications; it was found that the 2-hydroxyisobutyryl-CoA mutase casette could only be cloned into the plasmid at a lower temperature (28.degree. C.).

[0334] Vector pMTL83155-thlA-hbd and pMTL83155-thlA-phaB were created by first amplifying a promoter region of the phosphate acetyltransferase of C. autoethanogenum (SEQ ID NO: 193) and cloning into vector pMTL83151 (FJ797647.1; Heap, J Microbiol Meth, 78: 79-85, 2009) using NotI and NdeI restriction sites before introducing genes thlA and hbd or respectively phaB via NdeI and KpnI in a double ligation reaction.

[0335] In addition, compatible plasmid modules for expressing ptb-buk or tesB were built. For this, the respective genes were amplified from genomic DNA and introduced into plasmid pMTL82256 described in Example 9 and then introducing either ptb-buk or phaB using NdeI and NcoI and Seamless Cloning kit (Life technologies) to form plasmids pMTL82256-ptb-buk (SEQ ID NO: 194) and pMTL82256-tesB (SEQ ID NO: 195).

[0336] Plasmids pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB, pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB, pMTL82256-ptb-buk and pMTL82256-tesB were introduced into E. coli Top-10 (all steps at 28.degree. C.) and C. autoethanogenum by transformation as described in previous examples in the following combinations: pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk, pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-tesB, pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk and pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB+pMTL82256-tesB.

[0337] Growth experiments were carried out with E. coli in LB medium at 30.degree. C. for 4 days and C. autoethanogenum in PETC medium with 30 psi CO-containing steel mill gas (collected from New Zealand Steel site in Glenbrook, NZ) at 30.degree. C. and 37.degree. C. for 6 days. Metabolites were measured as described above. In addition to measurement by GC-MS, 2-Hydroxyisobutyric acid production was also confirmed using liquid chromatography tandem mass spectrometry (LC-MS/MS) and .sup.1H nuclear magnetic resonance (NMR) spectroscopy.

[0338] Liquid chromatography tandem mass spectrometry (LC-MS/MS) data was acquired on a Dionex UltiMate 3000 liquid chromatography system (Dionex, California, USA) coupled to an ABSciex 4000 QTRAP mass spectrometer (ABSciex, Concord, Canada). The liquid chromatography system was controlled by Chromeleon software (Dionex), and chromatographic separation was achieved by injecting 10 .mu.L onto a Gemini-NX C18 150 mm.times.2 mm I.D., 3 .mu.m 110 .ANG. particle column (Phenomenex, Aschaffenburg, Germany) equipped with a pre-column Security Guard Gemini-NX C18 4 mm.times.2 mm I.D. cartridge. The column oven temperature was controlled and maintained at 55.degree. C. throughout the acquisition and the mobile phases were as follows: 7.5 mM aqueous tributylamine adjusted to pH 4.95 (.+-.0.05) with glacial acetic acid (eluent A) and acetonitrile (eluent B). The mobile phase flow rate was maintained at 300 .mu.L/min throughout a gradient profile and was introduced directly into the mass spectrometer with no split. The mass spectrometer was controlled by Analyst 1.5.2 software (ABSciex) and was equipped with a TurboV electrospray source operated in negative ionisation mode. The following previously optimized (and therefore general) parameters were used to acquire scheduled Multiple Reaction Monitoring (MRM) data: ionspray voltage -4500V, nebulizer (GS1), auxiliary (GS2), curtain (CUR) and collision (CAD) gases were 60, 60, 20 and medium (arbitrary units), respectively, generated via a N300DR nitrogen generator (Peak Scientific, Massachusetts, USA). The auxiliary gas temperature was maintained at 350.degree. C. The entrance potential (EP) was -10 volts. This method is also able to detect and separate 2-hydroxybutyric acid.

[0339] .sup.1H nuclear magnetic resonance (NMR) spectroscopy at a field strength of 400 MHz. Samples were prepared by diluting 400 .mu.L of sample with 400 .mu.L of 20 mM phosphate buffer prepared with D.sub.2O and containing trimethylsilyl proprionic acid (TMSP) as internal standard (pH of 7). The samples were then transferred glass NMR tube (5 mm.times.8 inches) and analysed by .sup.1H NMR using presaturation for water suppression with a 30.degree. excitation pulse, 15 second relaxation delay and 64 scans at a temperature of 27.degree. C. Once acquired the spectrum was transformed, flattened and integrated using Agilent VnmrJ software. The known concentration of TMSP was used for quantitation of 2-hydroxyisobutyric using the resonance at 1.36 ppm (singlet).

[0340] In both E. coli growing heterotrophically as well as C. autoethanogenum growing autotrophically, 2-hydroxyisobutyric acid could be detected in constructs pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-tesB (1.5 mg/L in LC-MS/MS method and 8 mg/L in GC-MS in C. autoethanogenum; 0.5 mg/L in LC-MS/MS method and 2 mg/L in GC-MS in E. coli) and pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk (15 mg/L in LC-MS/MS method and 75 mg/L in GC-MS in C. autoethanogenum; 1.1 mg/L in LC-MS/MS method and 8.5 mg/L in GC-MS in E. coli), but not in constructs all other constructs including the control. By far the highest production occurred in strain carrying plasmid pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk (10.times. higher than all other routes), that has the optimal pathway with thiolase, (S)-specific (S)-specific 3-hydroxybutyryl-CoA dehydrogenase, the 2-hydroxyisobutyryl-CoA mutase, and the Ptb-Buk system (FIGS. 29A-D). Surprisingly, also production of 2-hydroxybutyrate (2-HB) (up to 64 mg/L by LC-MS/MS and 50 mg/L by GC-MS in C. autoethanogenum; 12 mg/L by LC-MS/MS and 9.5 mg/L by GC-MS in E. coli) was found in this strain, indicating unspecific mutase activity (FIG. 30). This was also found in the tesB strain, but again at significant lower levels (18 mg/L in LC-MS-MS and 9 mg/L in GC-MS in C. autoethanogenum). Production of 2-hydroxyisobutyric acid was also confirmed by NMR.

[0341] In addition, also qRT-PCR was carried out to confirm expression of the genes thlA, hbd, meaBhcmA and hcmB (FIG. 31).

[0342] The RT-PCR graphs show that thlA gene product is expressed to slightly higher levels with the P.sub.pta-ack promoter than hbd (as expected with a second gene in an operon) and that hmcB shows slightly lower expression levels than meaBhcmA. Also there is lower expression in C. autoethanogenum at 30.degree. C. than at 37.degree. C. and E. coli at 30.degree. C. For specific cycle numbers see below.

TABLE-US-00021 Condition Target Cq Mean Cq Std Dev E. coli/30.degree. C. thlA 18.26 0.243 hbd 20.6 0.603 meaBhcmA 16.20 0.108 hmcB 18.30 0.666 C. autoethanogenum/30.degree. C. thlA 26.10 0.169 Hbd 27.54 0.415 meaBhcmA 20.63 0.604 hmcB 22.64 0.697 C. autoethanogenum/37.degree. C. thlA 18.48 0.069 hbd 21.85 0.222 meaBhcmA 16.72 0.119 hmcB 19.62 0.173

[0343] The ratio of (S)-3-hydroxybutyric acid to (R)-3-hydroxybutyric acid was measured by high-performance liquid chromatography (HPLC) on an Agilent 1260 Infinity LC with UV detection at 210 nm. Samples were prepared by centrifugation at 14,000 rpm for 3 minutes, followed by evaporation of 200 .mu.L of supernatant to dryness. The pellet was then re-suspended in 100% Isopropanol and sonicated under heat for 1 hour. Centrifugation was repeated and the supernatant transferred to an HPLC vial for analysis. Separation was achieved with a 5 .mu.L injection on to a TCI Chiral MB-S column (250 mm.times.4.6 mm.times.3 .mu.m) at 1.5 mL/min and 40.degree. C. under isocratic conditions, using 95-5 hexane-isopropanol mobile phase containing 0.1% trifluoracetic acid.

[0344] A stereospecific analysis of produce 3-HB has been performed. Surprisingly it was found that in C. autoethanogenum, a mix of isomers was produced. Enzymes Hbd and PhaB are described to be stereospecific, PhaB is R-specific and Hbd is S-specific and when expressing these enzymes in E. coli a stereopure product has been observed (Tseng, Appl Environ Microbiol, 75: 3137-3145, 2009).

[0345] The following table indicates the distribution of (R)- and (S)-form of 3-HB at equilibrium produced via three different routes in C. autoethanogenum. These data suggest the presence of isomerase in the C. autoethanogenum.

TABLE-US-00022 Route % R-form % S-form ThlA--PhaB 55 .+-. 7 53 .+-. 5 ThlA--HBD 12 .+-. 3 88 .+-. 3 ThlA--ctfAB 16 .+-. 7 84 .+-. 7

[0346] Knockout of native isomerases may prevent interconversion of (R) and (S) forms of 3-HB. Alternatively, expression or overexpression of isomerases could enable new ptb-buk routes. For example, Hbd could be used to generate (S)-3-HB, isomerase could convert (S)-3-HB to (R)-3-HB, and ptb-buk could act on (R)-3-HB to produce products of interest.

Example 11

[0347] This example demonstrates the production of isobutylene via Ptb-Buk conversion of 3-hydroxyisovaleryl-CoA and 3-hydroxyisovalerate.

[0348] Different routes for production of isobutylene have been described, for example the conversion of acetone to isobutylene via a hydroxyisovalerate synthase and decarboxylase (van Leeuwen, Appl Microbiol Biotechnol, 93: 1377-1387, 2012). However, the hydroxyisovalerate decarboxylase step is an ATP requiring step and kinetics of this enzyme may not be ideal. Two alternative routes to isobutylene using the Ptb-Buk system have been identified through 3-hydroxyisovaleryl-CoA which has been shown in vitro to be a viable substrate for the Ptb-Buk system (Liu, Appl Microbiol Biotechnol, 53: 545-552, 2000).

[0349] Alternative pathway 1 consists of a synthase that converts acetone into 3-hydroxyisovaleryl-CoA (FIG. 9).

[0350] Alternative pathway 2 proceeds via known intermediate 3-methyl-2-oxopentanoate of the isoleucine biosynthesis that is common to bacteria such as E. coli or C. autoethanogenum (FIG. 10).

Example 12

[0351] This example describes methods for characterizing Ptb-Buk variants.

[0352] Given the substrate promiscuity of Ptb-Buk, it is likely that Ptb-Buk systems of varying amino acid sequences will possess varying preferences for given substrates. In order to identify a Ptb-Buk system that favors a desired substrate (e.g. acetoacetyl-CoA, 3-hydroxybutyryl-CoA, 2-hydroxyisobutyryl-CoA, acetyl-CoA, and/or butyryl-CoA), a high-throughput screen is desirable. Such a screen can be accomplished by coupling firefly luciferase (Luc) to the Ptb-Buk system (FIG. 33). Luc reacts with D-luciferin, generating oxyluciferin, carbon dioxide, and light. In addition to magnesium and molecular oxygen, Luc requires ATP for the reaction to proceed. ATP is a product generated by Ptb-Buk when provided an appropriate acyl-CoA or enoyl-CoA substrate. Therefore, Ptb-Buk reaction rates and preferences can be compared for varying substrates by quantifying the amount of light generated by a reaction containing Ptb-Buk, Luc, d-luciferin, magnesium, molecular oxygen, phosphate, ADP, and an acyl-CoA or enoyl-CoA.

Example 13

[0353] This example uses genome-scale modeling to demonstrate that high non-native product selectivities can be achieved using Ptb-Buk. Furthermore, it shows that the use of Ptb-Buk could permit the coupling of cellular growth with product production, allowing the construction of stable and high-yielding fermentation strains.

[0354] A genome-scale metabolic model of C. autoethanogenum similar to the one described by Marcellin, Green Chem, 18: 3020-3028, 2006 was utilized. Variants of this model were created that incorporate additional metabolic reactions, each one representing a different genetically modified microorganism for non-native product formation. Three model versions were created for each non-native product pathway, incorporating either a thioesterase, acetate CoA-transferase or Ptb-Buk reaction.

[0355] Maximum selectivities were calculated using flux balance analysis (FBA), using scripts from the COBRA Toolbox v2.0 in MATLAB R2014a (The Mathworks, Inc.) with Gurobi version 6.0.4 as the solver (Gurobi Optimization, Inc.). Exchange reactions were constrained to represent a chemically defined minimal growth medium with CO as the source of carbon and energy. An evolutionary algorithm was used to search for the existence of strain designs incorporating up to ten gene knockouts that couple target non-native chemical production with growth.

[0356] FBA predicts that pathways using Ptb-Buk or CoA transferase offer the highest product selectivities due to ATP gain through substrate level phosphorylation. The results are illustrated in Table 2. However, it should be noted that one limitation of Genome-scale models and FBA analysis is that enzyme kinetics are not captured. The CoA transferase reaction requires a certain base level of acetate for functionality, therefore in reality the maximum selectivity using a CoA transferase would be less than 100% due to a base level of acetate required to be present.

TABLE-US-00023 Maximum selectivity % (C in target product/C in all fermentation products) Non-native product Thioesterase CoA-transferase Ptb-Buk Acetone 82.0 100 100 Isopropanol 82.1 100 100 Isobutylene 55.9 80.2 80.2 3-Hydroxybutyrate 86.0 100 100 1,3-Butanediol 88.6 100 100 2-Hydroxyisobutyrate 86.0 100 100

[0357] Table 2. Flux balance analysis (FBA) showing the maximum possible non-native product selectivities in C. autoethanogenum for a set of products and candidate enzymes.

[0358] It is desirable to construct strains where the target non-native chemical must be produced for cell growth. FBA predicts that in most cases it would be difficult to couple target chemical production with growth when using a thioesterase or a CoA transferase; instead, native products acetate and ethanol would be favored. However, when using Ptb-Buk, many growth-coupled chemical production strain designs exist, often incorporating a disruption of the phosphotransacetylase-acetate kinase reactions. Table 3 summarizes the growth coupling ability of each strain.

TABLE-US-00024 Ability to couple non-native chemical production with growth Non-native product Thioesterase CoA-transferase Ptb-Buk Acetone No No Yes Isopropanol No No Yes Isobutylene No No No 3-Hydroxybutyrate No No Yes 1,3-Butanediol No Yes Yes 2-Hydroxyisobutyrate No No Yes

[0359] Table 3. Potential to couple non-native chemical production with growth in C. autoethanogenum during growth on CO when reconfiguring the metabolic network with up to ten gene knockouts.

[0360] While both Ptb-Buk and CoA transferase can support high selectivities, flux balance analysis predicts that in most cases, only Ptb-Buk would allow the construction of stable, high-yielding fermentation strains that couple non-native chemical production with growth.

Example 14

[0361] This example demonstrates the production of adipic acid via Ptb-Buk from gaseous feedstock.

[0362] Production of adipic acid in E. coli from sugar has been described by a pathway utilizing Ptb-Buk (Yu, Biotechnol Bioeng, 111: 2580-2586, 2014). However production was low, in the .mu.g/L range. Without wishing to be bound by any particular theory, the inventors believe that this is likely a function of lacking driving force in forms of reducing power and surplus ATP. Using a reduced gaseous substrate as CO and H.sub.2 and an acetogenic bacterium such as C. autoethanogenum, this current limitation can be overcome. CO and H.sub.2 oxidation provide sufficient driving force for reduction of 3-oxo-adipyl-CoA to 3-hydroxyadipyl-CoA by 3-hydroxybutyryl-CoA dehydrogenase or acetoacetyl-CoA hydratase and 2,3-dehydroadipyl-CoA to adipyl-CoA by enoyl-CoA hydrolase or enoyl-CoA reductase (FIG. 34, steps 23 and 25), in contrast to E. coli growing heterotrophically on more oxidized sugars. Acetogenic bacteria live on the energetic limit of life and therefore ATP generating reactions like the Ptb-Buk system have a strong driving force, ensuring efficient conversion of adipyl-CoA to adipic acid (FIG. 34, step 26), in contrast to E. coli growing heterotrophically on sugars generating surplus ATP from glycolysis.

[0363] To produce adipic acid from gas in C. autoethanogenum, genes encoding a succinyl-CoA synthetase from E. coli (NP_415256, NP_415257), a ketoisovalerate oxidoreductase PaaJ from E. coli (WP_001206190.1), a 3-hydroxybutyryl-CoA dehydrogenase Hbd from Clostridium beijerinckii (WP_011967675.1), a trans-2-enoyl-CoA reductase Crt from C. acetobutylicum (NP_349318.1), trans-2-enoyl-CoA reductase Bcd from C. acetobutylicum (NP_349317.1) and electron flavoproteins EtfAB (NP_349315, NP_349316) are cloned on an expression plasmid and then transformed as described above in C. autoethanogenum strains pta-ack::ptb-buk or CAETHG_1524::ptb-buk from previous examples. Adipic acid is produce according to the steps depicted in FIG. 34.

Example 15

[0364] This example demonstrates the production of various products including 2-buten-1-ol, 3-methyl-2-butanol, 1,3-hexanediol (HDO) via Ptb-Buk and AOR.

[0365] As demonstrated in Example 6, Ptb-Buk is highly promiscuous and acts on a wide range of CoAs as substrates or can be engineered to use a range of non-natural CoAs as substrates. Likewise AOR enzyme has been shown to act on a wide range of substrates. Together these two enzymes can convert a wide range of CoAs via their acids into aldehydes, which then can be further converted to alcohols, ketones or enols via alcohol dehdydrogeneses, for which a wide variety exists in nature. While under standard conditions the reduction of acids with ferredoxin to aldehydes via the AOR is endergonic (Thauer, Bacteriol Rev, 41: 100-180, 1977) and as such not feasible, it surprisingly is in carboxydotrophic acetogens such as C. autoethanogenum that operate at low pH and with CO or H2 as substrate (Mock, J Bacteriol, 197: 2965-2980, 2015). One common limitation working with acetogens is that they are ATP-limited, living on the thermodynamic edge of life (Schuchmann, Nat Rev Microbiol, 12: 809-821, 2014), which can be overcome by coupling this acid reduction to ATP-linked formation of acids from CoAs via the Ptb-Buk system.

[0366] The Ptb-Buk system and AOR system has been demonstrated in above examples for several different products, but can be extended to further products, for example production of 2-buten-1-ol, 3-methyl-2-butanol, 1,3-hexanediol (HDO). 2-Buten-1-ol can be produced via Ptb-Buk, AOR and an alcohol dehydrogenase from crotonyl-CoA (FIG. 35). 1,3-Hexanediol can be produced via Ptb-Buk, AOR and an alcohol dehydrogenase from 3-hydroxy-hexanoyl-CoA (FIG. 35). By combining Ptb-Buk, Adc and an alcohol dehydrogenase (such as native primary: secondary alcohol dehydrogenase), 3-methyl-2-butanol can be formed from acetobutyryl-CoA.

[0367] All of these precursors, crotonyl-CoA, 3-hydroxy-hexanoyl-CoA, or acetobutyryl-CoA can be formed by reduction and elongation of acetyl-CoA, acetoacetyl-CoA and 3-HB-CoA which are described in previous examples via known fermentation pathways of, for example, Clostridium kluyveri (Barker, PNAS USA, 31: 373-381, 1945; Seedorf, PNAS USA, 105: 2128-2133, 2008) and other Clostridia. Involved enzymes include crotonyl-CoA hydratase (crotonase) or crotonyl-CoA reductase, butyryl-CoA dehydrogenase or trans-2-enoyl-CoA reductase, thiolase or acyl-CoA acetyltransferase and 3-hydroxybutyryl-CoA dehydrogenase or acetoacetyl-CoA hydratase (FIG. 35). Respective genes from C. kluyveri or other Clostridia have be cloned on an expression plasmid (U.S. 2011/0236941) and and then transformed as described above in C. autoethanogenum strains pta-ack::ptb-buk or CAETHG_1524::ptb-buk from previous examples for production of 2-buten-1-ol, 3-methyl-2-butanol, 1,3-hexanediol (HDO). 2-Buten-1-ol, 3-methyl-2-butanol, and 1,3-hexanediol (HDO) may be precursors for further downstream products.

[0368] While these are only a few examples, it should be clear that this pathway can be further extended using the same enzymes or engineered variants thereof that have specificity for higher chain length to produce a range of C4, C6, C8, C10, C12, C14 alcohols, ketones, enols or diols (FIG. 39). Different type of molecules can be obtained also by using primer or extender units different than acetyl-CoA in the thiolase step as been described elsewhere (Cheong, Nature Biotechnol, 34: 556-561, 2016).

[0369] All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein. The reference to any prior art in this specification is not, and should not be taken as, an acknowledgement that that prior art forms part of the common general knowledge in the field of endeavour in any country.

[0370] The use of the terms "a" and "an" and "the" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having," "including," and "containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

[0371] Preferred embodiments of this invention are described herein. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Sequence CWU 1 SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 195 <210> SEQ ID NO 1 <211> LENGTH: 392 <212> TYPE: PRT <213> ORGANISM: Clostridium acetobutylicum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: ThlA, WP_010966157.1 <400> SEQUENCE: 1 Met Lys Glu Val Val Ile Ala Ser Ala Val Arg Thr Ala Ile Gly Ser 1 5 10 15 Tyr Gly Lys Ser Leu Lys Asp Val Pro Ala Val Asp Leu Gly Ala Thr 20 25 30 Ala Ile Lys Glu Ala Val Lys Lys Ala Gly Ile Lys Pro Glu Asp Val 35 40 45 Asn Glu Val Ile Leu Gly Asn Val Leu Gln Ala Gly Leu Gly Gln Asn 50 55 60 Pro Ala Arg Gln Ala Ser Phe Lys Ala Gly Leu Pro Val Glu Ile Pro 65 70 75 80 Ala Met Thr Ile Asn Lys Val Cys Gly Ser Gly Leu Arg Thr Val Ser 85 90 95 Leu Ala Ala Gln Ile Ile Lys Ala Gly Asp Ala Asp Val Ile Ile Ala 100 105 110 Gly Gly Met Glu Asn Met Ser Arg Ala Pro Tyr Leu Ala Asn Asn Ala 115 120 125 Arg Trp Gly Tyr Arg Met Gly Asn Ala Lys Phe Val Asp Glu Met Ile 130 135 140 Thr Asp Gly Leu Trp Asp Ala Phe Asn Asp Tyr His Met Gly Ile Thr 145 150 155 160 Ala Glu Asn Ile Ala Glu Arg Trp Asn Ile Ser Arg Glu Glu Gln Asp 165 170 175 Glu Phe Ala Leu Ala Ser Gln Lys Lys Ala Glu Glu Ala Ile Lys Ser 180 185 190 Gly Gln Phe Lys Asp Glu Ile Val Pro Val Val Ile Lys Gly Arg Lys 195 200 205 Gly Glu Thr Val Val Asp Thr Asp Glu His Pro Arg Phe Gly Ser Thr 210 215 220 Ile Glu Gly Leu Ala Lys Leu Lys Pro Ala Phe Lys Lys Asp Gly Thr 225 230 235 240 Val Thr Ala Gly Asn Ala Ser Gly Leu Asn Asp Cys Ala Ala Val Leu 245 250 255 Val Ile Met Ser Ala Glu Lys Ala Lys Glu Leu Gly Val Lys Pro Leu 260 265 270 Ala Lys Ile Val Ser Tyr Gly Ser Ala Gly Val Asp Pro Ala Ile Met 275 280 285 Gly Tyr Gly Pro Phe Tyr Ala Thr Lys Ala Ala Ile Glu Lys Ala Gly 290 295 300 Trp Thr Val Asp Glu Leu Asp Leu Ile Glu Ser Asn Glu Ala Phe Ala 305 310 315 320 Ala Gln Ser Leu Ala Val Ala Lys Asp Leu Lys Phe Asp Met Asn Lys 325 330 335 Val Asn Val Asn Gly Gly Ala Ile Ala Leu Gly His Pro Ile Gly Ala 340 345 350 Ser Gly Ala Arg Ile Leu Val Thr Leu Val His Ala Met Gln Lys Arg 355 360 365 Asp Ala Lys Lys Gly Leu Ala Thr Leu Cys Ile Gly Gly Gly Gln Gly 370 375 380 Thr Ala Ile Leu Leu Glu Lys Cys 385 390 <210> SEQ ID NO 2 <211> LENGTH: 393 <212> TYPE: PRT <213> ORGANISM: Cupriavidus necator <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: PhaA, WP_013956452.1 <400> SEQUENCE: 2 Met Thr Asp Val Val Ile Val Ser Ala Ala Arg Thr Ala Val Gly Lys 1 5 10 15 Phe Gly Gly Ser Leu Ala Lys Ile Pro Ala Pro Glu Leu Gly Ala Val 20 25 30 Val Ile Lys Ala Ala Leu Glu Arg Ala Gly Val Lys Pro Glu Gln Val 35 40 45 Ser Glu Val Ile Met Gly Gln Val Leu Thr Ala Gly Ser Gly Gln Asn 50 55 60 Pro Ala Arg Gln Ala Ala Ile Lys Ala Gly Leu Pro Ala Met Val Pro 65 70 75 80 Ala Met Thr Ile Asn Lys Val Cys Gly Ser Gly Leu Lys Ala Val Met 85 90 95 Leu Ala Ala Asn Ala Ile Met Ala Gly Asp Ala Glu Ile Val Val Ala 100 105 110 Gly Gly Gln Glu Asn Met Ser Ala Ala Pro His Val Leu Pro Gly Ser 115 120 125 Arg Asp Gly Phe Arg Met Gly Asp Ala Lys Leu Val Asp Thr Met Ile 130 135 140 Val Asp Gly Leu Trp Asp Val Tyr Asn Gln Tyr His Met Gly Ile Thr 145 150 155 160 Ala Glu Asn Val Ala Lys Glu Tyr Gly Ile Thr Arg Glu Ala Gln Asp 165 170 175 Glu Leu Ala Val Gly Ser Gln Asn Lys Ala Glu Ala Ala Gln Lys Ala 180 185 190 Gly Lys Phe Asp Glu Glu Ile Val Pro Val Leu Ile Pro Gln Arg Lys 195 200 205 Gly Asp Pro Val Ala Phe Lys Thr Asp Glu Phe Val Arg Gln Gly Ala 210 215 220 Thr Leu Asp Ser Met Ser Gly Leu Lys Pro Ala Phe Asp Lys Ala Gly 225 230 235 240 Thr Val Thr Ala Ala Asn Ala Ser Gly Leu Asn Asp Gly Ala Ala Ala 245 250 255 Val Val Val Met Ser Ala Ala Lys Ala Lys Glu Leu Gly Leu Thr Pro 260 265 270 Leu Ala Thr Ile Lys Ser Tyr Ala Asn Ala Gly Val Asp Pro Lys Val 275 280 285 Met Gly Met Gly Pro Val Pro Ala Ser Lys Arg Ala Leu Ser Arg Ala 290 295 300 Glu Trp Thr Pro Gln Asp Leu Asp Leu Met Glu Ile Asn Glu Ala Phe 305 310 315 320 Ala Ala Gln Ala Leu Ala Val His Gln Gln Met Gly Trp Asp Thr Ser 325 330 335 Lys Val Asn Val Asn Gly Gly Ala Ile Ala Ile Gly His Pro Ile Gly 340 345 350 Ala Ser Gly Cys Arg Ile Leu Val Thr Leu Leu His Glu Met Lys Arg 355 360 365 Arg Asp Ala Lys Lys Gly Leu Ala Ser Leu Cys Ile Gly Gly Gly Met 370 375 380 Gly Val Ala Leu Ala Val Glu Arg Lys 385 390 <210> SEQ ID NO 3 <211> LENGTH: 394 <212> TYPE: PRT <213> ORGANISM: Cupriavidus necator <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: BktB, WP_011615089.1 <400> SEQUENCE: 3 Met Thr Arg Glu Val Val Val Val Ser Gly Val Arg Thr Ala Ile Gly 1 5 10 15 Thr Phe Gly Gly Ser Leu Lys Asp Val Ala Pro Ala Glu Leu Gly Ala 20 25 30 Leu Val Val Arg Glu Ala Leu Ala Arg Ala Gln Val Ser Gly Asp Asp 35 40 45 Val Gly His Val Val Phe Gly Asn Val Ile Gln Thr Glu Pro Arg Asp 50 55 60 Met Tyr Leu Gly Arg Val Ala Ala Val Asn Gly Gly Val Thr Ile Asn 65 70 75 80 Ala Pro Ala Leu Thr Val Asn Arg Leu Cys Gly Ser Gly Leu Gln Ala 85 90 95 Ile Val Ser Ala Ala Gln Thr Ile Leu Leu Gly Asp Thr Asp Val Ala 100 105 110 Ile Gly Gly Gly Ala Glu Ser Met Ser Arg Ala Pro Tyr Leu Ala Pro 115 120 125 Ala Ala Arg Trp Gly Ala Arg Met Gly Asp Ala Gly Leu Val Asp Met 130 135 140 Met Leu Gly Ala Leu His Asp Pro Phe His Arg Ile His Met Gly Val 145 150 155 160 Thr Ala Glu Asn Val Ala Lys Glu Tyr Asp Ile Ser Arg Ala Gln Gln 165 170 175 Asp Glu Ala Ala Leu Glu Ser His Arg Arg Ala Ser Ala Ala Ile Lys 180 185 190 Ala Gly Tyr Phe Lys Asp Gln Ile Val Pro Val Val Ser Lys Gly Arg 195 200 205 Lys Gly Asp Val Thr Phe Asp Thr Asp Glu His Val Arg His Asp Ala 210 215 220 Thr Ile Asp Asp Met Thr Lys Leu Arg Pro Val Phe Val Lys Glu Asn 225 230 235 240 Gly Thr Val Thr Ala Gly Asn Ala Ser Gly Leu Asn Asp Ala Ala Ala 245 250 255 Ala Val Val Met Met Glu Arg Ala Glu Ala Glu Arg Arg Gly Leu Lys 260 265 270 Pro Leu Ala Arg Leu Val Ser Tyr Gly His Ala Gly Val Asp Pro Lys 275 280 285 Ala Met Gly Ile Gly Pro Val Pro Ala Thr Lys Ile Ala Leu Glu Arg 290 295 300 Ala Gly Leu Gln Val Ser Asp Leu Asp Val Ile Glu Ala Asn Glu Ala 305 310 315 320 Phe Ala Ala Gln Ala Cys Ala Val Thr Lys Ala Leu Gly Leu Asp Pro 325 330 335 Ala Lys Val Asn Pro Asn Gly Ser Gly Ile Ser Leu Gly His Pro Ile 340 345 350 Gly Ala Thr Gly Ala Leu Ile Thr Val Lys Ala Leu His Glu Leu Asn 355 360 365 Arg Val Gln Gly Arg Tyr Ala Leu Val Thr Met Cys Ile Gly Gly Gly 370 375 380 Gln Gly Ile Ala Ala Ile Phe Glu Arg Ile 385 390 <210> SEQ ID NO 4 <211> LENGTH: 394 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AtoB, NP_416728.1 <400> SEQUENCE: 4 Met Lys Asn Cys Val Ile Val Ser Ala Val Arg Thr Ala Ile Gly Ser 1 5 10 15 Phe Asn Gly Ser Leu Ala Ser Thr Ser Ala Ile Asp Leu Gly Ala Thr 20 25 30 Val Ile Lys Ala Ala Ile Glu Arg Ala Lys Ile Asp Ser Gln His Val 35 40 45 Asp Glu Val Ile Met Gly Asn Val Leu Gln Ala Gly Leu Gly Gln Asn 50 55 60 Pro Ala Arg Gln Ala Leu Leu Lys Ser Gly Leu Ala Glu Thr Val Cys 65 70 75 80 Gly Phe Thr Val Asn Lys Val Cys Gly Ser Gly Leu Lys Ser Val Ala 85 90 95 Leu Ala Ala Gln Ala Ile Gln Ala Gly Gln Ala Gln Ser Ile Val Ala 100 105 110 Gly Gly Met Glu Asn Met Ser Leu Ala Pro Tyr Leu Leu Asp Ala Lys 115 120 125 Ala Arg Ser Gly Tyr Arg Leu Gly Asp Gly Gln Val Tyr Asp Val Ile 130 135 140 Leu Arg Asp Gly Leu Met Cys Ala Thr His Gly Tyr His Met Gly Ile 145 150 155 160 Thr Ala Glu Asn Val Ala Lys Glu Tyr Gly Ile Thr Arg Glu Met Gln 165 170 175 Asp Glu Leu Ala Leu His Ser Gln Arg Lys Ala Ala Ala Ala Ile Glu 180 185 190 Ser Gly Ala Phe Thr Ala Glu Ile Val Pro Val Asn Val Val Thr Arg 195 200 205 Lys Lys Thr Phe Val Phe Ser Gln Asp Glu Phe Pro Lys Ala Asn Ser 210 215 220 Thr Ala Glu Ala Leu Gly Ala Leu Arg Pro Ala Phe Asp Lys Ala Gly 225 230 235 240 Thr Val Thr Ala Gly Asn Ala Ser Gly Ile Asn Asp Gly Ala Ala Ala 245 250 255 Leu Val Ile Met Glu Glu Ser Ala Ala Leu Ala Ala Gly Leu Thr Pro 260 265 270 Leu Ala Arg Ile Lys Ser Tyr Ala Ser Gly Gly Val Pro Pro Ala Leu 275 280 285 Met Gly Met Gly Pro Val Pro Ala Thr Gln Lys Ala Leu Gln Leu Ala 290 295 300 Gly Leu Gln Leu Ala Asp Ile Asp Leu Ile Glu Ala Asn Glu Ala Phe 305 310 315 320 Ala Ala Gln Phe Leu Ala Val Gly Lys Asn Leu Gly Phe Asp Ser Glu 325 330 335 Lys Val Asn Val Asn Gly Gly Ala Ile Ala Leu Gly His Pro Ile Gly 340 345 350 Ala Ser Gly Ala Arg Ile Leu Val Thr Leu Leu His Ala Met Gln Ala 355 360 365 Arg Asp Lys Thr Leu Gly Leu Ala Thr Leu Cys Ile Gly Gly Gly Gln 370 375 380 Gly Ile Ala Met Val Ile Glu Arg Leu Asn 385 390 <210> SEQ ID NO 5 <211> LENGTH: 217 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: CtfA, WP_012059996.1 <400> SEQUENCE: 5 Met Asn Lys Leu Val Lys Leu Thr Asp Leu Lys Arg Ile Phe Lys Asp 1 5 10 15 Gly Met Thr Ile Met Val Gly Gly Phe Leu Asp Cys Gly Thr Pro Glu 20 25 30 Asn Ile Ile Asp Met Leu Val Asp Leu Asn Ile Lys Asn Leu Thr Ile 35 40 45 Ile Ser Asn Asp Thr Ala Phe Pro Asn Lys Gly Ile Gly Lys Leu Ile 50 55 60 Val Asn Gly Gln Val Ser Lys Val Ile Ala Ser His Ile Gly Thr Asn 65 70 75 80 Pro Glu Thr Gly Lys Lys Met Ser Ser Gly Glu Leu Lys Val Glu Leu 85 90 95 Ser Pro Gln Gly Thr Leu Ile Glu Arg Ile Arg Ala Ala Gly Ser Gly 100 105 110 Leu Gly Gly Val Leu Thr Pro Thr Gly Leu Gly Thr Ile Val Glu Glu 115 120 125 Gly Lys Lys Lys Val Thr Ile Asp Gly Lys Glu Tyr Leu Leu Glu Leu 130 135 140 Pro Leu Ser Ala Asp Val Ser Leu Ile Lys Gly Ser Ile Val Asp Glu 145 150 155 160 Phe Gly Asn Thr Phe Tyr Arg Ala Ala Thr Lys Asn Phe Asn Pro Tyr 165 170 175 Met Ala Met Ala Ala Lys Thr Val Ile Val Glu Ala Glu Asn Leu Val 180 185 190 Lys Cys Glu Asp Leu Lys Arg Asp Ala Ile Met Thr Pro Gly Val Leu 195 200 205 Val Asp Tyr Ile Val Lys Glu Ala Ala 210 215 <210> SEQ ID NO 6 <211> LENGTH: 221 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: CtfB, WP_012059997.1 <400> SEQUENCE: 6 Met Ile Val Asp Lys Val Leu Ala Lys Glu Ile Ile Ala Lys Arg Val 1 5 10 15 Ala Lys Glu Leu Lys Lys Asp Gln Leu Val Asn Leu Gly Ile Gly Leu 20 25 30 Pro Thr Leu Val Ala Asn Tyr Val Pro Lys Glu Met Asn Ile Thr Phe 35 40 45 Glu Ser Glu Asn Gly Met Val Gly Met Ala Gln Met Ala Ser Ser Gly 50 55 60 Glu Asn Asp Pro Asp Ile Ile Asn Ala Gly Gly Glu Tyr Val Thr Leu 65 70 75 80 Leu Pro Gln Gly Ser Phe Phe Asp Ser Ser Met Ser Phe Ala Leu Ile 85 90 95 Arg Gly Gly His Val Asp Val Ala Val Leu Gly Ala Leu Glu Val Asp 100 105 110 Glu Lys Gly Asn Leu Ala Asn Trp Ile Val Pro Asn Lys Ile Val Pro 115 120 125 Gly Met Gly Gly Ala Met Asp Leu Ala Ile Gly Ala Lys Lys Ile Ile 130 135 140 Val Ala Met Gln His Thr Gly Lys Ser Lys Pro Lys Ile Val Lys Lys 145 150 155 160 Cys Thr Leu Pro Leu Thr Ala Lys Ala Gln Val Asp Leu Ile Val Thr 165 170 175 Glu Leu Cys Val Ile Asp Val Thr Asn Asp Gly Leu Leu Leu Lys Glu 180 185 190 Ile His Lys Asp Thr Thr Ile Asp Glu Ile Lys Phe Leu Thr Asp Ala 195 200 205 Asp Leu Ile Ile Pro Asp Asn Leu Lys Ile Met Asp Ile 210 215 220 <210> SEQ ID NO 7 <211> LENGTH: 286 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: TesB, NP_414986.1 <400> SEQUENCE: 7 Met Ser Gln Ala Leu Lys Asn Leu Leu Thr Leu Leu Asn Leu Glu Lys 1 5 10 15 Ile Glu Glu Gly Leu Phe Arg Gly Gln Ser Glu Asp Leu Gly Leu Arg 20 25 30 Gln Val Phe Gly Gly Gln Val Val Gly Gln Ala Leu Tyr Ala Ala Lys 35 40 45 Glu Thr Val Pro Glu Glu Arg Leu Val His Ser Phe His Ser Tyr Phe 50 55 60 Leu Arg Pro Gly Asp Ser Lys Lys Pro Ile Ile Tyr Asp Val Glu Thr 65 70 75 80 Leu Arg Asp Gly Asn Ser Phe Ser Ala Arg Arg Val Ala Ala Ile Gln 85 90 95 Asn Gly Lys Pro Ile Phe Tyr Met Thr Ala Ser Phe Gln Ala Pro Glu 100 105 110 Ala Gly Phe Glu His Gln Lys Thr Met Pro Ser Ala Pro Ala Pro Asp 115 120 125 Gly Leu Pro Ser Glu Thr Gln Ile Ala Gln Ser Leu Ala His Leu Leu 130 135 140 Pro Pro Val Leu Lys Asp Lys Phe Ile Cys Asp Arg Pro Leu Glu Val 145 150 155 160 Arg Pro Val Glu Phe His Asn Pro Leu Lys Gly His Val Ala Glu Pro 165 170 175 His Arg Gln Val Trp Ile Arg Ala Asn Gly Ser Val Pro Asp Asp Leu 180 185 190 Arg Val His Gln Tyr Leu Leu Gly Tyr Ala Ser Asp Leu Asn Phe Leu 195 200 205 Pro Val Ala Leu Gln Pro His Gly Ile Gly Phe Leu Glu Pro Gly Ile 210 215 220 Gln Ile Ala Thr Ile Asp His Ser Met Trp Phe His Arg Pro Phe Asn 225 230 235 240 Leu Asn Glu Trp Leu Leu Tyr Ser Val Glu Ser Thr Ser Ala Ser Ser 245 250 255 Ala Arg Gly Phe Val Arg Gly Glu Phe Tyr Thr Gln Asp Gly Val Leu 260 265 270 Val Ala Ser Thr Val Gln Glu Gly Val Met Arg Asn His Asn 275 280 285 <210> SEQ ID NO 8 <211> LENGTH: 436 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: putative thioesterase 1, AGY74947.1 <400> SEQUENCE: 8 Met Asn Asn Asp Asn Cys Thr Ile Lys Ile Thr Pro Glu Val Ser Arg 1 5 10 15 Val Asp Glu Pro Val Asp Ile Lys Ile Asn Gly Leu Pro Lys Asn Glu 20 25 30 Lys Val Ile Ile Arg Ala Val Ser Ser Asp Tyr Tyr Cys Ile Asn Ala 35 40 45 Ser Ile Leu Glu Ile Gly Asp Asn Thr Leu Trp Glu Ser Tyr Ala Val 50 55 60 Phe Glu Thr Asp Glu Cys Gly Asn Ile Asn Phe Glu Asn Ala Val Pro 65 70 75 80 Val Asp Gly Thr Tyr Ser Asn Cys Asp Lys Met Gly Leu Phe Tyr Ser 85 90 95 Met Arg Pro Lys Gln Ile Arg Lys Ser Lys Leu Ile Gln Lys Leu Ser 100 105 110 Ser Ile Asn Glu Asn Arg Lys Tyr Lys Ile Thr Phe Thr Val Glu Lys 115 120 125 Asn Gly Lys Ile Ile Gly Ser Lys Glu His Thr Arg Val Tyr Cys Asp 130 135 140 Asp Thr Ile Lys Ser Ile Asp Val Val Glu Lys Asn Leu Leu Ala Arg 145 150 155 160 Tyr Phe Thr Ser Lys Asp Asn Ile Lys His Pro Ala Ile Ile Val Leu 165 170 175 Ser Gly Ser Asp Gly Arg Ile Glu Lys Ala Gln Ala Ile Ala Glu Leu 180 185 190 Phe Ala Met Arg Gly Tyr Ser Ala Leu Ala Val Cys Tyr Phe Gly Leu 195 200 205 Glu Gly Thr Pro Glu Asp Leu Asn Met Ile Pro Leu Glu Tyr Val Glu 210 215 220 Asn Ala Val Lys Trp Leu Lys Arg Gln Asp Thr Val Asp Glu Asn Lys 225 230 235 240 Ile Ala Ile Tyr Gly Arg Ser Lys Gly Gly Glu Leu Val Leu Leu Ala 245 250 255 Ala Ser Met Phe Lys Asp Ile Ala Cys Val Ile Ala Asn Thr Pro Ser 260 265 270 Cys Tyr Val Tyr Glu Gly Ile Lys Ser Asn Lys Leu Pro Ser His His 275 280 285 Ser Ser Trp Met Tyr Arg Gly Arg Glu Ile Pro Tyr Leu Lys Phe Asn 290 295 300 Phe His Ile Ile Leu Arg Leu Ile Ile Lys Met Met Lys Lys Glu Lys 305 310 315 320 Gly Ala Leu Ala Trp Met Tyr Lys Lys Leu Ile Glu Glu Gly Asp Arg 325 330 335 Asp Lys Ala Thr Ile Ala Leu Asp Lys Ile Asn Gly Ser Val Leu Met 340 345 350 Ile Ser Ser Ala Ala Asp Glu Ile Trp Pro Ser Lys Met His Ser Glu 355 360 365 Thr Val Cys Ser Ile Phe Glu Lys Ser His Phe Lys His Glu Tyr Lys 370 375 380 His Ile Thr Phe Ala Lys Ser Gly His Ile Leu Thr Val Pro Phe Gln 385 390 395 400 Ser Ile Tyr Pro Ser Glu Lys Tyr Pro Tyr Asp Val Glu Ser Trp Ala 405 410 415 Lys Ala Asn Met Asp Ser Trp Asn Glu Thr Ile Lys Phe Leu Glu Lys 420 425 430 Trp Ala Ser Lys 435 <210> SEQ ID NO 9 <211> LENGTH: 137 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: putative thioesterase 2, AGY75747.1 <400> SEQUENCE: 9 Met Tyr Ile Asn Glu Thr Lys Val Val Val Arg Tyr Ala Glu Thr Asp 1 5 10 15 Lys Met Gly Ile Val His His Ser Asn Tyr Tyr Ile Tyr Phe Glu Glu 20 25 30 Ala Arg Thr Gln Phe Ile Lys Lys Thr Gly Ile Ser Tyr Ser Gln Met 35 40 45 Glu Lys Asp Gly Ile Met Phe Pro Leu Val Glu Ser Asn Cys Arg Tyr 50 55 60 Leu Gln Gly Ala Lys Tyr Glu Asp Glu Leu Leu Ile Lys Thr Trp Ile 65 70 75 80 Lys Glu Leu Thr Pro Val Lys Ala Glu Phe Asn Tyr Ser Val Ile Arg 85 90 95 Glu Asn Asp Gln Lys Glu Ile Ala Lys Gly Ser Thr Leu His Ala Phe 100 105 110 Val Asn Asn Asn Phe Lys Ile Ile Asn Leu Lys Lys Asn His Thr Glu 115 120 125 Leu Phe Lys Lys Leu Gln Ser Leu Ile 130 135 <210> SEQ ID NO 10 <211> LENGTH: 128 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: putative thioesterase 3, AGY75999.1 <400> SEQUENCE: 10 Met Asp Phe Ser Lys Leu Phe Lys Val Gly Ser Thr Tyr Val Ser Glu 1 5 10 15 Tyr Ile Val Lys Pro Glu Asp Thr Ala Asn Phe Ile Gly Asn Asn Gly 20 25 30 Val Val Met Leu Ser Thr Pro Ala Met Ile Lys Tyr Met Glu Tyr Thr 35 40 45 Thr Leu His Ile Val Asp Asn Val Ile Pro Lys Asn Tyr Arg Pro Val 50 55 60 Gly Thr Lys Ile Asp Val Glu His Ile Lys Pro Ile Pro Ala Asn Met 65 70 75 80 Lys Val Val Val Lys Val Thr Leu Ile Ser Ile Glu Gly Lys Lys Leu 85 90 95 Arg Tyr Asn Val Glu Ala Phe Asn Glu Lys Asn Cys Lys Val Gly Phe 100 105 110 Gly Ile Tyr Glu Gln Gln Ile Val Asn Leu Glu Gln Phe Leu Asn Arg 115 120 125 <210> SEQ ID NO 11 <211> LENGTH: 436 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: putative thioesterase 1, ADK15695.1 <400> SEQUENCE: 11 Met Asn Asn Asp Asn Cys Thr Ile Lys Ile Thr Pro Glu Val Ser Arg 1 5 10 15 Val Asp Glu Pro Val Asp Ile Lys Ile Asn Gly Leu Pro Lys Asn Glu 20 25 30 Lys Val Ile Ile Arg Ala Val Ser Ser Asp Tyr Tyr Cys Ile Asn Ala 35 40 45 Ser Ile Leu Glu Ile Gly Asp Asn Thr Leu Trp Glu Ser Tyr Ala Val 50 55 60 Phe Glu Thr Asp Glu Cys Gly Asn Ile Asn Phe Glu Asn Ala Val Pro 65 70 75 80 Val Asp Gly Thr Tyr Ser Asn Cys Asp Lys Met Gly Leu Phe Tyr Ser 85 90 95 Met Arg Pro Lys Gln Ile Arg Lys Ser Lys Leu Ile Gln Lys Leu Ser 100 105 110 Ser Ile Asn Glu Asn Arg Lys Tyr Lys Ile Thr Phe Thr Val Glu Lys 115 120 125 Asn Gly Lys Ile Ile Gly Ser Lys Glu His Thr Arg Val Tyr Cys Asp 130 135 140 Asp Thr Ile Lys Ser Ile Asp Val Val Glu Lys Asn Leu Leu Ala Arg 145 150 155 160 Tyr Phe Thr Ser Lys Asp Asn Ile Lys His Pro Ala Ile Ile Val Leu 165 170 175 Ser Gly Ser Asp Gly Arg Ile Glu Lys Ala Gln Ala Ile Ala Glu Leu 180 185 190 Phe Ala Met Arg Gly Tyr Ser Ala Leu Ala Val Cys Tyr Phe Gly Leu 195 200 205 Glu Gly Thr Pro Glu Asp Leu Asn Met Ile Pro Leu Glu Tyr Val Glu 210 215 220 Asn Ala Val Lys Trp Leu Lys Arg Gln Asp Thr Val Asp Glu Asn Lys 225 230 235 240 Ile Ala Ile Tyr Gly Arg Ser Lys Gly Gly Glu Leu Val Leu Leu Ala 245 250 255 Ala Ser Met Phe Lys Asp Ile Ala Cys Val Ile Ala Asn Thr Pro Ser 260 265 270 Cys Tyr Val Tyr Glu Gly Ile Lys Ser Asn Lys Leu Pro Ser His His 275 280 285 Ser Ser Trp Met Tyr Arg Gly Arg Glu Ile Pro Tyr Leu Lys Phe Asn 290 295 300 Phe His Ile Ile Leu Arg Leu Ile Ile Lys Met Met Lys Lys Glu Lys 305 310 315 320 Gly Ala Leu Ala Trp Met Tyr Lys Lys Leu Ile Glu Glu Gly Asp Arg 325 330 335 Asp Lys Ala Thr Ile Ala Leu Asp Lys Ile Asn Gly Ser Val Leu Met 340 345 350 Ile Ser Ser Ala Ala Asp Glu Ile Trp Pro Ser Lys Met His Ser Glu 355 360 365 Thr Val Cys Ser Ile Phe Glu Lys Ser His Phe Lys His Glu Tyr Lys 370 375 380 His Ile Thr Phe Ala Lys Ser Gly His Ile Leu Thr Val Pro Phe Gln 385 390 395 400 Ser Ile Tyr Pro Ser Glu Lys Tyr Pro Tyr Asp Val Glu Ser Trp Ala 405 410 415 Lys Ala Asn Met Asp Ser Trp Asn Glu Thr Ile Lys Phe Leu Glu Lys 420 425 430 Trp Ala Ser Lys 435 <210> SEQ ID NO 12 <211> LENGTH: 137 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: putative thioesterase 2, ADK16655.1 <400> SEQUENCE: 12 Met Tyr Ile Asn Glu Thr Lys Val Val Val Arg Tyr Ala Glu Thr Asp 1 5 10 15 Lys Met Gly Ile Val His His Ser Asn Tyr Tyr Ile Tyr Phe Glu Glu 20 25 30 Ala Arg Thr Gln Phe Ile Lys Lys Thr Gly Ile Ser Tyr Ser Gln Met 35 40 45 Glu Lys Asp Gly Ile Met Phe Pro Leu Val Glu Ser Asn Cys Arg Tyr 50 55 60 Leu Gln Gly Ala Lys Tyr Glu Asp Glu Leu Leu Ile Lys Thr Trp Ile 65 70 75 80 Lys Glu Leu Thr Pro Val Lys Ala Glu Phe Asn Tyr Ser Val Ile Arg 85 90 95 Glu Asn Asp Gln Lys Glu Ile Ala Lys Gly Ser Thr Leu His Ala Phe 100 105 110 Val Asn Asn Asn Phe Lys Ile Ile Asn Leu Lys Lys Asn His Thr Glu 115 120 125 Leu Phe Lys Lys Leu Gln Ser Leu Ile 130 135 <210> SEQ ID NO 13 <211> LENGTH: 128 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: putative thioesterase 3, ADK16959.1 <400> SEQUENCE: 13 Met Asp Phe Ser Lys Leu Phe Lys Val Gly Ser Thr Tyr Val Ser Glu 1 5 10 15 Tyr Ile Val Lys Pro Glu Asp Thr Ala Asn Phe Ile Gly Asn Asn Gly 20 25 30 Val Val Met Leu Ser Thr Pro Ala Met Ile Lys Tyr Met Glu Tyr Thr 35 40 45 Thr Leu His Ile Val Asp Asn Val Ile Pro Lys Asn Tyr Arg Pro Val 50 55 60 Gly Thr Lys Ile Asp Val Glu His Ile Lys Pro Ile Pro Ala Asn Met 65 70 75 80 Lys Val Val Val Lys Val Thr Leu Ile Ser Ile Glu Gly Lys Lys Leu 85 90 95 Arg Tyr Asn Val Glu Ala Phe Asn Glu Lys Asn Cys Lys Val Gly Phe 100 105 110 Gly Ile Tyr Glu Gln Gln Ile Val Asn Leu Glu Gln Phe Leu Asn Arg 115 120 125 <210> SEQ ID NO 14 <211> LENGTH: 246 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Adc, WP_012059998.1 <400> SEQUENCE: 14 Met Leu Glu Ser Glu Val Ser Lys Gln Ile Thr Thr Pro Leu Ala Ala 1 5 10 15 Pro Ala Phe Pro Arg Gly Pro Tyr Arg Phe His Asn Arg Glu Tyr Leu 20 25 30 Asn Ile Ile Tyr Arg Thr Asp Leu Asp Ala Leu Arg Lys Ile Val Pro 35 40 45 Glu Pro Leu Glu Leu Asp Arg Ala Tyr Val Arg Phe Glu Met Met Ala 50 55 60 Met Pro Asp Thr Thr Gly Leu Gly Ser Tyr Thr Glu Cys Gly Gln Ala 65 70 75 80 Ile Pro Val Lys Tyr Asn Gly Val Lys Gly Asp Tyr Leu His Met Met 85 90 95 Tyr Leu Asp Asn Glu Pro Ala Ile Ala Val Gly Arg Glu Ser Ser Ala 100 105 110 Tyr Pro Lys Lys Leu Gly Tyr Pro Lys Leu Phe Val Asp Ser Asp Thr 115 120 125 Leu Val Gly Thr Leu Lys Tyr Gly Thr Leu Pro Val Ala Thr Ala Thr 130 135 140 Met Gly Tyr Lys His Glu Pro Leu Asp Leu Lys Glu Ala Tyr Ala Gln 145 150 155 160 Ile Ala Arg Pro Asn Phe Met Leu Lys Ile Ile Gln Gly Tyr Asp Gly 165 170 175 Lys Pro Arg Ile Cys Glu Leu Ile Cys Ala Glu Asn Thr Asp Ile Thr 180 185 190 Ile His Gly Ala Trp Thr Gly Ser Ala Arg Leu Gln Leu Phe Ser His 195 200 205 Ala Leu Ala Pro Leu Ala Asp Leu Pro Val Leu Glu Ile Val Ser Ala 210 215 220 Ser His Ile Leu Thr Asp Leu Thr Leu Gly Thr Pro Lys Val Val His 225 230 235 240 Asp Tyr Leu Ser Val Lys 245 <210> SEQ ID NO 15 <211> LENGTH: 548 <212> TYPE: PRT <213> ORGANISM: Lactococcus lactis <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: KivD <400> SEQUENCE: 15 Met Tyr Thr Val Gly Asp Tyr Leu Leu Asp Arg Leu His Glu Leu Gly 1 5 10 15 Ile Glu Glu Ile Phe Gly Val Pro Gly Asp Tyr Asn Leu Gln Phe Leu 20 25 30 Asp Gln Ile Ile Ser His Lys Asp Met Lys Trp Val Gly Asn Ala Asn 35 40 45 Glu Leu Asn Ala Ser Tyr Met Ala Asp Gly Tyr Ala Arg Thr Lys Lys 50 55 60 Ala Ala Ala Phe Leu Thr Thr Phe Gly Val Gly Glu Leu Ser Ala Val 65 70 75 80 Asn Gly Leu Ala Gly Ser Tyr Ala Glu Asn Leu Pro Val Val Glu Ile 85 90 95 Val Gly Ser Pro Thr Ser Lys Val Gln Asn Glu Gly Lys Phe Val His 100 105 110 His Thr Leu Ala Asp Gly Asp Phe Lys His Phe Met Lys Met His Glu 115 120 125 Pro Val Thr Ala Ala Arg Thr Leu Leu Thr Ala Glu Asn Ala Thr Val 130 135 140 Glu Ile Asp Arg Val Leu Ser Ala Leu Leu Lys Glu Arg Lys Pro Val 145 150 155 160 Tyr Ile Asn Leu Pro Val Asp Val Ala Ala Ala Lys Ala Glu Lys Pro 165 170 175 Ser Leu Pro Leu Lys Lys Glu Asn Ser Thr Ser Asn Thr Ser Asp Gln 180 185 190 Glu Ile Leu Asn Lys Ile Gln Glu Ser Leu Lys Asn Ala Lys Lys Pro 195 200 205 Ile Val Ile Thr Gly His Glu Ile Ile Ser Phe Gly Leu Glu Lys Thr 210 215 220 Val Thr Gln Phe Ile Ser Lys Thr Lys Leu Pro Ile Thr Thr Leu Asn 225 230 235 240 Phe Gly Lys Ser Ser Val Asp Glu Ala Leu Pro Ser Phe Leu Gly Ile 245 250 255 Tyr Asn Gly Thr Leu Ser Glu Pro Asn Leu Lys Glu Phe Val Glu Ser 260 265 270 Ala Asp Phe Ile Leu Met Leu Gly Val Lys Leu Thr Asp Ser Ser Thr 275 280 285 Gly Ala Phe Thr His His Leu Asn Glu Asn Lys Met Ile Ser Leu Asn 290 295 300 Ile Asp Glu Gly Lys Ile Phe Asn Glu Arg Ile Gln Asn Phe Asp Phe 305 310 315 320 Glu Ser Leu Ile Ser Ser Leu Leu Asp Leu Ser Glu Ile Glu Tyr Lys 325 330 335 Gly Lys Tyr Ile Asp Lys Lys Gln Glu Asp Phe Val Pro Ser Asn Ala 340 345 350 Leu Leu Ser Gln Asp Arg Leu Trp Gln Ala Val Glu Asn Leu Thr Gln 355 360 365 Ser Asn Glu Thr Ile Val Ala Glu Gln Gly Thr Ser Phe Phe Gly Ala 370 375 380 Ser Ser Ile Phe Leu Lys Ser Lys Ser His Phe Ile Gly Gln Pro Leu 385 390 395 400 Trp Gly Ser Ile Gly Tyr Thr Phe Pro Ala Ala Leu Gly Ser Gln Ile 405 410 415 Ala Asp Lys Glu Ser Arg His Leu Leu Phe Ile Gly Asp Gly Ser Leu 420 425 430 Gln Leu Thr Val Gln Glu Leu Gly Leu Ala Ile Arg Glu Lys Ile Asn 435 440 445 Pro Ile Cys Phe Ile Ile Asn Asn Asp Gly Tyr Thr Val Glu Arg Glu 450 455 460 Ile His Gly Pro Asn Gln Ser Tyr Asn Asp Ile Pro Met Trp Asn Tyr 465 470 475 480 Ser Lys Leu Pro Glu Ser Phe Gly Ala Thr Glu Asp Arg Val Val Ser 485 490 495 Lys Ile Val Arg Thr Glu Asn Glu Phe Val Ser Val Met Lys Glu Ala 500 505 510 Gln Ala Asp Pro Asn Arg Met Tyr Trp Ile Glu Leu Ile Leu Ala Lys 515 520 525 Glu Gly Ala Pro Lys Val Leu Lys Lys Met Gly Lys Leu Phe Ala Glu 530 535 540 Gln Asn Lys Ser 545 <210> SEQ ID NO 16 <211> LENGTH: 351 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: SecAdh, AGY74782.1 <400> SEQUENCE: 16 Met Lys Gly Phe Ala Met Leu Gly Ile Asn Lys Leu Gly Trp Ile Glu 1 5 10 15 Lys Lys Asn Pro Val Pro Gly Pro Tyr Asp Ala Ile Val His Pro Leu 20 25 30 Ala Val Ser Pro Cys Thr Ser Asp Ile His Thr Val Phe Glu Gly Ala 35 40 45 Leu Gly Asn Arg Glu Asn Met Ile Leu Gly His Glu Ala Val Gly Glu 50 55 60 Ile Ala Glu Val Gly Ser Glu Val Lys Asp Phe Lys Val Gly Asp Arg 65 70 75 80 Val Ile Val Pro Cys Thr Thr Pro Asp Trp Arg Ser Leu Glu Val Gln 85 90 95 Ala Gly Phe Gln Gln His Ser Asn Gly Met Leu Ala Gly Trp Lys Phe 100 105 110 Ser Asn Phe Lys Asp Gly Val Phe Ala Asp Tyr Phe His Val Asn Asp 115 120 125 Ala Asp Met Asn Leu Ala Ile Leu Pro Asp Glu Ile Pro Leu Glu Ser 130 135 140 Ala Val Met Met Thr Asp Met Met Thr Thr Gly Phe His Gly Ala Glu 145 150 155 160 Leu Ala Asp Ile Lys Met Gly Ser Ser Val Val Val Ile Gly Ile Gly 165 170 175 Ala Val Gly Leu Met Gly Ile Ala Gly Ser Lys Leu Arg Gly Ala Gly 180 185 190 Arg Ile Ile Gly Val Gly Ser Arg Pro Val Cys Val Glu Thr Ala Lys 195 200 205 Phe Tyr Gly Ala Thr Asp Ile Val Asn Tyr Lys Asn Gly Asp Ile Val 210 215 220 Glu Gln Ile Met Asp Leu Thr His Gly Lys Gly Val Asp Arg Val Ile 225 230 235 240 Met Ala Gly Gly Gly Ala Glu Thr Leu Ala Gln Ala Val Thr Met Val 245 250 255 Lys Pro Gly Gly Val Ile Ser Asn Ile Asn Tyr His Gly Ser Gly Asp 260 265 270 Thr Leu Pro Ile Pro Arg Val Gln Trp Gly Cys Gly Met Ala His Lys 275 280 285 Thr Ile Arg Gly Gly Leu Cys Pro Gly Gly Arg Leu Arg Met Glu Met 290 295 300 Leu Arg Asp Leu Val Leu Tyr Lys Arg Val Asp Leu Ser Lys Leu Val 305 310 315 320 Thr His Val Phe Asp Gly Ala Glu Asn Ile Glu Lys Ala Leu Leu Leu 325 330 335 Met Lys Asn Lys Pro Lys Asp Leu Ile Lys Ser Val Val Thr Phe 340 345 350 <210> SEQ ID NO 17 <211> LENGTH: 351 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: SecAdh, ADK15544.1 <400> SEQUENCE: 17 Met Lys Gly Phe Ala Met Leu Gly Ile Asn Lys Leu Gly Trp Ile Glu 1 5 10 15 Lys Lys Asn Pro Val Pro Gly Pro Tyr Asp Ala Ile Val His Pro Leu 20 25 30 Ala Val Ser Pro Cys Thr Ser Asp Ile His Thr Val Phe Glu Gly Ala 35 40 45 Leu Gly Asn Arg Glu Asn Met Ile Leu Gly His Glu Ala Val Gly Glu 50 55 60 Ile Ala Glu Val Gly Ser Glu Val Lys Asp Phe Lys Val Gly Asp Arg 65 70 75 80 Val Ile Val Pro Cys Thr Thr Pro Asp Trp Arg Ser Leu Glu Val Gln 85 90 95 Ala Gly Phe Gln Gln His Ser Asn Gly Met Leu Ala Gly Trp Lys Phe 100 105 110 Ser Asn Phe Lys Asp Gly Val Phe Ala Asp Tyr Phe His Val Asn Asp 115 120 125 Ala Asp Met Asn Leu Ala Ile Leu Pro Asp Glu Ile Pro Leu Glu Ser 130 135 140 Ala Val Met Met Thr Asp Met Met Thr Thr Gly Phe His Gly Ala Glu 145 150 155 160 Leu Ala Asp Ile Lys Met Gly Ser Ser Val Val Val Ile Gly Ile Gly 165 170 175 Ala Val Gly Leu Met Gly Ile Ala Gly Ser Lys Leu Arg Gly Ala Gly 180 185 190 Arg Ile Ile Gly Val Gly Ser Arg Pro Val Cys Val Glu Thr Ala Lys 195 200 205 Phe Tyr Gly Ala Thr Asp Ile Val Asn Tyr Lys Asn Gly Asp Ile Val 210 215 220 Glu Gln Ile Met Asp Leu Thr His Gly Lys Gly Val Asp Arg Val Ile 225 230 235 240 Met Ala Gly Gly Gly Ala Glu Thr Leu Ala Gln Ala Val Thr Met Val 245 250 255 Lys Pro Gly Gly Val Ile Ser Asn Ile Asn Tyr His Gly Ser Gly Asp 260 265 270 Thr Leu Pro Ile Pro Arg Val Gln Trp Gly Cys Gly Met Ala His Lys 275 280 285 Thr Ile Arg Gly Gly Leu Cys Pro Gly Gly Arg Leu Arg Met Glu Met 290 295 300 Leu Arg Asp Leu Val Leu Tyr Lys Arg Val Asp Leu Ser Lys Leu Val 305 310 315 320 Thr His Val Phe Asp Gly Ala Glu Asn Ile Glu Lys Ala Leu Leu Leu 325 330 335 Met Lys Asn Lys Pro Lys Asp Leu Ile Lys Ser Val Val Thr Phe 340 345 350 <210> SEQ ID NO 18 <211> LENGTH: 351 <212> TYPE: PRT <213> ORGANISM: Clostridium ragsdalei <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: SecAdh, WP_013239134.1 <400> SEQUENCE: 18 Met Lys Gly Phe Ala Met Leu Gly Ile Asn Lys Leu Gly Trp Ile Glu 1 5 10 15 Lys Lys Asn Pro Val Pro Gly Pro Tyr Asp Ala Ile Val His Pro Leu 20 25 30 Ala Val Ser Pro Cys Thr Ser Asp Ile His Thr Val Phe Glu Gly Ala 35 40 45 Leu Gly Asn Arg Glu Asn Met Ile Leu Gly His Glu Ala Val Gly Glu 50 55 60 Ile Ala Glu Val Gly Ser Glu Val Lys Asp Phe Lys Val Gly Asp Arg 65 70 75 80 Val Ile Val Pro Cys Thr Thr Pro Asp Trp Arg Ser Leu Glu Val Gln 85 90 95 Ala Gly Phe Gln Gln His Ser Asn Gly Met Leu Ala Gly Trp Lys Phe 100 105 110 Ser Asn Phe Lys Asp Gly Val Phe Ala Asp Tyr Phe His Val Asn Asp 115 120 125 Ala Asp Met Asn Leu Ala Ile Leu Pro Asp Glu Ile Pro Leu Glu Ser 130 135 140 Ala Val Met Met Thr Asp Met Met Thr Thr Gly Phe His Gly Ala Glu 145 150 155 160 Leu Ala Asp Ile Lys Met Gly Ser Ser Val Val Val Ile Gly Ile Gly 165 170 175 Ala Val Gly Leu Met Gly Ile Ala Gly Ser Lys Leu Arg Gly Ala Gly 180 185 190 Arg Ile Ile Gly Val Gly Ser Arg Pro Val Cys Val Glu Thr Ala Lys 195 200 205 Phe Tyr Gly Ala Thr Asp Ile Val Asn Tyr Lys Asn Gly Asp Ile Val 210 215 220 Glu Gln Ile Met Asp Leu Thr His Gly Lys Gly Val Asp Arg Val Ile 225 230 235 240 Met Ala Gly Gly Gly Ala Glu Thr Leu Ala Gln Ala Val Thr Met Val 245 250 255 Lys Pro Gly Gly Val Ile Ser Asn Ile Asn Tyr His Gly Ser Gly Asp 260 265 270 Thr Leu Pro Ile Pro Arg Val Gln Trp Gly Cys Gly Met Ala His Lys 275 280 285 Thr Ile Arg Gly Gly Leu Cys Pro Gly Gly Arg Leu Arg Met Glu Met 290 295 300 Leu Arg Asp Leu Val Leu Tyr Lys Arg Val Asp Leu Ser Lys Leu Val 305 310 315 320 Thr His Val Phe Asp Gly Ala Glu Asn Ile Glu Lys Ala Leu Leu Leu 325 330 335 Met Lys Asn Lys Pro Lys Asp Leu Ile Lys Ser Val Val Thr Phe 340 345 350 <210> SEQ ID NO 19 <211> LENGTH: 351 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: SecAdh, WP_026889046.1 <400> SEQUENCE: 19 Met Lys Gly Phe Ala Met Leu Gly Ile Asn Lys Leu Gly Trp Ile Glu 1 5 10 15 Lys Glu Arg Pro Val Ala Gly Ser Tyr Asp Ala Ile Val Arg Pro Leu 20 25 30 Ala Val Ser Pro Cys Thr Ser Asp Ile His Thr Val Phe Glu Gly Ala 35 40 45 Leu Gly Asp Arg Lys Asn Met Ile Leu Gly His Glu Ala Val Gly Glu 50 55 60 Val Val Glu Val Gly Ser Glu Val Lys Asp Phe Lys Pro Gly Asp Arg 65 70 75 80 Val Ile Val Pro Cys Thr Thr Pro Asp Trp Arg Ser Leu Glu Val Gln 85 90 95 Ala Gly Phe Gln Gln His Ser Asn Gly Met Leu Ala Gly Trp Lys Phe 100 105 110 Ser Asn Phe Lys Asp Gly Val Phe Gly Glu Tyr Phe His Val Asn Asp 115 120 125 Ala Asp Met Asn Leu Ala Ile Leu Pro Lys Asp Met Pro Leu Glu Asn 130 135 140 Ala Val Met Ile Thr Asp Met Met Thr Thr Gly Phe His Gly Ala Glu 145 150 155 160 Leu Ala Asp Ile Gln Met Gly Ser Ser Val Val Val Ile Gly Ile Gly 165 170 175 Ala Val Gly Leu Met Gly Ile Ala Gly Ala Lys Leu Arg Gly Ala Gly 180 185 190 Arg Ile Ile Gly Val Gly Ser Arg Pro Val Cys Val Glu Thr Ala Lys 195 200 205 Phe Tyr Gly Ala Thr Asp Ile Leu Asn Tyr Lys Asn Gly His Ile Val 210 215 220 Asp Gln Val Met Lys Leu Thr Asn Gly Lys Gly Val Asp Arg Val Ile 225 230 235 240 Met Ala Gly Gly Gly Ser Glu Thr Leu Ser Gln Ala Val Ser Met Val 245 250 255 Lys Pro Gly Gly Ile Ile Ser Asn Ile Asn Tyr His Gly Ser Gly Asp 260 265 270 Ala Leu Leu Ile Pro Arg Val Glu Trp Gly Cys Gly Met Ala His Lys 275 280 285 Thr Ile Lys Gly Gly Leu Cys Pro Gly Gly Arg Leu Arg Ala Glu Met 290 295 300 Leu Arg Asp Met Val Val Tyr Asn Arg Val Asp Leu Ser Lys Leu Val 305 310 315 320 Thr His Val Tyr His Gly Phe Asp His Ile Glu Glu Ala Leu Leu Leu 325 330 335 Met Lys Asp Lys Pro Lys Asp Leu Ile Lys Ala Val Val Ile Leu 340 345 350 <210> SEQ ID NO 20 <211> LENGTH: 352 <212> TYPE: PRT <213> ORGANISM: Thermoanaerobacter brokii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: SecAdh, 3FSR_A <400> SEQUENCE: 20 Met Lys Gly Phe Ala Met Leu Ser Ile Gly Lys Val Gly Trp Ile Glu 1 5 10 15 Lys Glu Lys Pro Ala Pro Gly Pro Phe Asp Ala Ile Val Arg Pro Leu 20 25 30 Ala Val Ala Pro Cys Thr Ser Asp Ile His Thr Val Phe Glu Gly Ala 35 40 45 Ile Gly Glu Arg His Asn Met Ile Leu Gly His Glu Ala Val Gly Glu 50 55 60 Val Val Glu Val Gly Ser Glu Val Lys Asp Phe Lys Pro Gly Asp Arg 65 70 75 80 Val Val Val Pro Ala Ile Thr Pro Asp Trp Arg Thr Ser Glu Val Gln 85 90 95 Arg Gly Tyr His Gln His Ser Gly Gly Met Leu Ala Gly Trp Lys Phe 100 105 110 Ser Asn Val Lys Asp Gly Val Phe Gly Glu Phe Phe His Val Asn Asp 115 120 125 Ala Asp Met Asn Leu Ala His Leu Pro Lys Glu Ile Pro Leu Glu Ala 130 135 140 Ala Val Met Ile Pro Asp Met Met Thr Thr Gly Phe His Gly Ala Glu 145 150 155 160 Leu Ala Asp Ile Gln Met Gly Ser Ser Val Val Val Ile Gly Ile Gly 165 170 175 Ala Val Gly Leu Met Gly Ile Ala Gly Ala Lys Leu Arg Gly Ala Gly 180 185 190 Arg Ile Ile Gly Val Gly Ser Arg Pro Ile Cys Val Glu Ala Ala Lys 195 200 205 Phe Tyr Gly Ala Thr Asp Ile Leu Asn Tyr Lys Asn Gly His Ile Val 210 215 220 Asp Gln Val Met Lys Leu Thr Asn Gly Lys Gly Val Asp Arg Val Ile 225 230 235 240 Met Ala Gly Gly Gly Ser Glu Thr Leu Ser Gln Ala Val Ser Met Val 245 250 255 Lys Pro Gly Gly Ile Ile Ser Asn Ile Asn Tyr His Gly Ser Gly Asp 260 265 270 Ala Leu Leu Ile Pro Arg Val Glu Trp Gly Cys Gly Met Ala His Lys 275 280 285 Thr Ile Lys Gly Gly Leu Cys Pro Gly Gly Arg Leu Arg Met Glu Arg 290 295 300 Leu Ile Asp Leu Val Phe Tyr Lys Arg Val Asp Pro Ser Lys Leu Val 305 310 315 320 Thr His Val Phe Arg Gly Phe Asp Asn Ile Glu Lys Ala Phe Met Leu 325 330 335 Met Lys Asp Lys Pro Lys Asp Leu Ile Lys Pro Val Val Ile Leu Ala 340 345 350 <210> SEQ ID NO 21 <211> LENGTH: 520 <212> TYPE: PRT <213> ORGANISM: Mus musculus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: HMG-CoA synthase <400> SEQUENCE: 21 Met Pro Gly Ser Leu Pro Leu Asn Ala Glu Ala Cys Trp Pro Lys Asp 1 5 10 15 Val Gly Ile Val Ala Leu Glu Ile Tyr Phe Pro Ser Gln Tyr Val Asp 20 25 30 Gln Ala Glu Leu Glu Lys Tyr Asp Gly Val Asp Ala Gly Lys Tyr Thr 35 40 45 Ile Gly Leu Gly Gln Ala Arg Met Gly Phe Cys Thr Asp Arg Glu Asp 50 55 60 Ile Asn Ser Leu Cys Leu Thr Val Val Gln Lys Leu Met Glu Arg His 65 70 75 80 Ser Leu Ser Tyr Asp Cys Ile Gly Arg Leu Glu Val Gly Thr Glu Thr 85 90 95 Ile Ile Asp Lys Ser Lys Ser Val Lys Ser Lys Leu Met Gln Leu Phe 100 105 110 Glu Glu Ser Gly Asn Thr Asp Ile Glu Gly Ile Asp Thr Thr Asn Ala 115 120 125 Cys Tyr Gly Gly Thr Ala Ala Val Phe Asn Ala Val Asn Trp Val Glu 130 135 140 Ser Ser Ser Trp Asp Gly Arg Tyr Ala Leu Val Val Ala Gly Asp Ile 145 150 155 160 Ala Ile Tyr Ala Thr Gly Asn Ala Arg Pro Thr Gly Gly Val Gly Ala 165 170 175 Val Ala Leu Leu Ile Gly Pro Asn Ala Pro Leu Ile Phe Asp Arg Gly 180 185 190 Leu Arg Gly Thr His Met Gln His Ala Tyr Asp Phe Tyr Lys Pro Asp 195 200 205 Met Leu Ser Glu Tyr Pro Val Val Asp Gly Lys Leu Ser Ile Gln Cys 210 215 220 Tyr Leu Ser Ala Leu Asp Arg Cys Tyr Ser Val Tyr Arg Lys Lys Ile 225 230 235 240 Arg Ala Gln Trp Gln Lys Glu Gly Lys Asp Lys Asp Phe Thr Leu Asn 245 250 255 Asp Phe Gly Phe Met Ile Phe His Ser Pro Tyr Cys Lys Leu Val Gln 260 265 270 Lys Ser Leu Ala Arg Met Phe Leu Asn Asp Phe Leu Asn Asp Gln Asn 275 280 285 Arg Asp Lys Asn Ser Ile Tyr Ser Gly Leu Glu Ala Phe Gly Asp Val 290 295 300 Lys Leu Glu Asp Thr Tyr Phe Asp Arg Asp Val Glu Lys Ala Phe Met 305 310 315 320 Lys Ala Ser Ser Glu Leu Phe Asn Gln Lys Thr Lys Ala Ser Leu Leu 325 330 335 Val Ser Asn Gln Asn Gly Asn Met Tyr Thr Ser Ser Val Tyr Gly Ser 340 345 350 Leu Ala Ser Val Leu Ala Gln Tyr Ser Pro Gln Gln Leu Ala Gly Lys 355 360 365 Arg Val Gly Val Phe Ser Tyr Gly Ser Gly Leu Ala Ala Thr Leu Tyr 370 375 380 Ser Leu Lys Val Thr Gln Asp Ala Thr Pro Gly Ser Ala Leu Asp Lys 385 390 395 400 Ile Thr Ala Ser Leu Cys Asp Leu Lys Ser Arg Leu Asp Ser Arg Thr 405 410 415 Cys Val Ala Pro Asp Val Phe Ala Glu Asn Met Lys Leu Arg Glu Asp 420 425 430 Thr His His Leu Ala Asn Tyr Ile Pro Gln Cys Ser Ile Asp Ser Leu 435 440 445 Phe Glu Gly Thr Trp Tyr Leu Val Arg Val Asp Glu Lys His Arg Arg 450 455 460 Thr Tyr Ala Arg Arg Pro Phe Thr Asn Asp His Ser Leu Asp Glu Gly 465 470 475 480 Met Gly Leu Val His Ser Asn Thr Ala Thr Glu His Ile Pro Ser Pro 485 490 495 Ala Lys Lys Val Pro Arg Leu Pro Ala Thr Ser Ala Glu Ser Glu Ser 500 505 510 Ala Val Ile Ser Asn Gly Glu His 515 520 <210> SEQ ID NO 22 <211> LENGTH: 396 <212> TYPE: PRT <213> ORGANISM: Saccharomyces cerevisiae <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Mdd, CAA96324.1 <400> SEQUENCE: 22 Met Thr Val Tyr Thr Ala Ser Val Thr Ala Pro Val Asn Ile Ala Thr 1 5 10 15 Leu Lys Tyr Trp Gly Lys Arg Asp Thr Lys Leu Asn Leu Pro Thr Asn 20 25 30 Ser Ser Ile Ser Val Thr Leu Ser Gln Asp Asp Leu Arg Thr Leu Thr 35 40 45 Ser Ala Ala Thr Ala Pro Glu Phe Glu Arg Asp Thr Leu Trp Leu Asn 50 55 60 Gly Glu Pro His Ser Ile Asp Asn Glu Arg Thr Gln Asn Cys Leu Arg 65 70 75 80 Asp Leu Arg Gln Leu Arg Lys Glu Met Glu Ser Lys Asp Ala Ser Leu 85 90 95 Pro Thr Leu Ser Gln Trp Lys Leu His Ile Val Ser Glu Asn Asn Phe 100 105 110 Pro Thr Ala Ala Gly Leu Ala Ser Ser Ala Ala Gly Phe Ala Ala Leu 115 120 125 Val Ser Ala Ile Ala Lys Leu Tyr Gln Leu Pro Gln Ser Thr Ser Glu 130 135 140 Ile Ser Arg Ile Ala Arg Lys Gly Ser Gly Ser Ala Cys Arg Ser Leu 145 150 155 160 Phe Gly Gly Tyr Val Ala Trp Glu Met Gly Lys Ala Glu Asp Gly His 165 170 175 Asp Ser Met Ala Val Gln Ile Ala Asp Ser Ser Asp Trp Pro Gln Met 180 185 190 Lys Ala Cys Val Leu Val Val Ser Asp Ile Lys Lys Asp Val Ser Ser 195 200 205 Thr Gln Gly Met Gln Leu Thr Val Ala Thr Ser Glu Leu Phe Lys Glu 210 215 220 Arg Ile Glu His Val Val Pro Lys Arg Phe Glu Val Met Arg Lys Ala 225 230 235 240 Ile Val Glu Lys Asp Phe Ala Thr Phe Ala Lys Glu Thr Met Met Asp 245 250 255 Ser Asn Ser Phe His Ala Thr Cys Leu Asp Ser Phe Pro Pro Ile Phe 260 265 270 Tyr Met Asn Asp Thr Ser Lys Arg Ile Ile Ser Trp Cys His Thr Ile 275 280 285 Asn Gln Phe Tyr Gly Glu Thr Ile Val Ala Tyr Thr Phe Asp Ala Gly 290 295 300 Pro Asn Ala Val Leu Tyr Tyr Leu Ala Glu Asn Glu Ser Lys Leu Phe 305 310 315 320 Ala Phe Ile Tyr Lys Leu Phe Gly Ser Val Pro Gly Trp Asp Lys Lys 325 330 335 Phe Thr Thr Glu Gln Leu Glu Ala Phe Asn His Gln Phe Glu Ser Ser 340 345 350 Asn Phe Thr Ala Arg Glu Leu Asp Leu Glu Leu Gln Lys Asp Val Ala 355 360 365 Arg Val Ile Leu Thr Gln Val Gly Ser Gly Pro Gln Glu Thr Asn Glu 370 375 380 Ser Leu Ile Asp Ala Lys Thr Gly Leu Pro Lys Glu 385 390 395 <210> SEQ ID NO 23 <211> LENGTH: 324 <212> TYPE: PRT <213> ORGANISM: Picrophilus torridus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Mdd, WP_011178157.1 <400> SEQUENCE: 23 Met Glu Asn Tyr Asn Val Lys Thr Arg Ala Phe Pro Thr Ile Gly Ile 1 5 10 15 Ile Leu Leu Gly Gly Ile Ser Asp Lys Lys Asn Arg Ile Pro Leu His 20 25 30 Thr Thr Ala Gly Ile Ala Tyr Thr Gly Ile Asn Asn Asp Val Tyr Thr 35 40 45 Glu Thr Lys Leu Tyr Val Ser Lys Asp Glu Lys Cys Tyr Ile Asp Gly 50 55 60 Lys Glu Ile Asp Leu Asn Ser Asp Arg Ser Pro Ser Lys Val Ile Asp 65 70 75 80 Lys Phe Lys His Glu Ile Leu Met Arg Val Asn Leu Asp Asp Glu Asn 85 90 95 Asn Leu Ser Ile Asp Ser Arg Asn Phe Asn Ile Leu Ser Gly Ser Ser 100 105 110 Asp Ser Gly Ala Ala Ala Leu Gly Glu Cys Ile Glu Ser Ile Phe Glu 115 120 125 Tyr Asn Ile Asn Ile Phe Thr Phe Glu Asn Asp Leu Gln Arg Ile Ser 130 135 140 Glu Ser Val Gly Arg Ser Leu Tyr Gly Gly Leu Thr Val Asn Tyr Ala 145 150 155 160 Asn Gly Arg Glu Ser Leu Thr Glu Pro Leu Leu Glu Pro Glu Ala Phe 165 170 175 Asn Asn Phe Thr Ile Ile Gly Ala His Phe Asn Ile Asp Arg Lys Pro 180 185 190 Ser Asn Glu Ile His Glu Asn Ile Ile Lys His Glu Asn Tyr Arg Glu 195 200 205 Arg Ile Lys Ser Ala Glu Arg Lys Ala Lys Lys Leu Glu Glu Leu Ser 210 215 220 Arg Asn Ala Asn Ile Lys Gly Ile Phe Glu Leu Ala Glu Ser Asp Thr 225 230 235 240 Val Glu Tyr His Lys Met Leu His Asp Val Gly Val Asp Ile Ile Asn 245 250 255 Asp Arg Met Glu Asn Leu Ile Glu Arg Val Lys Glu Met Lys Asn Asn 260 265 270 Phe Trp Asn Ser Tyr Ile Val Thr Gly Gly Pro Asn Val Phe Val Ile 275 280 285 Thr Glu Lys Lys Asp Val Asp Lys Ala Met Glu Gly Leu Asn Asp Leu 290 295 300 Cys Asp Asp Ile Arg Leu Leu Lys Val Ala Gly Lys Pro Gln Val Ile 305 310 315 320 Ser Lys Asn Phe <210> SEQ ID NO 24 <211> LENGTH: 460 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: CimA, AGY76958.1 <400> SEQUENCE: 24 Met Lys Lys Ser Ser Tyr Glu Tyr Lys Leu Asn Asn Val Asp Ser Pro 1 5 10 15 Asn Phe Tyr Lys Asn Ile Phe Pro Tyr Asp Glu Ile Pro Lys Ile Asn 20 25 30 Phe Asn Gly Val Gln Ile Pro Lys Asp Leu Pro Glu Asn Ile Tyr Ile 35 40 45 Thr Asp Thr Thr Phe Arg Asp Gly Gln Gln Ser Met Pro Pro Tyr Thr 50 55 60 Thr Glu Gln Ile Ile Arg Ile Phe Asp Tyr Leu His Asn Leu Asp Asn 65 70 75 80 Asn Ser Gly Ile Ile Lys Gln Thr Glu Phe Phe Leu Tyr Thr Glu Lys 85 90 95 Asp Arg Lys Ala Ala Gln Val Cys Met Glu Arg Gly Tyr Glu Phe Pro 100 105 110 Glu Val Thr Ser Trp Ile Arg Ala Asn Lys Glu Asp Phe Lys Leu Val 115 120 125 Lys Gln Met Gly Ile Lys Glu Thr Gly Met Leu Met Ser Cys Ser Asp 130 135 140 Tyr His Ile Phe Lys Lys Leu Arg Lys Thr Arg Lys Glu Thr Met Asp 145 150 155 160 Met Tyr Leu Gly Ile Val Lys Glu Ala Leu Asp Asn Gly Ile Arg Pro 165 170 175 Arg Cys His Leu Glu Asp Ile Thr Arg Ala Asp Phe Tyr Gly Phe Val 180 185 190 Val Pro Leu Val Asn Lys Leu Met Glu Leu Ser Lys Gln Ser Gly Ile 195 200 205 Pro Ile Lys Ile Arg Ala Cys Asp Thr Leu Gly Leu Gly Val Ser Tyr 210 215 220 Ser Gly Val Glu Leu Pro Arg Ser Val Gln Ala Ile Met Tyr Gly Leu 225 230 235 240 Arg Asn Asn Cys Gly Val Pro Ser Glu Cys Ile Glu Trp His Gly His 245 250 255 Asn Asp Phe Tyr Ala Val Val Asn Asn Ser Thr Thr Ala Trp Leu Tyr 260 265 270 Gly Ala Ser Ala Val Asn Thr Ser Phe Leu Gly Ile Gly Glu Arg Thr 275 280 285 Gly Asn Cys Pro Leu Glu Ala Met Ile Phe Glu Tyr Gly Gln Ile Lys 290 295 300 Gly Asn Thr Lys Asn Met Lys Leu Glu Val Ile Thr Glu Leu Ser Glu 305 310 315 320 Tyr Phe Lys Lys Glu Met Glu Tyr Ala Val Pro Pro Arg Thr Pro Phe 325 330 335 Val Gly Lys Glu Phe Asn Val Thr Arg Ala Gly Ile His Ala Asp Gly 340 345 350 Ile Leu Lys Asp Glu Glu Ile Tyr Asn Ile Phe Asp Thr Asp Lys Ile 355 360 365 Leu Gly Arg Pro Val Val Val Ala Val Asn Gln Tyr Ser Gly His Ala 370 375 380 Gly Ile Ala Ala Trp Ile Asn Thr Tyr Tyr Arg Leu Lys Asp Glu Glu 385 390 395 400 Lys Ile Asp Lys Trp Asp Thr Arg Ile Ala Lys Ile Lys Glu Trp Val 405 410 415 Asp Glu Gln Tyr Lys Ala Gly Arg Thr Ser Ile Ile Gly Asn Asp Glu 420 425 430 Leu Glu Leu Leu Val Asp Lys Met Leu Pro Asp Ile Ser Gln Lys Lys 435 440 445 Lys Lys Glu Leu Ala Arg Val Asp Thr Arg Phe Ile 450 455 460 <210> SEQ ID NO 25 <211> LENGTH: 491 <212> TYPE: PRT <213> ORGANISM: Methanocaldococcus jannaschii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: CimA, NP_248395.1 <400> SEQUENCE: 25 Met Met Val Arg Ile Phe Asp Thr Thr Leu Arg Asp Gly Glu Gln Thr 1 5 10 15 Pro Gly Val Ser Leu Thr Pro Asn Asp Lys Leu Glu Ile Ala Lys Lys 20 25 30 Leu Asp Glu Leu Gly Val Asp Val Ile Glu Ala Gly Ser Ala Ile Thr 35 40 45 Ser Lys Gly Glu Arg Glu Gly Ile Lys Leu Ile Thr Lys Glu Gly Leu 50 55 60 Asn Ala Glu Ile Cys Ser Phe Val Arg Ala Leu Pro Val Asp Ile Asp 65 70 75 80 Ala Ala Leu Glu Cys Asp Val Asp Ser Val His Leu Val Val Pro Thr 85 90 95 Ser Pro Ile His Met Lys Tyr Lys Leu Arg Lys Thr Glu Asp Glu Val 100 105 110 Leu Glu Thr Ala Leu Lys Ala Val Glu Tyr Ala Lys Glu His Gly Leu 115 120 125 Ile Val Glu Leu Ser Ala Glu Asp Ala Thr Arg Ser Asp Val Asn Phe 130 135 140 Leu Ile Lys Leu Phe Asn Glu Gly Glu Lys Val Gly Ala Asp Arg Val 145 150 155 160 Cys Val Cys Asp Thr Val Gly Val Leu Thr Pro Gln Lys Ser Gln Glu 165 170 175 Leu Phe Lys Lys Ile Thr Glu Asn Val Asn Leu Pro Val Ser Val His 180 185 190 Cys His Asn Asp Phe Gly Met Ala Thr Ala Asn Thr Cys Ser Ala Val 195 200 205 Leu Gly Gly Ala Val Gln Cys His Val Thr Val Asn Gly Ile Gly Glu 210 215 220 Arg Ala Gly Asn Ala Ser Leu Glu Glu Val Val Ala Ala Leu Lys Ile 225 230 235 240 Leu Tyr Gly Tyr Asp Thr Lys Ile Lys Met Glu Lys Leu Tyr Glu Val 245 250 255 Ser Arg Ile Val Ser Arg Leu Met Lys Leu Pro Val Pro Pro Asn Lys 260 265 270 Ala Ile Val Gly Asp Asn Ala Phe Ala His Glu Ala Gly Ile His Val 275 280 285 Asp Gly Leu Ile Lys Asn Thr Glu Thr Tyr Glu Pro Ile Lys Pro Glu 290 295 300 Met Val Gly Asn Arg Arg Arg Ile Ile Leu Gly Lys His Ser Gly Arg 305 310 315 320 Lys Ala Leu Lys Tyr Lys Leu Asp Leu Met Gly Ile Asn Val Ser Asp 325 330 335 Glu Gln Leu Asn Lys Ile Tyr Glu Arg Val Lys Glu Phe Gly Asp Leu 340 345 350 Gly Lys Tyr Ile Ser Asp Ala Asp Leu Leu Ala Ile Val Arg Glu Val 355 360 365 Thr Gly Lys Leu Val Glu Glu Lys Ile Lys Leu Asp Glu Leu Thr Val 370 375 380 Val Ser Gly Asn Lys Ile Thr Pro Ile Ala Ser Val Lys Leu His Tyr 385 390 395 400 Lys Gly Glu Asp Ile Thr Leu Ile Glu Thr Ala Tyr Gly Val Gly Pro 405 410 415 Val Asp Ala Ala Ile Asn Ala Val Arg Lys Ala Ile Ser Gly Val Ala 420 425 430 Asp Ile Lys Leu Val Glu Tyr Arg Val Glu Ala Ile Gly Gly Gly Thr 435 440 445 Asp Ala Leu Ile Glu Val Val Val Lys Leu Arg Lys Gly Thr Glu Ile 450 455 460 Val Glu Val Arg Lys Ser Asp Ala Asp Ile Ile Arg Ala Ser Val Asp 465 470 475 480 Ala Val Met Glu Gly Ile Asn Met Leu Leu Asn 485 490 <210> SEQ ID NO 26 <211> LENGTH: 421 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: LeuC, WP_023162955.1 <400> SEQUENCE: 26 Met Gly Met Thr Met Thr Gln Lys Ile Leu Ala His His Ala Lys Met 1 5 10 15 Asp Glu Val Lys Ala Gly Gln Leu Ile Lys Val Lys Leu Asp Leu Val 20 25 30 Leu Gly Asn Asp Ile Thr Thr Pro Val Ala Ile Asn Glu Phe Asn Lys 35 40 45 Ile Gly Leu Asn Asn Val Phe Asp Lys Asn Lys Ile Ala Ile Val Pro 50 55 60 Asp His Phe Thr Pro Asn Lys Asp Ile Lys Ser Ala Glu Gln Cys Lys 65 70 75 80 Tyr Val Arg Glu Phe Val Lys Lys Met Glu Ile Lys Asn Tyr Phe Glu 85 90 95 Val Gly Arg Met Gly Ile Glu His Ala Leu Ile Pro Glu Lys Gly Leu 100 105 110 Ala Val Cys Gly Asp Val Val Ile Gly Ala Asp Ser His Thr Cys Thr 115 120 125 Tyr Gly Ala Leu Gly Ala Phe Ser Thr Gly Ile Gly Ser Thr Asp Met 130 135 140 Ala Ala Gly Met Ala Thr Gly Glu Ala Trp Phe Lys Val Pro Glu Ala 145 150 155 160 Ile Lys Phe Val Leu Lys Gly Lys Leu Thr Lys Trp Val Ser Gly Lys 165 170 175 Asp Val Ile Leu His Ile Ile Gly Met Ile Gly Val Asp Gly Ala Leu 180 185 190 Tyr Lys Ser Met Glu Phe Thr Gly Glu Gly Val Ser Ser Leu Thr Met 195 200 205 Asp Asp Arg Phe Thr Ile Cys Asn Met Ala Ile Glu Ala Gly Ala Lys 210 215 220 Asn Gly Ile Phe Pro Val Asp Glu Asn Thr Ile Asn Tyr Val Lys Glu 225 230 235 240 His Ser Lys Lys Asn Tyr Thr Val Tyr Glu Ala Asp Ser Asp Ala Glu 245 250 255 Tyr Ser Gln Val Ile Glu Ile Asp Leu Ser Lys Ile Arg Pro Thr Val 260 265 270 Ala Phe Pro His Ile Pro Glu Asn Thr Lys Thr Ile Asp Glu Val Gly 275 280 285 Asp Ile Arg Ile Asp Gln Val Val Ile Gly Ser Cys Thr Asn Gly Arg 290 295 300 Ile Gly Asp Leu Arg Ala Ala Ala Ser Ile Leu Lys Gly Arg Lys Val 305 310 315 320 Asn Glu Asn Val Arg Ala Ile Ile Phe Pro Ala Thr Gln Ala Ile Tyr 325 330 335 Leu Gln Ala Met Lys Glu Gly Leu Ile Glu Ile Phe Ile Glu Ala Gly 340 345 350 Ala Val Val Ser Thr Pro Thr Cys Gly Pro Cys Leu Gly Gly His Met 355 360 365 Gly Ile Leu Ala Glu Gly Glu Arg Ala Val Ser Thr Thr Asn Arg Asn 370 375 380 Phe Val Gly Arg Met Gly His Val Lys Ser Glu Val Tyr Leu Ala Ser 385 390 395 400 Pro Glu Val Ala Ala Ala Ser Ala Val Thr Gly Lys Ile Ser Ser Pro 405 410 415 Glu Glu Val Val Lys 420 <210> SEQ ID NO 27 <211> LENGTH: 164 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: LeuD, AGY77204.1 <400> SEQUENCE: 27 Met Ile Lys Gly Lys Ala Ile Lys Tyr Gly Asp Asn Val Asp Thr Asp 1 5 10 15 Val Ile Ile Pro Ala Arg Tyr Leu Asn Thr Ser Asp His Lys Glu Leu 20 25 30 Ala Ser His Cys Met Glu Asp Ile Asp Lys Asp Phe Ser Lys Lys Ile 35 40 45 Ser Lys Gly Asp Ile Met Ile Ala Gly Lys Asn Phe Gly Cys Gly Ser 50 55 60 Ser Arg Glu His Ala Pro Ile Ala Ile Lys Ala Ser Gly Ile Ser Cys 65 70 75 80 Ile Ile Ala Glu Thr Phe Ala Arg Ile Phe Phe Arg Asn Ser Ile Asn 85 90 95 Ile Gly Leu Pro Ile Met Glu Cys Glu Glu Ala Ala Lys Asp Ile Asp 100 105 110 Glu Lys Asp Glu Val Ser Val Asp Thr Val Ser Gly Val Ile Thr Asn 115 120 125 Ile Thr Lys Asn Lys Thr Tyr Lys Ala Val Pro Phe Pro Glu Phe Met 130 135 140 His Lys Ile Ile Lys Ser Glu Gly Leu Ile Asn Tyr Ile Lys Glu Glu 145 150 155 160 Val Glu Asn Lys <210> SEQ ID NO 28 <211> LENGTH: 466 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: LeuC, NP_414614.1 <400> SEQUENCE: 28 Met Ala Lys Thr Leu Tyr Glu Lys Leu Phe Asp Ala His Val Val Tyr 1 5 10 15 Glu Ala Glu Asn Glu Thr Pro Leu Leu Tyr Ile Asp Arg His Leu Val 20 25 30 His Glu Val Thr Ser Pro Gln Ala Phe Asp Gly Leu Arg Ala His Gly 35 40 45 Arg Pro Val Arg Gln Pro Gly Lys Thr Phe Ala Thr Met Asp His Asn 50 55 60 Val Ser Thr Gln Thr Lys Asp Ile Asn Ala Cys Gly Glu Met Ala Arg 65 70 75 80 Ile Gln Met Gln Glu Leu Ile Lys Asn Cys Lys Glu Phe Gly Val Glu 85 90 95 Leu Tyr Asp Leu Asn His Pro Tyr Gln Gly Ile Val His Val Met Gly 100 105 110 Pro Glu Gln Gly Val Thr Leu Pro Gly Met Thr Ile Val Cys Gly Asp 115 120 125 Ser His Thr Ala Thr His Gly Ala Phe Gly Ala Leu Ala Phe Gly Ile 130 135 140 Gly Thr Ser Glu Val Glu His Val Leu Ala Thr Gln Thr Leu Lys Gln 145 150 155 160 Gly Arg Ala Lys Thr Met Lys Ile Glu Val Gln Gly Lys Ala Ala Pro 165 170 175 Gly Ile Thr Ala Lys Asp Ile Val Leu Ala Ile Ile Gly Lys Thr Gly 180 185 190 Ser Ala Gly Gly Thr Gly His Val Val Glu Phe Cys Gly Glu Ala Ile 195 200 205 Arg Asp Leu Ser Met Glu Gly Arg Met Thr Leu Cys Asn Met Ala Ile 210 215 220 Glu Met Gly Ala Lys Ala Gly Leu Val Ala Pro Asp Glu Thr Thr Phe 225 230 235 240 Asn Tyr Val Lys Gly Arg Leu His Ala Pro Lys Gly Lys Asp Phe Asp 245 250 255 Asp Ala Val Ala Tyr Trp Lys Thr Leu Gln Thr Asp Glu Gly Ala Thr 260 265 270 Phe Asp Thr Val Val Thr Leu Gln Ala Glu Glu Ile Ser Pro Gln Val 275 280 285 Thr Trp Gly Thr Asn Pro Gly Gln Val Ile Ser Val Asn Asp Asn Ile 290 295 300 Pro Asp Pro Ala Ser Phe Ala Asp Pro Val Glu Arg Ala Ser Ala Glu 305 310 315 320 Lys Ala Leu Ala Tyr Met Gly Leu Lys Pro Gly Ile Pro Leu Thr Glu 325 330 335 Val Ala Ile Asp Lys Val Phe Ile Gly Ser Cys Thr Asn Ser Arg Ile 340 345 350 Glu Asp Leu Arg Ala Ala Ala Glu Ile Ala Lys Gly Arg Lys Val Ala 355 360 365 Pro Gly Val Gln Ala Leu Val Val Pro Gly Ser Gly Pro Val Lys Ala 370 375 380 Gln Ala Glu Ala Glu Gly Leu Asp Lys Ile Phe Ile Glu Ala Gly Phe 385 390 395 400 Glu Trp Arg Leu Pro Gly Cys Ser Met Cys Leu Ala Met Asn Asn Asp 405 410 415 Arg Leu Asn Pro Gly Glu Arg Cys Ala Ser Thr Ser Asn Arg Asn Phe 420 425 430 Glu Gly Arg Gln Gly Arg Gly Gly Arg Thr His Leu Val Ser Pro Ala 435 440 445 Met Ala Ala Ala Ala Ala Val Thr Gly His Phe Ala Asp Ile Arg Asn 450 455 460 Ile Lys 465 <210> SEQ ID NO 29 <211> LENGTH: 201 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: LeuD, NP_414613.1 <400> SEQUENCE: 29 Met Ala Glu Lys Phe Ile Lys His Thr Gly Leu Val Val Pro Leu Asp 1 5 10 15 Ala Ala Asn Val Asp Thr Asp Ala Ile Ile Pro Lys Gln Phe Leu Gln 20 25 30 Lys Val Thr Arg Thr Gly Phe Gly Ala His Leu Phe Asn Asp Trp Arg 35 40 45 Phe Leu Asp Glu Lys Gly Gln Gln Pro Asn Pro Asp Phe Val Leu Asn 50 55 60 Phe Pro Gln Tyr Gln Gly Ala Ser Ile Leu Leu Ala Arg Glu Asn Phe 65 70 75 80 Gly Cys Gly Ser Ser Arg Glu His Ala Pro Trp Ala Leu Thr Asp Tyr 85 90 95 Gly Phe Lys Val Val Ile Ala Pro Ser Phe Ala Asp Ile Phe Tyr Gly 100 105 110 Asn Ser Phe Asn Asn Gln Leu Leu Pro Val Lys Leu Ser Asp Ala Glu 115 120 125 Val Asp Glu Leu Phe Ala Leu Val Lys Ala Asn Pro Gly Ile His Phe 130 135 140 Asp Val Asp Leu Glu Ala Gln Glu Val Lys Ala Gly Glu Lys Thr Tyr 145 150 155 160 Arg Phe Thr Ile Asp Ala Phe Arg Arg His Cys Met Met Asn Gly Leu 165 170 175 Asp Ser Ile Gly Leu Thr Leu Gln His Asp Asp Ala Ile Ala Ala Tyr 180 185 190 Glu Ala Lys Gln Pro Ala Phe Met Asn 195 200 <210> SEQ ID NO 30 <211> LENGTH: 354 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: LeuB, WP_023162957.1 <400> SEQUENCE: 30 Met Lys Ile Ala Ile Ile Pro Gly Asp Gly Ile Gly Lys Glu Ile Ile 1 5 10 15 Glu Gln Ala Lys Lys Val Leu Lys Ala Ala Ser Ala Lys Tyr Asn Phe 20 25 30 Asp Phe Glu Cys Glu Glu Val Leu Leu Gly Gly Ala Ala Val Asp Ala 35 40 45 Thr Gly Val Pro Leu Pro Asp Lys Thr Val Glu Val Cys Lys Lys Ser 50 55 60 Asp Ala Val Leu Leu Gly Ala Val Gly Gly Pro Lys Trp Asp Ser Leu 65 70 75 80 Pro Ser Lys Leu Arg Pro Glu Ala Gly Leu Leu Gly Ile Arg Lys Ala 85 90 95 Leu Gly Val Phe Ala Asn Leu Arg Pro Ala Ile Leu Phe Pro Glu Leu 100 105 110 Ile Ala Ala Ser Asn Leu Lys Pro Glu Val Leu Gly Gly Gly Leu Asp 115 120 125 Ile Met Ile Val Arg Glu Leu Ile Gly Gly Ala Tyr Phe Gly Glu Lys 130 135 140 Asn Arg Ile Asp Ile Glu Gly Gly Lys Lys Ala Trp Asp Thr Ile Ser 145 150 155 160 Tyr Thr Ser Phe Glu Ile Asp Arg Ile Thr Arg Lys Ala Phe Glu Ile 165 170 175 Ala Arg Lys Arg Ser Asn Arg Leu Thr Leu Val Asp Lys Ala Asn Val 180 185 190 Leu Glu Ser Ser Lys Leu Trp Arg Glu Val Val Gly Asn Ile Ala Lys 195 200 205 Glu Tyr Glu Asp Val Glu Ile Asn Tyr Met Tyr Val Asp Asn Ala Ser 210 215 220 Met Gln Leu Ile Arg Asp Pro Lys Gln Phe Asp Val Ile Leu Thr Glu 225 230 235 240 Asn Met Phe Gly Asp Ile Leu Ser Asp Glu Ala Ser Met Leu Thr Gly 245 250 255 Ser Leu Gly Met Leu Pro Ser Ala Ser Val Arg Gly Asp Ser Phe Gly 260 265 270 Leu Tyr Glu Pro Val His Gly Ser Ala Pro Asp Ile Ala Gly Gln Asn 275 280 285 Lys Ala Asn Pro Ile Gly Thr Ile Met Ser Val Ala Met Met Leu Lys 290 295 300 Tyr Ser Phe Asp Met Glu Gln Ala Tyr Val Asp Ile Lys Asn Ala Ile 305 310 315 320 Ser Lys Val Leu Lys Glu Gly Tyr Arg Thr Gly Asp Ile Ala Lys Glu 325 330 335 Asp Ser Lys Leu Val Gly Thr Glu Glu Met Gly Asp Leu Ile Val Lys 340 345 350 Asn Leu <210> SEQ ID NO 31 <211> LENGTH: 363 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: LeuB, NP_414615.4 <400> SEQUENCE: 31 Met Ser Lys Asn Tyr His Ile Ala Val Leu Pro Gly Asp Gly Ile Gly 1 5 10 15 Pro Glu Val Met Thr Gln Ala Leu Lys Val Leu Asp Ala Val Arg Asn 20 25 30 Arg Phe Ala Met Arg Ile Thr Thr Ser His Tyr Asp Val Gly Gly Ala 35 40 45 Ala Ile Asp Asn His Gly Gln Pro Leu Pro Pro Ala Thr Val Glu Gly 50 55 60 Cys Glu Gln Ala Asp Ala Val Leu Phe Gly Ser Val Gly Gly Pro Lys 65 70 75 80 Trp Glu His Leu Pro Pro Asp Gln Gln Pro Glu Arg Gly Ala Leu Leu 85 90 95 Pro Leu Arg Lys His Phe Lys Leu Phe Ser Asn Leu Arg Pro Ala Lys 100 105 110 Leu Tyr Gln Gly Leu Glu Ala Phe Cys Pro Leu Arg Ala Asp Ile Ala 115 120 125 Ala Asn Gly Phe Asp Ile Leu Cys Val Arg Glu Leu Thr Gly Gly Ile 130 135 140 Tyr Phe Gly Gln Pro Lys Gly Arg Glu Gly Ser Gly Gln Tyr Glu Lys 145 150 155 160 Ala Phe Asp Thr Glu Val Tyr His Arg Phe Glu Ile Glu Arg Ile Ala 165 170 175 Arg Ile Ala Phe Glu Ser Ala Arg Lys Arg Arg His Lys Val Thr Ser 180 185 190 Ile Asp Lys Ala Asn Val Leu Gln Ser Ser Ile Leu Trp Arg Glu Ile 195 200 205 Val Asn Glu Ile Ala Thr Glu Tyr Pro Asp Val Glu Leu Ala His Met 210 215 220 Tyr Ile Asp Asn Ala Thr Met Gln Leu Ile Lys Asp Pro Ser Gln Phe 225 230 235 240 Asp Val Leu Leu Cys Ser Asn Leu Phe Gly Asp Ile Leu Ser Asp Glu 245 250 255 Cys Ala Met Ile Thr Gly Ser Met Gly Met Leu Pro Ser Ala Ser Leu 260 265 270 Asn Glu Gln Gly Phe Gly Leu Tyr Glu Pro Ala Gly Gly Ser Ala Pro 275 280 285 Asp Ile Ala Gly Lys Asn Ile Ala Asn Pro Ile Ala Gln Ile Leu Ser 290 295 300 Leu Ala Leu Leu Leu Arg Tyr Ser Leu Asp Ala Asp Asp Ala Ala Cys 305 310 315 320 Ala Ile Glu Arg Ala Ile Asn Arg Ala Leu Glu Glu Gly Ile Arg Thr 325 330 335 Gly Asp Leu Ala Arg Gly Ala Ala Ala Val Ser Thr Asp Glu Met Gly 340 345 350 Asp Ile Ile Ala Arg Tyr Val Ala Glu Gly Val 355 360 <210> SEQ ID NO 32 <211> LENGTH: 536 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvB, AGY74359.1 <400> SEQUENCE: 32 Met Lys Ala Ala Glu Ala Val Ile Gln Cys Leu Lys Lys Glu Asn Val 1 5 10 15 Asn Met Val Phe Gly Tyr Pro Gly Ala Ala Val Val Pro Ile Tyr Glu 20 25 30 Ala Leu Arg Lys Ser Asp Val Lys His Ile Leu Val Arg Gln Glu Gln 35 40 45 Ala Ala Gly His Ser Ala Ser Gly Tyr Ala Arg Ser Thr Gly Glu Val 50 55 60 Gly Val Cys Ile Val Thr Ser Gly Pro Gly Ala Thr Asn Leu Ile Thr 65 70 75 80 Ala Ile Ala Ala Ala Tyr Met Asp Ser Ile Pro Leu Val Val Ile Thr 85 90 95 Gly Gln Val Lys Ser Thr Leu Ile Gly Arg Asp Val Phe Gln Glu Leu 100 105 110 Asp Ile Thr Gly Ala Thr Glu Ser Phe Thr Lys Tyr Asn Phe Leu Val 115 120 125 Arg Asp Ala Lys Ser Ile Pro Lys Thr Ile Lys Glu Ala Phe Tyr Ile 130 135 140 Ala Glu Thr Gly Arg Lys Gly Pro Val Leu Val Asp Ile Pro Met Asp 145 150 155 160 Ile Met Glu Glu Asp Ile Asp Phe Glu Tyr Pro Glu Ser Val Asn Ile 165 170 175 Arg Gly Tyr Lys Pro Thr Val Lys Gly His Ser Gly Gln Ile Lys Lys 180 185 190 Ile Ile Asp Arg Ile Lys Val Ser Lys Arg Pro Leu Ile Cys Ala Gly 195 200 205 Gly Gly Val Ile Leu Ala Asn Ala Gln Lys Glu Leu Glu Gln Phe Val 210 215 220 Lys Lys Ser His Ile Pro Val Val His Thr Leu Met Gly Lys Gly Cys 225 230 235 240 Ile Asn Glu Asn Ser Asp Tyr Tyr Val Gly Leu Ile Gly Thr His Gly 245 250 255 Phe Ala Tyr Ala Asn Lys Val Val Gln Asn Ala Asp Val Leu Ile Leu 260 265 270 Ile Gly Ala Arg Ala Ser Asp Arg Thr Val Ser Gly Val Lys Ser Phe 275 280 285 Ala Lys Asp Ala Asp Ile Ile His Ile Asp Ile Asp Pro Ala Glu Ile 290 295 300 Gly Lys Ile Leu Asn Thr Tyr Ile Pro Val Val Gly Asp Cys Gly Ser 305 310 315 320 Val Leu Ser Asp Leu Asn Lys Glu Ile Val Ala Pro Gln Thr Glu Lys 325 330 335 Trp Met Glu Glu Ile Lys Asn Trp Lys Lys Asp Leu Tyr Ile Glu Arg 340 345 350 Lys Pro Thr Asp Lys Val Asn Pro Lys Tyr Val Leu Lys Thr Val Ser 355 360 365 Asp Thr Leu Gly Glu Glu Val Ile Leu Thr Ala Asp Val Gly Gln Asn 370 375 380 Gln Leu Trp Cys Ala Arg Asn Phe Arg Met Thr Gly Asn Arg Lys Phe 385 390 395 400 Leu Thr Ser Gly Gly Leu Gly Thr Met Gly Tyr Ser Leu Pro Ala Ala 405 410 415 Ile Gly Ala Lys Ile Ala Cys Pro Asp Lys Gln Val Ile Ala Phe Ala 420 425 430 Gly Asp Gly Gly Phe Gln Met Ser Leu Phe Glu Leu Gly Thr Ile Ala 435 440 445 Glu Asn Asn Leu Asn Ile Ile Ile Val Leu Phe Asn Asn Ser Gly Leu 450 455 460 Gly Met Val Arg Glu Ile Gln Asp Asn Lys Tyr Ser Gly Glu Phe Gly 465 470 475 480 Val Asn Phe Arg Thr Asn Pro Asp Phe Val Lys Leu Ala Glu Ala Tyr 485 490 495 Gly Leu Lys Ala Lys Arg Val Glu Asn Asp Ser Glu Phe Asn Gly Val 500 505 510 Phe Arg Glu Ala Leu Asp Ser Ser Lys Ala Phe Leu Ile Glu Cys Ile 515 520 525 Val Asp Pro His Glu Arg Thr Phe 530 535 <210> SEQ ID NO 33 <211> LENGTH: 558 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvB, AGY74635.1 <400> SEQUENCE: 33 Met Lys Ile Lys Gly Ala Glu Val Leu Leu Lys Cys Met Met Glu Gln 1 5 10 15 Gly Val Asp Thr Val Phe Gly Tyr Pro Gly Gly Ala Val Leu Pro Ile 20 25 30 Tyr Asp Ala Leu Tyr Ala Ala Lys Gly Lys Ile Thr His Ile Ser Thr 35 40 45 Ser His Glu Gln Gly Ala Ala His Ala Ala Asp Gly Tyr Ala Arg Ser 50 55 60 Thr Gly Lys Val Gly Val Val Ile Ala Thr Ser Gly Pro Gly Ala Thr 65 70 75 80 Asn Thr Val Thr Ala Ile Ala Thr Ala Tyr Met Asp Ser Val Pro Ile 85 90 95 Val Val Phe Thr Gly Gln Val Ala Arg Ser Leu Leu Gly Lys Asp Ser 100 105 110 Phe Gln Glu Val Asn Ile Lys Asp Ile Thr Ala Ser Ile Thr Lys Lys 115 120 125 Ser Cys Ile Val Glu Lys Val Glu Asp Leu Ala Asp Thr Val Arg Glu 130 135 140 Ala Phe Gln Ile Ala Val Ser Gly Arg Pro Gly Pro Val Val Val Asp 145 150 155 160 Ile Pro Lys Asp Val Gln Ser Ala Glu Val Glu Tyr Glu Pro Phe Arg 165 170 175 Ser Lys Leu Ser Glu Ile Lys Glu Lys Lys Tyr Phe Asn Leu Asn Glu 180 185 190 Tyr Gly Asp Ser Leu Asn Lys Ala Ile Asp Met Ile Asn Arg Ser Glu 195 200 205 Arg Pro Val Ile Tyr Ser Gly Gly Gly Thr Val Thr Ser Gly Ala Gln 210 215 220 Asn Glu Leu Met Glu Leu Val Glu Lys Ile Asp Ser Pro Ile Thr Cys 225 230 235 240 Ser Leu Met Gly Ile Gly Ala Phe Pro Gly Asn Asn Glu Tyr Tyr Met 245 250 255 Gly Met Val Gly Met His Gly Ser Arg Cys Ser Asn Tyr Ala Val Ser 260 265 270 Asn Cys Asp Leu Leu Ile Ala Ile Gly Ala Arg Phe Ser Asp Arg Val 275 280 285 Ile Ser Lys Val Ser Ala Phe Ala Pro Lys Ala Arg Ile Ile His Ile 290 295 300 Asp Ile Asp Pro Lys Glu Phe Gly Lys Asn Val Asp Ile Asp Val Ala 305 310 315 320 Ile Lys Gly Asp Val Lys Glu Val Leu Gln Lys Ile Asn Cys Lys Leu 325 330 335 Glu Lys Ala Asp His Arg Asp Trp Met Glu Lys Ile Lys Gln Trp Lys 340 345 350 Ser Glu Gln Cys Glu Pro Phe Lys Glu Cys Lys Leu Ser Pro Lys Phe 355 360 365 Ile Met Asp Thr Leu Tyr Asn Leu Thr Gly Gly Glu Cys Ile Ile Thr 370 375 380 Thr Glu Val Gly Gln Asn Gln Ile Trp Thr Ala Gln Tyr Phe Lys Phe 385 390 395 400 Leu Lys Pro Arg Thr Phe Val Ser Ser Gly Gly Leu Gly Thr Met Gly 405 410 415 Phe Gly Leu Gly Ala Ser Ile Gly Ala Ser Met Gly Asn Pro Gly Lys 420 425 430 Lys Val Ile Asn Val Ala Gly Asp Gly Ser Phe Lys Met Asn Ser Thr 435 440 445 Glu Leu Ala Thr Val Ala Lys Tyr Lys Leu Pro Ile Val Gln Leu Leu 450 455 460 Leu Asn Asn Arg Ala Leu Gly Met Val Tyr Gln Trp Gln Asp Met Phe 465 470 475 480 Tyr Gly Lys Arg Phe Ser Asn Thr Glu Leu Gly Pro Asp Val Asp Phe 485 490 495 Met Lys Leu Gly Glu Ala Tyr Gly Ile Lys Thr Phe Lys Ile Glu Asp 500 505 510 Asn Ser Gln Val Glu Lys Cys Leu Lys Glu Ala Leu Asp Leu Asn Glu 515 520 525 Pro Val Ile Ile Glu Cys Asp Ile Asp Arg Lys Glu Lys Val Phe Pro 530 535 540 Ile Val Pro Pro Gly Ala Ala Ile Ser Asp Leu Val Glu Glu 545 550 555 <210> SEQ ID NO 34 <211> LENGTH: 158 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvN, AGY74360.1 <400> SEQUENCE: 34 Met Ser Val Leu Val Glu Asn His Ser Gly Val Leu Ser Lys Val Ala 1 5 10 15 Gly Leu Phe Ser Arg Arg Gly Tyr Asn Ile His Ser Leu Thr Val Gly 20 25 30 Val Thr Gly Asp Pro Glu Ile Ser Arg Met Thr Ile Val Ser Ile Gly 35 40 45 Asp Asp Tyr Met Phe Glu Gln Ile Ser Lys Gln Leu Asn Lys Leu Ile 50 55 60 Glu Val Ile Lys Val Ile Glu Leu Asn Pro Asp Ala Ser Val Tyr Arg 65 70 75 80 Glu Leu Ser Leu Ile Lys Val Ser Ala Glu Ser Asn Asn Lys Leu Leu 85 90 95 Ile Met Glu Ser Val Asn Thr Phe Arg Gly Lys Ile Val Asp Met Asn 100 105 110 Glu Lys Ser Met Ile Ile Glu Ile Thr Gly Asn Glu Lys Lys Ile Ser 115 120 125 Ala Phe Ile Glu Leu Met Lys Pro Tyr Gly Ile Lys Glu Ile Ile Arg 130 135 140 Thr Gly Leu Thr Ala Leu Gln Arg Gly Ser Lys Leu Glu Asp 145 150 155 <210> SEQ ID NO 35 <211> LENGTH: 562 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvB, NP_418127.1 <400> SEQUENCE: 35 Met Ala Ser Ser Gly Thr Thr Ser Thr Arg Lys Arg Phe Thr Gly Ala 1 5 10 15 Glu Phe Ile Val His Phe Leu Glu Gln Gln Gly Ile Lys Ile Val Thr 20 25 30 Gly Ile Pro Gly Gly Ser Ile Leu Pro Val Tyr Asp Ala Leu Ser Gln 35 40 45 Ser Thr Gln Ile Arg His Ile Leu Ala Arg His Glu Gln Gly Ala Gly 50 55 60 Phe Ile Ala Gln Gly Met Ala Arg Thr Asp Gly Lys Pro Ala Val Cys 65 70 75 80 Met Ala Cys Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Ala Ile Ala 85 90 95 Asp Ala Arg Leu Asp Ser Ile Pro Leu Ile Cys Ile Thr Gly Gln Val 100 105 110 Pro Ala Ser Met Ile Gly Thr Asp Ala Phe Gln Glu Val Asp Thr Tyr 115 120 125 Gly Ile Ser Ile Pro Ile Thr Lys His Asn Tyr Leu Val Arg His Ile 130 135 140 Glu Glu Leu Pro Gln Val Met Ser Asp Ala Phe Arg Ile Ala Gln Ser 145 150 155 160 Gly Arg Pro Gly Pro Val Trp Ile Asp Ile Pro Lys Asp Val Gln Thr 165 170 175 Ala Val Phe Glu Ile Glu Thr Gln Pro Ala Met Ala Glu Lys Ala Ala 180 185 190 Ala Pro Ala Phe Ser Glu Glu Ser Ile Arg Asp Ala Ala Ala Met Ile 195 200 205 Asn Ala Ala Lys Arg Pro Val Leu Tyr Leu Gly Gly Gly Val Ile Asn 210 215 220 Ala Pro Ala Arg Val Arg Glu Leu Ala Glu Lys Ala Gln Leu Pro Thr 225 230 235 240 Thr Met Thr Leu Met Ala Leu Gly Met Leu Pro Lys Ala His Pro Leu 245 250 255 Ser Leu Gly Met Leu Gly Met His Gly Val Arg Ser Thr Asn Tyr Ile 260 265 270 Leu Gln Glu Ala Asp Leu Leu Ile Val Leu Gly Ala Arg Phe Asp Asp 275 280 285 Arg Ala Ile Gly Lys Thr Glu Gln Phe Cys Pro Asn Ala Lys Ile Ile 290 295 300 His Val Asp Ile Asp Arg Ala Glu Leu Gly Lys Ile Lys Gln Pro His 305 310 315 320 Val Ala Ile Gln Ala Asp Val Asp Asp Val Leu Ala Gln Leu Ile Pro 325 330 335 Leu Val Glu Ala Gln Pro Arg Ala Glu Trp His Gln Leu Val Ala Asp 340 345 350 Leu Gln Arg Glu Phe Pro Cys Pro Ile Pro Lys Ala Cys Asp Pro Leu 355 360 365 Ser His Tyr Gly Leu Ile Asn Ala Val Ala Ala Cys Val Asp Asp Asn 370 375 380 Ala Ile Ile Thr Thr Asp Val Gly Gln His Gln Met Trp Thr Ala Gln 385 390 395 400 Ala Tyr Pro Leu Asn Arg Pro Arg Gln Trp Leu Thr Ser Gly Gly Leu 405 410 415 Gly Thr Met Gly Phe Gly Leu Pro Ala Ala Ile Gly Ala Ala Leu Ala 420 425 430 Asn Pro Asp Arg Lys Val Leu Cys Phe Ser Gly Asp Gly Ser Leu Met 435 440 445 Met Asn Ile Gln Glu Met Ala Thr Ala Ser Glu Asn Gln Leu Asp Val 450 455 460 Lys Ile Ile Leu Met Asn Asn Glu Ala Leu Gly Leu Val His Gln Gln 465 470 475 480 Gln Ser Leu Phe Tyr Glu Gln Gly Val Phe Ala Ala Thr Tyr Pro Gly 485 490 495 Lys Ile Asn Phe Met Gln Ile Ala Ala Gly Phe Gly Leu Glu Thr Cys 500 505 510 Asp Leu Asn Asn Glu Ala Asp Pro Gln Ala Ser Leu Gln Glu Ile Ile 515 520 525 Asn Arg Pro Gly Pro Ala Leu Ile His Val Arg Ile Asp Ala Glu Glu 530 535 540 Lys Val Tyr Pro Met Val Pro Pro Gly Ala Ala Asn Thr Glu Met Val 545 550 555 560 Gly Glu <210> SEQ ID NO 36 <211> LENGTH: 96 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvN, NP_418126.1 <400> SEQUENCE: 36 Met Gln Asn Thr Thr His Asp Asn Val Ile Leu Glu Leu Thr Val Arg 1 5 10 15 Asn His Pro Gly Val Met Thr His Val Cys Gly Leu Phe Ala Arg Arg 20 25 30 Ala Phe Asn Val Glu Gly Ile Leu Cys Leu Pro Ile Gln Asp Ser Asp 35 40 45 Lys Ser His Ile Trp Leu Leu Val Asn Asp Asp Gln Arg Leu Glu Gln 50 55 60 Met Ile Ser Gln Ile Asp Lys Leu Glu Asp Val Val Lys Val Gln Arg 65 70 75 80 Asn Gln Ser Asp Pro Thr Met Phe Asn Lys Ile Ala Val Phe Phe Gln 85 90 95 <210> SEQ ID NO 37 <211> LENGTH: 337 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvC, WP_013238693.1 <400> SEQUENCE: 37 Met Glu Lys Leu Lys Val Tyr Tyr Asp Glu Asp Ala Asp Leu Asn Leu 1 5 10 15 Leu Lys Gly Lys Lys Ile Ala Ile Leu Gly Phe Gly Ser Gln Gly His 20 25 30 Ala His Ala Leu Asn Leu Lys Glu Ser Gly Leu Asp Val Ile Val Gly 35 40 45 Leu Tyr Lys Gly Ser Lys Ser Trp Lys Lys Ala Glu Asp Tyr Gly Phe 50 55 60 Lys Val Tyr Glu Ile Ala Glu Ala Val Lys Gln Ala Asp Ile Ile Thr 65 70 75 80 Val Leu Leu Pro Asp Glu Lys Gln Lys Gln Ile Tyr Asp Glu Ser Ile 85 90 95 Lys Asp Asn Leu Ser Glu Gly Asn Ala Leu Phe Phe Ala His Gly Phe 100 105 110 Asn Ile His Phe Asn Gln Ile Val Pro Pro Lys Phe Val Asp Val Leu 115 120 125 Met Ile Ala Pro Lys Gly Pro Gly His Ile Val Arg Arg Glu Tyr Thr 130 135 140 Leu Gly Asn Gly Val Pro Cys Leu Tyr Ala Val Tyr Gln Asp Tyr Ser 145 150 155 160 Gly Lys Gly Lys Glu Ile Ala Leu Ala Tyr Gly Lys Gly Ile Gly Gly 165 170 175 Thr Arg Ala Gly Val Met Thr Thr Thr Phe Lys Val Glu Thr Glu Thr 180 185 190 Asp Leu Phe Gly Glu Gln Val Val Leu Cys Gly Gly Val Ala Glu Leu 195 200 205 Ile Lys Ala Gly Phe Asp Thr Leu Val Glu Ala Gly Tyr Ala Pro Glu 210 215 220 Asn Ala Tyr Phe Glu Cys Leu His Glu Met Lys Leu Ile Val Asp Leu 225 230 235 240 Ile Tyr Glu Gly Gly Leu Ala Arg Met Arg Tyr Ser Val Ser Asp Thr 245 250 255 Ala Glu Tyr Gly Asp Tyr Lys Ile Gly Lys Arg Ile Ile Asn Asp Asn 260 265 270 Thr Arg Ala Glu Met Lys Lys Val Leu Thr Glu Ile Gln Asp Gly Thr 275 280 285 Phe Ala Arg Glu Trp Leu Leu Glu Asn Gln Thr Gly Arg Pro Gly Phe 290 295 300 Thr Ala Arg Arg Arg Met Glu Lys Asp Ala Pro Ile Glu Lys Val Gly 305 310 315 320 Lys Glu Leu Arg Ser Met Met Ser Trp Ile Asn Glu Asn Pro Asp Asn 325 330 335 Glu <210> SEQ ID NO 38 <211> LENGTH: 491 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvC, NP_418222.1 <400> SEQUENCE: 38 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 60 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 65 70 75 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Ser 100 105 110 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115 120 125 Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg 130 135 140 Lys Asp Ile Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160 Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala 165 170 175 Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys 180 185 190 Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser 195 200 205 Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile 210 215 220 Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu 225 230 235 240 Val Glu Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe 245 250 255 Gly Trp Glu Thr Ile Thr Glu Ala Leu Lys Gln Gly Gly Ile Thr Leu 260 265 270 Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu 275 280 285 Ser Glu Gln Leu Lys Glu Ile Met Ala Pro Leu Phe Gln Lys His Met 290 295 300 Asp Asp Ile Ile Ser Gly Glu Phe Ser Ser Gly Met Met Ala Asp Trp 305 310 315 320 Ala Asn Asp Asp Lys Lys Leu Leu Thr Trp Arg Glu Glu Thr Gly Lys 325 330 335 Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln 340 345 350 Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly 355 360 365 Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu 370 375 380 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 385 390 395 400 Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr 405 410 415 Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu 420 425 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile 435 440 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 450 455 460 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly 485 490 <210> SEQ ID NO 39 <211> LENGTH: 552 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvD, WP_013238694.1 <400> SEQUENCE: 39 Met Lys Ser Asp Ser Val Lys Lys Gly Ile Lys Ala Ala Pro Ala Arg 1 5 10 15 Ala Leu Met Tyr Gly Met Gly Tyr Thr Lys Glu Glu Ile Glu Arg Pro 20 25 30 Leu Ile Gly Ile Val Asn Ser Gln Asn Glu Ile Val Ala Gly His Met 35 40 45 His Leu Asp Glu Ile Ala Lys Ala Ala Lys Leu Gly Val Ala Met Ser 50 55 60 Gly Gly Thr Pro Ile Glu Phe Pro Ala Ile Ala Val Cys Asp Gly Ile 65 70 75 80 Ala Met Gly His Val Gly Met Lys Tyr Ser Leu Ala Ser Arg Glu Leu 85 90 95 Ile Ala Asp Ser Ile Glu Ala Met Ala Thr Ala His Gly Phe Asp Gly 100 105 110 Leu Val Leu Ile Pro Asn Cys Asp Lys Ile Val Pro Gly Met Leu Met 115 120 125 Ala Ala Ala Arg Leu Asn Ile Pro Ala Val Val Val Ser Gly Gly Pro 130 135 140 Met Arg Ala Gly Lys Leu Asn Asn Lys Ala Leu Asp Phe Ser Thr Cys 145 150 155 160 Ile Glu Lys Val Ala Ala Cys Ser Asp Gly Lys Val Thr Glu Glu Glu 165 170 175 Leu Glu Glu Glu Ala Lys Arg Ala Cys Pro Gly Cys Gly Ser Cys Ser 180 185 190 Gly Leu Phe Thr Ala Asn Ser Met Asn Ser Leu Thr Glu Val Leu Gly 195 200 205 Met Gly Leu Pro Leu Asn Gly Ser Ala Leu Ala Gln Thr Gly Glu Arg 210 215 220 Asn Gln Leu Ala Lys Tyr Ala Gly Met Tyr Val Met Asp Cys Val Lys 225 230 235 240 Asn Asp Arg Arg Pro Arg Asp Ile Leu Thr Leu Asp Ala Phe Lys Asn 245 250 255 Ala Ile Thr Val Asp Met Ala Met Ala Gly Ser Thr Asn Thr Val Leu 260 265 270 His Leu Pro Ala Ile Ala His Glu Ala Gly Ile Glu Leu Asn Leu Asp 275 280 285 Leu Phe His Glu Ile Ser Lys His Thr Pro Cys Leu Thr Lys Leu Ser 290 295 300 Pro Ser Gly Lys His His Met Glu Asp Leu His Leu Ala Gly Gly Ile 305 310 315 320 Pro Ala Leu Met Asn Glu Leu Ser Lys Lys Gly Leu Ile Asn Glu Asp 325 330 335 Ala Leu Thr Val Thr Gly Lys Thr Val Gly Glu Thr Ile Lys Asp Phe 340 345 350 Lys Val Leu Asp Tyr Glu Val Ile Arg Ser Val Asp Asn Ala Tyr Ser 355 360 365 Ser Glu Gly Gly Ile Ala Ile Leu Arg Gly Asn Leu Ala Pro Asp Gly 370 375 380 Ala Val Val Lys Glu Ser Ala Val Ser Lys Glu Met Met Val His Glu 385 390 395 400 Gly Pro Ala Arg Val Tyr Asn Ser Glu Glu Ala Ala Val Lys Ala Ile 405 410 415 Phe Gly Asn Glu Ile Asn Lys Gly Asp Val Ile Val Ile Arg Tyr Glu 420 425 430 Gly Pro Lys Gly Gly Pro Gly Met Arg Glu Met Leu Ser Pro Thr Ser 435 440 445 Ala Ile Ala Gly Met Gly Leu Asp Lys Asp Val Ala Leu Leu Thr Asp 450 455 460 Gly Arg Phe Ser Gly Ala Thr Arg Gly Ala Ser Ile Gly His Val Ser 465 470 475 480 Pro Glu Ala Met Glu Gly Gly Leu Ile Gly Leu Val Glu Glu Gly Asp 485 490 495 Thr Ile Phe Val Asp Ile Thr Asn Lys Lys Leu Glu Leu Lys Val Ser 500 505 510 Glu Glu Glu Leu Glu Lys Arg Arg Lys Asn Tyr Val Lys Pro Glu Pro 515 520 525 Lys Ile Lys Thr Gly Tyr Leu Ser Arg Tyr Ala Lys Leu Val Thr Ser 530 535 540 Ala Asn Thr Gly Ala Val Leu Lys 545 550 <210> SEQ ID NO 40 <211> LENGTH: 616 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvD, YP_026248.1 <400> SEQUENCE: 40 Met Pro Lys Tyr Arg Ser Ala Thr Thr Thr His Gly Arg Asn Met Ala 1 5 10 15 Gly Ala Arg Ala Leu Trp Arg Ala Thr Gly Met Thr Asp Ala Asp Phe 20 25 30 Gly Lys Pro Ile Ile Ala Val Val Asn Ser Phe Thr Gln Phe Val Pro 35 40 45 Gly His Val His Leu Arg Asp Leu Gly Lys Leu Val Ala Glu Gln Ile 50 55 60 Glu Ala Ala Gly Gly Val Ala Lys Glu Phe Asn Thr Ile Ala Val Asp 65 70 75 80 Asp Gly Ile Ala Met Gly His Gly Gly Met Leu Tyr Ser Leu Pro Ser 85 90 95 Arg Glu Leu Ile Ala Asp Ser Val Glu Tyr Met Val Asn Ala His Cys 100 105 110 Ala Asp Ala Met Val Cys Ile Ser Asn Cys Asp Lys Ile Thr Pro Gly 115 120 125 Met Leu Met Ala Ser Leu Arg Leu Asn Ile Pro Val Ile Phe Val Ser 130 135 140 Gly Gly Pro Met Glu Ala Gly Lys Thr Lys Leu Ser Asp Gln Ile Ile 145 150 155 160 Lys Leu Asp Leu Val Asp Ala Met Ile Gln Gly Ala Asp Pro Lys Val 165 170 175 Ser Asp Ser Gln Ser Asp Gln Val Glu Arg Ser Ala Cys Pro Thr Cys 180 185 190 Gly Ser Cys Ser Gly Met Phe Thr Ala Asn Ser Met Asn Cys Leu Thr 195 200 205 Glu Ala Leu Gly Leu Ser Gln Pro Gly Asn Gly Ser Leu Leu Ala Thr 210 215 220 His Ala Asp Arg Lys Gln Leu Phe Leu Asn Ala Gly Lys Arg Ile Val 225 230 235 240 Glu Leu Thr Lys Arg Tyr Tyr Glu Gln Asn Asp Glu Ser Ala Leu Pro 245 250 255 Arg Asn Ile Ala Ser Lys Ala Ala Phe Glu Asn Ala Met Thr Leu Asp 260 265 270 Ile Ala Met Gly Gly Ser Thr Asn Thr Val Leu His Leu Leu Ala Ala 275 280 285 Ala Gln Glu Ala Glu Ile Asp Phe Thr Met Ser Asp Ile Asp Lys Leu 290 295 300 Ser Arg Lys Val Pro Gln Leu Cys Lys Val Ala Pro Ser Thr Gln Lys 305 310 315 320 Tyr His Met Glu Asp Val His Arg Ala Gly Gly Val Ile Gly Ile Leu 325 330 335 Gly Glu Leu Asp Arg Ala Gly Leu Leu Asn Arg Asp Val Lys Asn Val 340 345 350 Leu Gly Leu Thr Leu Pro Gln Thr Leu Glu Gln Tyr Asp Val Met Leu 355 360 365 Thr Gln Asp Asp Ala Val Lys Asn Met Phe Arg Ala Gly Pro Ala Gly 370 375 380 Ile Arg Thr Thr Gln Ala Phe Ser Gln Asp Cys Arg Trp Asp Thr Leu 385 390 395 400 Asp Asp Asp Arg Ala Asn Gly Cys Ile Arg Ser Leu Glu His Ala Tyr 405 410 415 Ser Lys Asp Gly Gly Leu Ala Val Leu Tyr Gly Asn Phe Ala Glu Asn 420 425 430 Gly Cys Ile Val Lys Thr Ala Gly Val Asp Asp Ser Ile Leu Lys Phe 435 440 445 Thr Gly Pro Ala Lys Val Tyr Glu Ser Gln Asp Asp Ala Val Glu Ala 450 455 460 Ile Leu Gly Gly Lys Val Val Ala Gly Asp Val Val Val Ile Arg Tyr 465 470 475 480 Glu Gly Pro Lys Gly Gly Pro Gly Met Gln Glu Met Leu Tyr Pro Thr 485 490 495 Ser Phe Leu Lys Ser Met Gly Leu Gly Lys Ala Cys Ala Leu Ile Thr 500 505 510 Asp Gly Arg Phe Ser Gly Gly Thr Ser Gly Leu Ser Ile Gly His Val 515 520 525 Ser Pro Glu Ala Ala Ser Gly Gly Ser Ile Gly Leu Ile Glu Asp Gly 530 535 540 Asp Leu Ile Ala Ile Asp Ile Pro Asn Arg Gly Ile Gln Leu Gln Val 545 550 555 560 Ser Asp Ala Glu Leu Ala Ala Arg Arg Glu Ala Gln Asp Ala Arg Gly 565 570 575 Asp Lys Ala Trp Thr Pro Lys Asn Arg Glu Arg Gln Val Ser Phe Ala 580 585 590 Leu Arg Ala Tyr Ala Ser Leu Ala Thr Ser Ala Asp Lys Gly Ala Val 595 600 605 Arg Asp Lys Ser Lys Leu Gly Gly 610 615 <210> SEQ ID NO 41 <211> LENGTH: 477 <212> TYPE: PRT <213> ORGANISM: Methanothermobacter thermautotrophicus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorA, WP_010876344.1 <400> SEQUENCE: 41 Met Thr Lys Lys Val Ile Arg Lys Pro Asp Ser Leu His Asp Val Phe 1 5 10 15 Glu Arg Lys Gly Gly Ser Ala Pro Thr Ala Thr His Tyr Cys Ala Gly 20 25 30 Cys Gly His Gly Ile Leu His Lys Leu Ile Gly Glu Ala Met Asp Glu 35 40 45 Leu Gly Ile Gln Glu Arg Ala Val Met Ile Ser Pro Val Gly Cys Ala 50 55 60 Val Phe Ala Tyr Tyr Tyr Phe Asp Cys Gly Asn Val Gln Val Ala His 65 70 75 80 Gly Arg Ala Pro Ala Val Gly Thr Gly Ile Ser Arg Ala Glu Asp Asp 85 90 95 Ala Val Val Ile Leu Tyr Gln Gly Asp Gly Asp Leu Ala Ser Ile Gly 100 105 110 Leu Asn Glu Thr Ile Gln Ala Ala Asn Arg Gly Glu Lys Leu Ala Val 115 120 125 Phe Phe Val Asn Asn Thr Val Tyr Gly Met Thr Gly Gly Gln Met Ala 130 135 140 Pro Thr Thr Leu Val Gly Glu Val Thr Val Thr Cys Pro Thr Gly Arg 145 150 155 160 Asp Pro Arg Tyr Ala Gly Tyr Pro Leu His Met Cys Glu Leu Leu Asp 165 170 175 Asn Leu Gln Ala Pro Val Phe Ile Glu Arg Val Ser Leu Ala Asp Pro 180 185 190 Lys Arg Ile Arg Arg Ala Arg Arg Ala Ile Lys Arg Ala Leu Glu Ile 195 200 205 Gln Arg Asp Gly Lys Gly Tyr Ala Phe Val Glu Val Leu Ser Pro Cys 210 215 220 Pro Thr Asn Leu Arg Gln Asp Ala Glu Gly Ala Glu Arg Phe Leu Lys 225 230 235 240 Glu Glu Met Glu Lys Glu Phe Pro Val Lys Asn Phe Arg Asp Arg Ser 245 250 255 Ala Glu Thr Glu Pro Leu Ile Arg Ser Glu Ser Asp Phe Ser Arg Glu 260 265 270 Ser Leu Asp Arg Ile Phe Gln Ile Arg Glu Asp Ser Val Pro Asp Pro 275 280 285 Val Asp Asp Pro Glu Phe Pro Glu Val Arg Val Lys Ile Ala Gly Phe 290 295 300 Gly Gly Gln Gly Val Leu Ser Met Gly Leu Thr Leu Ala Gln Ala Ala 305 310 315 320 Cys Ser Glu Gly Arg His Thr Ser Trp Tyr Pro Ala Tyr Gly Pro Glu 325 330 335 Gln Arg Gly Gly Thr Ser Ser Cys Gly Val Val Ile Ser Gly Glu Arg 340 345 350 Val Gly Ser Pro Ala Val Asp Thr Pro Asp Val Leu Val Ala Leu Asn 355 360 365 Gln Pro Ser Leu Asp Glu Phe Ala Asp Asp Val Ala Asp Gly Gly Ile 370 375 380 Ile Leu Tyr Asp Ser Thr Thr Ala Ser Phe Ser Gly Gly Ala Val Arg 385 390 395 400 Ala Met Gly Val Pro Ala Leu Glu Ile Ala Arg Lys His Gly Thr Ala 405 410 415 Arg Ala Ala Asn Thr Val Met Leu Gly Val Met Met Ala Leu Gly Leu 420 425 430 Thr Gly Leu Asp Glu Glu Ser Phe Arg Glu Ala Ile Lys Phe Thr Phe 435 440 445 Ala Gly Lys Glu Lys Ile Ile Asp Met Asn Leu Arg Ile Leu Glu Ala 450 455 460 Gly Ala Glu Trp Ala Arg Glu Asn Ile Glu Gly Glu Leu 465 470 475 <210> SEQ ID NO 42 <211> LENGTH: 352 <212> TYPE: PRT <213> ORGANISM: Methanothermobacter thermautotrophicus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorB, WP_010876343.1 <400> SEQUENCE: 42 Met Ala Thr Gln Met Val Lys Gly Asn Thr Ala Val Ile Ile Gly Ala 1 5 10 15 Met Tyr Ala Gly Cys Asp Cys Tyr Phe Gly Tyr Pro Ile Thr Pro Ala 20 25 30 Ser Glu Ile Leu His Glu Ala Ser Arg Tyr Phe Pro Met Val Gly Arg 35 40 45 Lys Phe Val Gln Ala Glu Ser Glu Glu Ala Ala Ile Asn Met Val Tyr 50 55 60 Gly Ala Ala Ala Ala Gly His Arg Val Met Thr Ala Ser Ser Gly Pro 65 70 75 80 Gly Ile Ser Leu Lys Gln Glu Gly Ile Ser Phe Leu Ala Gly Ala Glu 85 90 95 Leu Pro Ala Val Ile Val Asp Val Met Arg Ala Gly Pro Gly Leu Gly 100 105 110 Asn Ile Gly Pro Glu Gln Gly Asp Tyr Asn Gln Ile Val Lys Gly Gly 115 120 125 Gly His Gly Asn Tyr Arg Asn Met Val Leu Ala Pro Ser Ser Val Gln 130 135 140 Glu Met Cys Asp Leu Thr Met Glu Ala Phe Glu Leu Ala Asp Lys Tyr 145 150 155 160 Arg Asn Pro Val Val Val Leu Thr Asp Ala Val Leu Gly Gln Met Ala 165 170 175 Glu Pro Leu Arg Phe Pro Glu Glu Ala Val Glu His Arg Pro Asp Thr 180 185 190 Ser Trp Ala Val Cys Gly Asn Arg Glu Thr Met Lys Asn Leu Val Thr 195 200 205 Ser Ile Phe Leu Asp Phe Asp Glu Leu Glu Glu Phe Asn Phe Tyr Leu 210 215 220 Gln Glu Lys Tyr Ala Arg Ile Glu Glu Asn Glu Val Arg Tyr Glu Glu 225 230 235 240 Tyr Leu Val Asp Asp Ala Glu Ile Val Met Val Ala Tyr Gly Ile Ser 245 250 255 Ser Arg Val Ala Arg Ser Ala Val Glu Thr Ala Arg Ala Glu Gly Ile 260 265 270 Asn Val Gly Leu Leu Arg Pro Ile Thr Leu Phe Pro Phe Pro Ser Asp 275 280 285 Arg Ile Arg Glu Leu Ala Asp Gly Gly Cys Arg Phe Ile Ser Val Glu 290 295 300 Met Ser Ser Gly Gln Met Arg Glu Asp Ile Arg Met Ala Ser Gly Cys 305 310 315 320 Arg Asp Val Glu Leu Val Asn Arg Met Gly Gly Asn Leu Ile Glu Leu 325 330 335 Arg Asp Val Leu Glu Lys Ile Arg Glu Val Ala Gly Asp Ser Ser Asp 340 345 350 <210> SEQ ID NO 43 <211> LENGTH: 79 <212> TYPE: PRT <213> ORGANISM: Methanothermobacter thermautotrophicus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorC, WP_010876342.1 <400> SEQUENCE: 43 Met Lys Lys Ala Tyr Pro Val Ile Asn Ser Val Glu Cys Lys Ala Cys 1 5 10 15 Glu Arg Cys Ile Ile Ala Cys Pro Arg Lys Val Leu Gln Met Ser Ser 20 25 30 Lys Ile Asn Glu Arg Gly Tyr His Tyr Val Glu Tyr Arg Gly Glu Gly 35 40 45 Cys Asn Gly Cys Gly Asn Cys Tyr Tyr Thr Cys Pro Glu Ile Asn Ala 50 55 60 Ile Glu Val His Ile Glu Arg Cys Glu Asp Gly Asn Thr Asp Gly 65 70 75 <210> SEQ ID NO 44 <211> LENGTH: 124 <212> TYPE: PRT <213> ORGANISM: Methanothermobacter thermautotrophicus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorD, WP_010876341.1 <400> SEQUENCE: 44 Met Asp Glu Asp Gly Tyr Met Trp Phe Val Gly Arg Thr Asp Asp Ile 1 5 10 15 Ile Lys Ser Ser Gly Tyr Arg Ile Gly Pro Phe Glu Val Glu Ser Ala 20 25 30 Ile Ile Ser His Pro Ser Val Leu Glu Cys Ala Val Thr Gly Tyr Pro 35 40 45 Asp Pro Ile Arg Gly Gln Val Val Lys Ala Thr Ile Val Leu Ala Arg 50 55 60 Gly Tyr Glu Pro Ser Glu Glu Leu Lys Lys Glu Ile Gln Asp His Val 65 70 75 80 Lys Arg Val Thr Ala Pro Tyr Lys Tyr Pro Arg Ile Val Glu Phe Val 85 90 95 Asp Glu Leu Pro Lys Thr Ile Ser Gly Lys Ile Arg Arg Val Glu Ile 100 105 110 Arg Glu His Asp Leu Glu Gly Asp Gly Glu Asn Pro 115 120 <210> SEQ ID NO 45 <211> LENGTH: 394 <212> TYPE: PRT <213> ORGANISM: Pyrococcus furiosus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorA, WP_011012106.1 <400> SEQUENCE: 45 Met Glu Tyr Lys Pro Ile Arg Lys Val Val Ser Gly Asn Tyr Ala Ala 1 5 10 15 Ala Tyr Ala Ala Leu His Ala Arg Val Gln Val Val Ala Ala Tyr Pro 20 25 30 Ile Thr Pro Gln Thr Ser Ile Ile Glu Lys Ile Ala Glu Phe Ile Ala 35 40 45 Asn Gly Glu Ala Asp Ile Gln Tyr Ile Pro Val Glu Ser Glu His Ser 50 55 60 Ala Met Ala Ala Cys Ile Gly Ala Ser Ala Thr Gly Ala Arg Thr Phe 65 70 75 80 Thr Ala Thr Ser Ala Gln Gly Leu Ala Leu Met His Glu Met Leu His 85 90 95 Trp Ala Ala Gly Ala Arg Leu Pro Ile Val Met Val Asp Val Asn Arg 100 105 110 Ala Met Ala Pro Pro Trp Ser Val Trp Asp Asp Gln Thr Asp Ser Leu 115 120 125 Ser Gln Arg Asp Thr Gly Trp Met Gln Phe Tyr Ala Glu Asn Asn Gln 130 135 140 Glu Val Tyr Asp Gly Val Leu Met Ala Tyr Lys Val Ala Glu Thr Val 145 150 155 160 Asn Val Pro Ala Met Val Val Glu Ser Ala Phe Ile Leu Ser His Thr 165 170 175 Tyr Asp Val Val Glu Met Ile Pro Gln Glu Leu Val Asp Glu Phe Leu 180 185 190 Pro Pro Arg Lys Pro Leu Tyr Ser Leu Ala Asn Phe Asp Glu Pro Ile 195 200 205 Ala Val Gly Ala Leu Ala Thr Pro Asn Asp Tyr Tyr Glu Phe Arg Tyr 210 215 220 Lys Leu Ala Lys Ala His Glu Glu Ala Lys Lys Val Ile Lys Glu Val 225 230 235 240 Gly Lys Glu Phe Gly Glu Arg Phe Gly Arg Asp Tyr Ser Gln Met Ile 245 250 255 Glu Thr Gly Tyr Ile Asp Asp Ala Asp Phe Val Phe Met Gly Met Gly 260 265 270 Ser Leu Met Gly Thr Val Lys Glu Ala Val Asp Leu Leu Arg Lys Glu 275 280 285 Gly Tyr Lys Val Gly Tyr Ala Lys Val Arg Trp Phe Arg Pro Phe Pro 290 295 300 Lys Glu Glu Leu Val Glu Ile Ala Glu Ser Val Lys Gly Ile Ala Val 305 310 315 320 Leu Asp Arg Asn Phe Ser Phe Gly Gln Glu Gly Ile Leu Phe Thr Glu 325 330 335 Ser Lys Gly Ala Leu Tyr Asn Ser Ser Ala His Pro Leu Met Lys Asn 340 345 350 Tyr Ile Val Gly Leu Gly Gly Arg Asp Val Thr Val Lys Asp Ile Lys 355 360 365 Ala Ile Ala Asp Asp Met Lys Lys Val Ile Glu Ser Gly Lys Val Asp 370 375 380 Lys Glu Val Val Trp Tyr His Leu Lys Arg 385 390 <210> SEQ ID NO 46 <211> LENGTH: 311 <212> TYPE: PRT <213> ORGANISM: Pyrococcus furiosus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorB, WP_011012105.1 <400> SEQUENCE: 46 Met Glu Val Pro Glu Asn Ile Lys Lys Arg Val Thr Ile Pro Phe Glu 1 5 10 15 Glu His Phe Tyr Ala Gly His Thr Ala Cys Gln Gly Cys Gly Ala Ser 20 25 30 Leu Gly Leu Arg Tyr Val Leu Lys Ala Tyr Gly Lys Lys Thr Ile Leu 35 40 45 Val Ile Pro Ala Cys Cys Ser Thr Ile Ile Ala Gly Pro Trp Pro Tyr 50 55 60 Ser Ala Ile Asp Ala Asn Leu Phe His Thr Ala Phe Glu Thr Thr Gly 65 70 75 80 Ala Val Ile Ser Gly Ile Glu Ala Ala Leu Lys Ala Met Gly Tyr Lys 85 90 95 Val Lys Gly Glu Asp Gly Ile Met Val Val Gly Trp Ala Gly Asp Gly 100 105 110 Gly Thr Ala Asp Ile Gly Leu Gln Ala Leu Ser Gly Phe Leu Glu Arg 115 120 125 Gly His Asp Ala Val Tyr Ile Met Tyr Asp Asn Glu Ala Tyr Met Asn 130 135 140 Thr Gly Ile Gln Arg Ser Ser Ser Thr Pro Tyr Gly Ala Trp Thr Thr 145 150 155 160 Asn Thr Pro Gly Gly Arg Arg His Phe Leu Glu Lys Arg His Lys Lys 165 170 175 Lys Val Ile Asp Ile Val Ile Ala His Arg Ile Pro Tyr Ala Ala Thr 180 185 190 Ala Ser Ile Ala Tyr Pro Glu Asp Phe Ile Arg Lys Leu Lys Lys Ala 195 200 205 Gln Lys Ile Ser Gly Pro Ser Phe Ile Gln Leu Phe Ala Pro Cys Pro 210 215 220 Thr Gly Trp Arg Ala Pro Thr Asp Lys Ser Ile Glu Ile Ala Arg Leu 225 230 235 240 Ala Val Gln Thr Ala Tyr Phe Pro Leu Phe Glu Tyr Glu Asn Gly Lys 245 250 255 Tyr Lys Ile Asn Met Pro Asn Pro Lys Lys Glu Pro Lys Pro Ile Glu 260 265 270 Glu Phe Leu Lys Leu Gln Gly Arg Phe Lys Tyr Met Thr Lys Glu Asp 275 280 285 Ile Glu Thr Leu Gln Lys Trp Val Leu Glu Glu Trp Glu Arg Leu Lys 290 295 300 Lys Leu Ala Glu Val Phe Gly 305 310 <210> SEQ ID NO 47 <211> LENGTH: 185 <212> TYPE: PRT <213> ORGANISM: Pyrococcus furiosus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorC, WP_011012108.1 <400> SEQUENCE: 47 Met Ile Glu Val Arg Phe His Gly Arg Gly Gly Gln Gly Ala Val Thr 1 5 10 15 Ala Ala Asn Ile Leu Ala Glu Ala Ala Phe Leu Glu Gly Lys Tyr Val 20 25 30 Gln Ala Phe Pro Phe Phe Gly Val Glu Arg Arg Gly Ala Pro Val Thr 35 40 45 Ala Phe Thr Arg Ile Asp Asn Lys Pro Ile Arg Ile Lys Thr Gln Ile 50 55 60 Tyr Glu Pro Asp Val Val Val Val Leu Asp Pro Ser Leu Leu Asp Ala 65 70 75 80 Val Asp Val Thr Ala Gly Leu Lys Asp Glu Gly Ile Val Ile Val Asn 85 90 95 Thr Glu Lys Ser Lys Glu Glu Val Leu Glu Lys Leu Lys Lys Lys Pro 100 105 110 Lys Lys Leu Ala Ile Val Asp Ala Thr Thr Ile Ala Leu Glu Ile Leu 115 120 125 Gly Leu Pro Ile Thr Asn Thr Ala Ile Leu Gly Ala Val Ala Lys Ala 130 135 140 Thr Gly Leu Val Lys Ile Glu Ser Ile Glu Glu Ala Ile Lys Asp Thr 145 150 155 160 Phe Ser Gly Glu Leu Gly Glu Lys Asn Ala Arg Ala Ala Arg Glu Ala 165 170 175 Tyr Glu Lys Thr Glu Val Phe Glu Leu 180 185 <210> SEQ ID NO 48 <211> LENGTH: 105 <212> TYPE: PRT <213> ORGANISM: Pyrococcus furiosus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorD, WP_011012107.1 <400> SEQUENCE: 48 Met Asn Thr Leu Phe Gly Lys Thr Lys Glu Glu Ala Lys Pro Ile Val 1 5 10 15 Leu Lys Ser Val Asp Glu Tyr Pro Glu Ala Pro Ile Ser Leu Gly Thr 20 25 30 Thr Leu Val Asn Pro Thr Gly Asp Trp Arg Thr Phe Lys Pro Val Val 35 40 45 Asn Glu Glu Lys Cys Val Lys Cys Tyr Ile Cys Trp Lys Tyr Cys Pro 50 55 60 Glu Pro Ala Ile Tyr Ile Lys Pro Asp Gly Tyr Val Ala Ile Asp Tyr 65 70 75 80 Asp Tyr Cys Lys Gly Cys Gly Ile Cys Ala Asn Glu Cys Pro Thr Lys 85 90 95 Ala Ile Thr Met Ile Lys Glu Glu Lys 100 105 <210> SEQ ID NO 49 <211> LENGTH: 386 <212> TYPE: PRT <213> ORGANISM: Streptomyces avermitilis <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AcdH, AAD44196.1 or BAB69160.1 <400> SEQUENCE: 49 Met Asp His Arg Leu Thr Pro Glu Leu Glu Glu Leu Arg Arg Thr Val 1 5 10 15 Glu Glu Phe Ala His Asp Val Val Ala Pro Lys Ile Gly Asp Phe Tyr 20 25 30 Glu Arg His Glu Phe Pro Tyr Glu Ile Val Arg Glu Met Gly Arg Met 35 40 45 Gly Leu Phe Gly Leu Pro Phe Pro Glu Glu Tyr Gly Gly Met Gly Gly 50 55 60 Asp Tyr Leu Ala Leu Gly Ile Ala Leu Glu Glu Leu Ala Arg Val Asp 65 70 75 80 Ser Ser Val Ala Ile Thr Leu Glu Ala Gly Val Ser Leu Gly Ala Met 85 90 95 Pro Ile His Leu Phe Gly Thr Asp Ala Gln Lys Ala Glu Trp Leu Pro 100 105 110 Arg Leu Cys Ser Gly Glu Ile Leu Gly Ala Phe Gly Leu Thr Glu Pro 115 120 125 Asp Gly Gly Ser Asp Ala Gly Ala Thr Arg Thr Thr Ala Arg Leu Asp 130 135 140 Glu Ser Thr Asn Glu Trp Val Ile Asn Gly Thr Lys Cys Phe Ile Thr 145 150 155 160 Asn Ser Gly Thr Asp Ile Thr Gly Leu Val Thr Val Thr Ala Val Thr 165 170 175 Gly Arg Lys Pro Asp Gly Lys Pro Leu Ile Ser Ser Ile Ile Val Pro 180 185 190 Ser Gly Thr Pro Gly Phe Thr Val Ala Ala Pro Tyr Ser Lys Val Gly 195 200 205 Trp Asn Ala Ser Asp Thr Arg Glu Leu Ser Phe Ala Asp Val Arg Val 210 215 220 Pro Ala Ala Asn Leu Leu Gly Glu Gln Gly Arg Gly Tyr Ala Gln Phe 225 230 235 240 Leu Arg Ile Leu Asp Glu Gly Arg Ile Ala Ile Ser Ala Leu Ala Thr 245 250 255 Gly Leu Ala Gln Gly Cys Val Asp Glu Ser Val Lys Tyr Ala Gly Glu 260 265 270 Arg His Ala Phe Gly Arg Asn Ile Gly Ala Tyr Gln Ala Ile Gln Phe 275 280 285 Lys Ile Ala Asp Met Glu Met Lys Ala His Met Ala Arg Val Gly Trp 290 295 300 Arg Asp Ala Ala Ser Arg Leu Val Ala Gly Glu Pro Phe Lys Lys Glu 305 310 315 320 Ala Ala Ile Ala Lys Leu Tyr Ser Ser Thr Val Ala Val Asp Asn Ala 325 330 335 Arg Glu Ala Thr Gln Ile His Gly Gly Tyr Gly Phe Met Asn Glu Tyr 340 345 350 Pro Val Ala Arg Met Trp Arg Asp Ser Lys Ile Leu Glu Ile Gly Glu 355 360 365 Gly Thr Ser Glu Val Gln Arg Met Leu Ile Ala Arg Glu Leu Gly Leu 370 375 380 Val Gly 385 <210> SEQ ID NO 50 <211> LENGTH: 386 <212> TYPE: PRT <213> ORGANISM: Streptomyces coelicolor <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AcdH, AAD44195.1 <400> SEQUENCE: 50 Met Asp His Lys Leu Ser Pro Glu Leu Glu Glu Leu Arg Arg Thr Val 1 5 10 15 Glu Gln Phe Ala His Asp Val Val Ala Pro Lys Ile Gly Asp Phe Tyr 20 25 30 Glu Arg His Glu Phe Pro Tyr Glu Ile Val Arg Glu Met Gly Arg Met 35 40 45 Gly Leu Phe Gly Leu Pro Phe Pro Glu Glu Tyr Gly Gly Met Gly Gly 50 55 60 Asp Tyr Phe Ala Leu Gly Val Ala Leu Glu Glu Leu Ala Arg Val Asp 65 70 75 80 Ser Ser Val Ala Ile Thr Leu Glu Ala Gly Val Ser Leu Gly Ala Met 85 90 95 Pro Leu His Leu Phe Gly Thr Glu Glu Gln Lys Arg Glu Trp Leu Pro 100 105 110 Arg Leu Cys Ser Gly Glu Ile Leu Gly Ala Phe Gly Leu Thr Glu Pro 115 120 125 Asp Gly Gly Ser Asp Ala Gly Ala Thr Arg Thr Thr Ala Arg Leu Asp 130 135 140 Glu Ala Thr Asn Glu Trp Val Ile Asn Gly Thr Lys Cys Phe Ile Thr 145 150 155 160 Asn Ser Gly Thr Asp Ile Thr Gly Leu Val Thr Val Thr Ala Val Thr 165 170 175 Gly Arg Lys Pro Asp Gly Arg Pro Leu Ile Ser Ser Ile Ile Val Pro 180 185 190 Ser Gly Thr Pro Gly Phe Thr Val Ala Ala Pro Tyr Ser Lys Val Gly 195 200 205 Trp Asn Ala Ser Asp Thr Arg Glu Leu Ser Phe Ala Asp Val Arg Val 210 215 220 Pro Ala Ala Asn Leu Leu Gly Glu Leu Gly Arg Gly Tyr Ala Gln Phe 225 230 235 240 Leu Arg Ile Leu Asp Glu Gly Arg Val Ala Ile Ala Ala Leu Gly Thr 245 250 255 Gly Leu Ala Gln Gly Cys Val Asp Glu Ser Val Ala Tyr Ala Lys Glu 260 265 270 Arg His Ala Phe Gly Arg Pro Ile Gly Ala Asn Gln Ala Ile Gln Phe 275 280 285 Lys Ile Ala Asp Met Glu Met Lys Ala His Thr Ala Arg Leu Ala Trp 290 295 300 Arg Asp Ala Ala Ser Arg Leu Val Ala Gly Glu Pro Phe Lys Lys Glu 305 310 315 320 Ala Ala Leu Ala Lys Leu Tyr Ser Ser Thr Val Ala Val Asp Asn Ala 325 330 335 Arg Asp Ala Thr Gln Val His Gly Gly Tyr Gly Phe Met Asn Glu Tyr 340 345 350 Pro Val Ala Arg Met Trp Arg Asp Ala Lys Ile Leu Glu Ile Gly Glu 355 360 365 Gly Thr Ser Glu Val Gln Arg Met Leu Ile Ala Arg Glu Leu Gly Leu 370 375 380 Val Gly 385 <210> SEQ ID NO 51 <211> LENGTH: 261 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Crt, ABR34202.1 <400> SEQUENCE: 51 Met Glu Leu Lys Asn Val Ile Leu Glu Lys Glu Gly His Leu Ala Ile 1 5 10 15 Val Thr Ile Asn Arg Pro Lys Ala Leu Asn Ala Leu Asn Ser Glu Thr 20 25 30 Leu Lys Asp Leu Asp Ala Val Leu Glu Asp Leu Glu Lys Asp Ser Asn 35 40 45 Met Tyr Thr Val Ile Val Thr Gly Ala Gly Glu Lys Ser Phe Val Ala 50 55 60 Gly Ala Asp Ile Ser Glu Met Lys Asp Leu Asn Glu Glu Gln Gly Lys 65 70 75 80 Glu Phe Gly Ile Leu Gly Asn Asn Val Phe Arg Arg Leu Glu Arg Leu 85 90 95 Asp Lys Pro Val Ile Ala Ala Ile Ser Gly Phe Ala Leu Gly Gly Gly 100 105 110 Cys Glu Leu Ala Met Ser Cys Asp Ile Arg Ile Ala Ser Val Lys Ala 115 120 125 Lys Phe Gly Gln Pro Glu Ala Gly Leu Gly Ile Thr Pro Gly Phe Gly 130 135 140 Gly Thr Gln Arg Leu Ala Arg Ile Val Gly Pro Gly Lys Ala Lys Glu 145 150 155 160 Leu Ile Tyr Thr Cys Asp Leu Ile Asn Ala Glu Glu Ala Tyr Arg Ile 165 170 175 Gly Leu Val Asn Lys Val Val Glu Leu Glu Lys Leu Met Glu Glu Ala 180 185 190 Lys Ala Met Ala Asn Lys Ile Ala Ala Asn Ala Pro Lys Ala Val Ala 195 200 205 Tyr Cys Lys Asp Ala Ile Asp Arg Gly Met Gln Val Asp Ile Asp Ala 210 215 220 Ala Ile Leu Ile Glu Ala Glu Asp Phe Gly Lys Cys Phe Ala Thr Glu 225 230 235 240 Asp Gln Thr Glu Gly Met Thr Ala Phe Leu Glu Arg Arg Ala Glu Lys 245 250 255 Asn Phe Gln Asn Lys 260 <210> SEQ ID NO 52 <211> LENGTH: 261 <212> TYPE: PRT <213> ORGANISM: Clostridium acetobutylicum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Crt, NP_349318.1 <400> SEQUENCE: 52 Met Glu Leu Asn Asn Val Ile Leu Glu Lys Glu Gly Lys Val Ala Val 1 5 10 15 Val Thr Ile Asn Arg Pro Lys Ala Leu Asn Ala Leu Asn Ser Asp Thr 20 25 30 Leu Lys Glu Met Asp Tyr Val Ile Gly Glu Ile Glu Asn Asp Ser Glu 35 40 45 Val Leu Ala Val Ile Leu Thr Gly Ala Gly Glu Lys Ser Phe Val Ala 50 55 60 Gly Ala Asp Ile Ser Glu Met Lys Glu Met Asn Thr Ile Glu Gly Arg 65 70 75 80 Lys Phe Gly Ile Leu Gly Asn Lys Val Phe Arg Arg Leu Glu Leu Leu 85 90 95 Glu Lys Pro Val Ile Ala Ala Val Asn Gly Phe Ala Leu Gly Gly Gly 100 105 110 Cys Glu Ile Ala Met Ser Cys Asp Ile Arg Ile Ala Ser Ser Asn Ala 115 120 125 Arg Phe Gly Gln Pro Glu Val Gly Leu Gly Ile Thr Pro Gly Phe Gly 130 135 140 Gly Thr Gln Arg Leu Ser Arg Leu Val Gly Met Gly Met Ala Lys Gln 145 150 155 160 Leu Ile Phe Thr Ala Gln Asn Ile Lys Ala Asp Glu Ala Leu Arg Ile 165 170 175 Gly Leu Val Asn Lys Val Val Glu Pro Ser Glu Leu Met Asn Thr Ala 180 185 190 Lys Glu Ile Ala Asn Lys Ile Val Ser Asn Ala Pro Val Ala Val Lys 195 200 205 Leu Ser Lys Gln Ala Ile Asn Arg Gly Met Gln Cys Asp Ile Asp Thr 210 215 220 Ala Leu Ala Phe Glu Ser Glu Ala Phe Gly Glu Cys Phe Ser Thr Glu 225 230 235 240 Asp Gln Lys Asp Ala Met Thr Ala Phe Ile Glu Lys Arg Lys Ile Glu 245 250 255 Gly Phe Lys Asn Arg 260 <210> SEQ ID NO 53 <211> LENGTH: 397 <212> TYPE: PRT <213> ORGANISM: Treponema denticola <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Ccr, NP_971211.1 <400> SEQUENCE: 53 Met Ile Val Lys Pro Met Val Arg Asn Asn Ile Cys Leu Asn Ala His 1 5 10 15 Pro Gln Gly Cys Lys Lys Gly Val Glu Asp Gln Ile Glu Tyr Thr Lys 20 25 30 Lys Arg Ile Thr Ala Glu Val Lys Ala Gly Ala Lys Ala Pro Lys Asn 35 40 45 Val Leu Val Leu Gly Cys Ser Asn Gly Tyr Gly Leu Ala Ser Arg Ile 50 55 60 Thr Ala Ala Phe Gly Tyr Gly Ala Ala Thr Ile Gly Val Ser Phe Glu 65 70 75 80 Lys Ala Gly Ser Glu Thr Lys Tyr Gly Thr Pro Gly Trp Tyr Asn Asn 85 90 95 Leu Ala Phe Asp Glu Ala Ala Lys Arg Glu Gly Leu Tyr Ser Val Thr 100 105 110 Ile Asp Gly Asp Ala Phe Ser Asp Glu Ile Lys Ala Gln Val Ile Glu 115 120 125 Glu Ala Lys Lys Lys Gly Ile Lys Phe Asp Leu Ile Val Tyr Ser Leu 130 135 140 Ala Ser Pro Val Arg Thr Asp Pro Asp Thr Gly Ile Met His Lys Ser 145 150 155 160 Val Leu Lys Pro Phe Gly Lys Thr Phe Thr Gly Lys Thr Val Asp Pro 165 170 175 Phe Thr Gly Glu Leu Lys Glu Ile Ser Ala Glu Pro Ala Asn Asp Glu 180 185 190 Glu Ala Ala Ala Thr Val Lys Val Met Gly Gly Glu Asp Trp Glu Arg 195 200 205 Trp Ile Lys Gln Leu Ser Lys Glu Gly Leu Leu Glu Glu Gly Cys Ile 210 215 220 Thr Leu Ala Tyr Ser Tyr Ile Gly Pro Glu Ala Thr Gln Ala Leu Tyr 225 230 235 240 Arg Lys Gly Thr Ile Gly Lys Ala Lys Glu His Leu Glu Ala Thr Ala 245 250 255 His Arg Leu Asn Lys Glu Asn Pro Ser Ile Arg Ala Phe Val Ser Val 260 265 270 Asn Lys Gly Leu Val Thr Arg Ala Ser Ala Val Ile Pro Val Ile Pro 275 280 285 Leu Tyr Leu Ala Ser Leu Phe Lys Val Met Lys Glu Lys Gly Asn His 290 295 300 Glu Gly Cys Ile Glu Gln Ile Thr Arg Leu Tyr Ala Glu Arg Leu Tyr 305 310 315 320 Arg Lys Asp Gly Thr Ile Pro Val Asp Glu Glu Asn Arg Ile Arg Ile 325 330 335 Asp Asp Trp Glu Leu Glu Glu Asp Val Gln Lys Ala Val Ser Ala Leu 340 345 350 Met Glu Lys Val Thr Gly Glu Asn Ala Glu Ser Leu Thr Asp Leu Ala 355 360 365 Gly Tyr Arg His Asp Phe Leu Ala Ser Asn Gly Phe Asp Val Glu Gly 370 375 380 Ile Asn Tyr Glu Ala Glu Val Glu Arg Phe Asp Arg Ile 385 390 395 <210> SEQ ID NO 54 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Euglena gracilis <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Ter, AAW66853.1 <400> SEQUENCE: 54 Met Ser Cys Pro Ala Ser Pro Ser Ala Ala Val Val Ser Ala Gly Ala 1 5 10 15 Leu Cys Leu Cys Val Ala Thr Val Leu Leu Ala Thr Gly Ser Asn Pro 20 25 30 Thr Ala Leu Ser Thr Ala Ser Thr Arg Ser Pro Thr Ser Leu Val Arg 35 40 45 Gly Val Asp Arg Gly Leu Met Arg Pro Thr Thr Ala Ala Ala Leu Thr 50 55 60 Thr Met Arg Glu Val Pro Gln Met Ala Glu Gly Phe Ser Gly Glu Ala 65 70 75 80 Thr Ser Ala Trp Ala Ala Ala Gly Pro Gln Trp Ala Ala Pro Leu Val 85 90 95 Ala Ala Ala Ser Ser Ala Leu Ala Leu Trp Trp Trp Ala Ala Arg Arg 100 105 110 Ser Val Arg Arg Pro Leu Ala Ala Leu Ala Glu Leu Pro Thr Ala Val 115 120 125 Thr His Leu Ala Pro Pro Met Ala Met Phe Thr Thr Thr Ala Lys Val 130 135 140 Ile Gln Pro Lys Ile Arg Gly Phe Ile Cys Thr Thr Thr His Pro Ile 145 150 155 160 Gly Cys Glu Lys Arg Val Gln Glu Glu Ile Ala Tyr Ala Arg Ala His 165 170 175 Pro Pro Thr Ser Pro Gly Pro Lys Arg Val Leu Val Ile Gly Cys Ser 180 185 190 Thr Gly Tyr Gly Leu Ser Thr Arg Ile Thr Ala Ala Phe Gly Tyr Gln 195 200 205 Ala Ala Thr Leu Gly Val Phe Leu Ala Gly Pro Pro Thr Lys Gly Arg 210 215 220 Pro Ala Ala Ala Gly Trp Tyr Asn Thr Val Ala Phe Glu Lys Ala Ala 225 230 235 240 Leu Glu Ala Gly Leu Tyr Ala Arg Ser Leu Asn Gly Asp Ala Phe Asp 245 250 255 Ser Thr Thr Lys Ala Arg Thr Val Glu Ala Ile Lys Arg Asp Leu Gly 260 265 270 Thr Val Asp Leu Val Val Tyr Ser Ile Ala Ala Pro Lys Arg Thr Asp 275 280 285 Pro Ala Thr Gly Val Leu His Lys Ala Cys Leu Lys Pro Ile Gly Ala 290 295 300 Thr Tyr Thr Asn Arg Thr Val Asn Thr Asp Lys Ala Glu Val Thr Asp 305 310 315 320 Val Ser Ile Glu Pro Ala Ser Pro Glu Glu Ile Ala Asp Thr Val Lys 325 330 335 Val Met Gly Gly Glu Asp Trp Glu Leu Trp Ile Gln Ala Leu Ser Glu 340 345 350 Ala Gly Val Leu Ala Glu Gly Ala Lys Thr Val Ala Tyr Ser Tyr Ile 355 360 365 Gly Pro Glu Met Thr Trp Pro Val Tyr Trp Ser Gly Thr Ile Gly Glu 370 375 380 Ala Lys Lys Asp Val Glu Lys Ala Ala Lys Arg Ile Thr Gln Gln Tyr 385 390 395 400 Gly Cys Pro Ala Tyr Pro Val Val Ala Lys Ala Leu Val Thr Gln Ala 405 410 415 Ser Ser Ala Ile Pro Val Val Pro Leu Tyr Ile Cys Leu Leu Tyr Arg 420 425 430 Val Met Lys Glu Lys Gly Thr His Glu Gly Cys Ile Glu Gln Met Val 435 440 445 Arg Leu Leu Thr Thr Lys Leu Tyr Pro Glu Asn Gly Ala Pro Ile Val 450 455 460 Asp Glu Ala Gly Arg Val Arg Val Asp Asp Trp Glu Met Ala Glu Asp 465 470 475 480 Val Gln Gln Ala Val Lys Asp Leu Trp Ser Gln Val Ser Thr Ala Asn 485 490 495 Leu Lys Asp Ile Ser Asp Phe Ala Gly Tyr Gln Thr Glu Phe Leu Arg 500 505 510 Leu Phe Gly Phe Gly Ile Asp Gly Val Asp Tyr Asp Gln Pro Val Asp 515 520 525 Val Glu Ala Asp Leu Pro Ser Ala Ala Gln Gln 530 535 <210> SEQ ID NO 55 <211> LENGTH: 282 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Hbd, WP_011967675.1 <400> SEQUENCE: 55 Met Lys Lys Ile Phe Val Leu Gly Ala Gly Thr Met Gly Ala Gly Ile 1 5 10 15 Val Gln Ala Phe Ala Gln Lys Gly Cys Glu Val Ile Val Arg Asp Ile 20 25 30 Lys Glu Glu Phe Val Asp Arg Gly Ile Ala Gly Ile Thr Lys Gly Leu 35 40 45 Glu Lys Gln Val Ala Lys Gly Lys Met Ser Glu Glu Asp Lys Glu Ala 50 55 60 Ile Leu Ser Arg Ile Ser Gly Thr Thr Asp Met Lys Leu Ala Ala Asp 65 70 75 80 Cys Asp Leu Val Val Glu Ala Ala Ile Glu Asn Met Lys Ile Lys Lys 85 90 95 Glu Ile Phe Ala Glu Leu Asp Gly Ile Cys Lys Pro Glu Ala Ile Leu 100 105 110 Ala Ser Asn Thr Ser Ser Leu Ser Ile Thr Glu Val Ala Ser Ala Thr 115 120 125 Lys Arg Pro Asp Lys Val Ile Gly Met His Phe Phe Asn Pro Ala Pro 130 135 140 Val Met Lys Leu Val Glu Ile Ile Lys Gly Ile Ala Thr Ser Gln Glu 145 150 155 160 Thr Phe Asp Ala Val Lys Glu Leu Ser Val Ala Ile Gly Lys Glu Pro 165 170 175 Val Glu Val Ala Glu Ala Pro Gly Phe Val Val Asn Arg Ile Leu Ile 180 185 190 Pro Met Ile Asn Glu Ala Ser Phe Ile Leu Gln Glu Gly Ile Ala Ser 195 200 205 Val Glu Asp Ile Asp Thr Ala Met Lys Tyr Gly Ala Asn His Pro Met 210 215 220 Gly Pro Leu Ala Leu Gly Asp Leu Ile Gly Leu Asp Val Cys Leu Ala 225 230 235 240 Ile Met Asp Val Leu Phe Thr Glu Thr Gly Asp Asn Lys Tyr Arg Ala 245 250 255 Ser Ser Ile Leu Arg Lys Tyr Val Arg Ala Gly Trp Leu Gly Arg Lys 260 265 270 Ser Gly Lys Gly Phe Tyr Asp Tyr Ser Lys 275 280 <210> SEQ ID NO 56 <211> LENGTH: 282 <212> TYPE: PRT <213> ORGANISM: Clostridium acetobutylicum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Hbd, NP_349314.1 <400> SEQUENCE: 56 Met Lys Lys Val Cys Val Ile Gly Ala Gly Thr Met Gly Ser Gly Ile 1 5 10 15 Ala Gln Ala Phe Ala Ala Lys Gly Phe Glu Val Val Leu Arg Asp Ile 20 25 30 Lys Asp Glu Phe Val Asp Arg Gly Leu Asp Phe Ile Asn Lys Asn Leu 35 40 45 Ser Lys Leu Val Lys Lys Gly Lys Ile Glu Glu Ala Thr Lys Val Glu 50 55 60 Ile Leu Thr Arg Ile Ser Gly Thr Val Asp Leu Asn Met Ala Ala Asp 65 70 75 80 Cys Asp Leu Val Ile Glu Ala Ala Val Glu Arg Met Asp Ile Lys Lys 85 90 95 Gln Ile Phe Ala Asp Leu Asp Asn Ile Cys Lys Pro Glu Thr Ile Leu 100 105 110 Ala Ser Asn Thr Ser Ser Leu Ser Ile Thr Glu Val Ala Ser Ala Thr 115 120 125 Lys Arg Pro Asp Lys Val Ile Gly Met His Phe Phe Asn Pro Ala Pro 130 135 140 Val Met Lys Leu Val Glu Val Ile Arg Gly Ile Ala Thr Ser Gln Glu 145 150 155 160 Thr Phe Asp Ala Val Lys Glu Thr Ser Ile Ala Ile Gly Lys Asp Pro 165 170 175 Val Glu Val Ala Glu Ala Pro Gly Phe Val Val Asn Arg Ile Leu Ile 180 185 190 Pro Met Ile Asn Glu Ala Val Gly Ile Leu Ala Glu Gly Ile Ala Ser 195 200 205 Val Glu Asp Ile Asp Lys Ala Met Lys Leu Gly Ala Asn His Pro Met 210 215 220 Gly Pro Leu Glu Leu Gly Asp Phe Ile Gly Leu Asp Ile Cys Leu Ala 225 230 235 240 Ile Met Asp Val Leu Tyr Ser Glu Thr Gly Asp Ser Lys Tyr Arg Pro 245 250 255 His Thr Leu Leu Lys Lys Tyr Val Arg Ala Gly Trp Leu Gly Arg Lys 260 265 270 Ser Gly Lys Gly Phe Tyr Asp Tyr Ser Lys 275 280 <210> SEQ ID NO 57 <211> LENGTH: 282 <212> TYPE: PRT <213> ORGANISM: Clostridium kluyveri <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Hbd1, WP_011989027.1 <400> SEQUENCE: 57 Met Ser Ile Lys Ser Val Ala Val Leu Gly Ser Gly Thr Met Ser Arg 1 5 10 15 Gly Ile Val Gln Ala Phe Ala Glu Ala Gly Ile Asp Val Ile Ile Arg 20 25 30 Gly Arg Thr Glu Gly Ser Ile Gly Lys Gly Leu Ala Ala Val Lys Lys 35 40 45 Ala Tyr Asp Lys Lys Val Ser Lys Gly Lys Ile Ser Gln Glu Asp Ala 50 55 60 Asp Lys Ile Val Gly Arg Val Ser Thr Thr Thr Glu Leu Glu Lys Leu 65 70 75 80 Ala Asp Cys Asp Leu Ile Ile Glu Ala Ala Ser Glu Asp Met Asn Ile 85 90 95 Lys Lys Asp Tyr Phe Gly Lys Leu Glu Glu Ile Cys Lys Pro Glu Thr 100 105 110 Ile Phe Ala Thr Asn Thr Ser Ser Leu Ser Ile Thr Glu Val Ala Thr 115 120 125 Ala Thr Lys Arg Pro Asp Lys Phe Ile Gly Met His Phe Phe Asn Pro 130 135 140 Ala Asn Val Met Lys Leu Val Glu Ile Ile Arg Gly Met Asn Thr Ser 145 150 155 160 Gln Glu Thr Phe Asp Ile Ile Lys Glu Ala Ser Ile Lys Ile Gly Lys 165 170 175 Thr Pro Val Glu Val Ala Glu Ala Pro Gly Phe Val Val Asn Lys Ile 180 185 190 Leu Val Pro Met Ile Asn Glu Ala Val Gly Ile Leu Ala Glu Gly Ile 195 200 205 Ala Ser Ala Glu Asp Ile Asp Thr Ala Met Lys Leu Gly Ala Asn His 210 215 220 Pro Met Gly Pro Leu Ala Leu Gly Asp Leu Ile Gly Leu Asp Val Val 225 230 235 240 Leu Ala Val Met Asp Val Leu Tyr Ser Glu Thr Gly Asp Ser Lys Tyr 245 250 255 Arg Ala His Thr Leu Leu Arg Lys Tyr Val Arg Ala Gly Trp Leu Gly 260 265 270 Arg Lys Ser Gly Lys Gly Phe Phe Ala Tyr 275 280 <210> SEQ ID NO 58 <211> LENGTH: 246 <212> TYPE: PRT <213> ORGANISM: Cupriavidus necator <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: PhaB, WP_010810131.1 <400> SEQUENCE: 58 Met Thr Gln Arg Ile Ala Tyr Val Thr Gly Gly Met Gly Gly Ile Gly 1 5 10 15 Thr Ala Ile Cys Gln Arg Leu Ala Lys Asp Gly Phe Arg Val Val Ala 20 25 30 Gly Cys Gly Pro Asn Ser Pro Arg Arg Glu Lys Trp Leu Glu Gln Gln 35 40 45 Lys Ala Leu Gly Phe Asp Phe Ile Ala Ser Glu Gly Asn Val Ala Asp 50 55 60 Trp Asp Ser Thr Lys Thr Ala Phe Asp Lys Val Lys Ser Glu Val Gly 65 70 75 80 Glu Val Asp Val Leu Ile Asn Asn Ala Gly Ile Thr Arg Asp Val Val 85 90 95 Phe Arg Lys Met Thr Arg Ala Asp Trp Asp Ala Val Ile Asp Thr Asn 100 105 110 Leu Thr Ser Leu Phe Asn Val Thr Lys Gln Val Ile Asp Gly Met Ala 115 120 125 Asp Arg Gly Trp Gly Arg Ile Val Asn Ile Ser Ser Val Asn Gly Gln 130 135 140 Lys Gly Gln Phe Gly Gln Thr Asn Tyr Ser Thr Ala Lys Ala Gly Leu 145 150 155 160 His Gly Phe Thr Met Ala Leu Ala Gln Glu Val Ala Thr Lys Gly Val 165 170 175 Thr Val Asn Thr Val Ser Pro Gly Tyr Ile Ala Thr Asp Met Val Lys 180 185 190 Ala Ile Arg Gln Asp Val Leu Asp Lys Ile Val Ala Thr Ile Pro Val 195 200 205 Lys Arg Leu Gly Leu Pro Glu Glu Ile Ala Ser Ile Cys Ala Trp Leu 210 215 220 Ser Ser Glu Glu Ser Gly Phe Ser Thr Gly Ala Asp Phe Ser Leu Asn 225 230 235 240 Gly Gly Leu His Met Gly 245 <210> SEQ ID NO 59 <211> LENGTH: 134 <212> TYPE: PRT <213> ORGANISM: Aeromonas caviae <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: PhaJ, O32472 <400> SEQUENCE: 59 Met Ser Ala Gln Ser Leu Glu Val Gly Gln Lys Ala Arg Leu Ser Lys 1 5 10 15 Arg Phe Gly Ala Ala Glu Val Ala Ala Phe Ala Ala Leu Ser Glu Asp 20 25 30 Phe Asn Pro Leu His Leu Asp Pro Ala Phe Ala Ala Thr Thr Ala Phe 35 40 45 Glu Arg Pro Ile Val His Gly Met Leu Leu Ala Ser Leu Phe Ser Gly 50 55 60 Leu Leu Gly Gln Gln Leu Pro Gly Lys Gly Ser Ile Tyr Leu Gly Gln 65 70 75 80 Ser Leu Ser Phe Lys Leu Pro Val Phe Val Gly Asp Glu Val Thr Ala 85 90 95 Glu Val Glu Val Thr Ala Leu Arg Glu Asp Lys Pro Ile Ala Thr Leu 100 105 110 Thr Thr Arg Ile Phe Thr Gln Gly Gly Ala Leu Ala Val Thr Gly Glu 115 120 125 Ala Val Val Lys Leu Pro 130 <210> SEQ ID NO 60 <211> LENGTH: 260 <212> TYPE: PRT <213> ORGANISM: Ralstonia pickettii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Bdh1, BAE72684.1 <400> SEQUENCE: 60 Met Gln Leu Lys Gly Lys Ser Ala Ile Val Thr Gly Ala Ala Ser Gly 1 5 10 15 Ile Gly Lys Ala Ile Ala Glu Leu Leu Ala Lys Glu Gly Ala Ala Val 20 25 30 Ala Ile Ala Asp Leu Asn Leu Glu Ala Ala Arg Ala Ala Ala Ala Gly 35 40 45 Ile Glu Ala Ala Gly Gly Lys Ala Ile Ala Val Ala Met Asp Val Thr 50 55 60 Ser Glu Ala Ser Val Asn Gln Ala Thr Asp Glu Val Ala Gln Ala Phe 65 70 75 80 Gly Asn Ile Asp Ile Leu Val Ser Asn Ala Gly Ile Gln Ile Val Asn 85 90 95 Pro Ile Gln Asn Tyr Ala Phe Ser Asp Trp Lys Lys Met Gln Ala Ile 100 105 110 His Val Asp Gly Ala Phe Leu Thr Thr Lys Ala Ala Leu Lys Tyr Met 115 120 125 Tyr Arg Asp Lys Arg Gly Gly Thr Val Ile Tyr Met Gly Ser Val His 130 135 140 Ser His Glu Ala Ser Pro Leu Lys Ser Ala Tyr Val Ala Ala Lys His 145 150 155 160 Ala Leu Leu Gly Leu Ala Arg Val Leu Ala Lys Glu Gly Ala Glu Phe 165 170 175 Asn Val Arg Ser His Val Ile Cys Pro Gly Phe Val Arg Thr Pro Leu 180 185 190 Val Asp Lys Gln Ile Pro Glu Gln Ala Lys Glu Leu Gly Ile Ser Glu 195 200 205 Glu Glu Val Val Arg Arg Val Met Leu Gly Gly Thr Val Asp Gly Val 210 215 220 Phe Thr Thr Val Asp Asp Val Ala Arg Thr Ala Leu Phe Leu Cys Ala 225 230 235 240 Phe Pro Ser Ala Ala Leu Thr Gly Gln Ser Phe Ile Val Ser His Gly 245 250 255 Trp Tyr Met Gln 260 <210> SEQ ID NO 61 <211> LENGTH: 256 <212> TYPE: PRT <213> ORGANISM: Ralstonia pickettii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Bdh2, BAE72685.1 <400> SEQUENCE: 61 Met Leu Gln Gly Lys Thr Ala Leu Val Thr Gly Ser Thr Cys Gly Ile 1 5 10 15 Gly Leu Gly Ile Ala Gln Ala Leu Ala Ala Gln Gly Ala Asn Ile Ile 20 25 30 Val Asn Gly Phe Arg Arg Ala Asp Gly Ala Arg Gln Gln Ile Ala Ala 35 40 45 Ala Gly Gln Val Ile Arg Leu Gly Tyr His Gly Ala Asp Met Ser Lys 50 55 60 Ala Ser Glu Ile Glu Asp Met Met Arg Tyr Ala Glu Ala Glu Phe Ala 65 70 75 80 Ala Asp Ile Leu Val Asn Asn Ala Gly Ile Gln His Val Ala Ser Ile 85 90 95 Glu Asp Phe Pro Pro Glu Arg Trp Asp Ala Ile Ile Ala Ile Asn Leu 100 105 110 Thr Ser Ala Phe His Thr Thr Arg Leu Ala Leu Pro Gly Met Arg Gln 115 120 125 Lys Asn Trp Gly Arg Val Ile Asn Ile Ala Ser Thr His Gly Leu Val 130 135 140 Ala Ser Ala Gln Lys Ser Ala Tyr Val Ala Ala Lys His Gly Ile Val 145 150 155 160 Gly Leu Thr Lys Val Thr Ala Leu Glu Thr Ala Gln Asn Arg Val Thr 165 170 175 Ala Asn Ala Ile Cys Pro Gly Trp Val Leu Thr Pro Leu Val Gln Lys 180 185 190 Gln Val Gln Ala Arg Pro Ala His Gly Ile Ser Val Glu Gln Ala Lys 195 200 205 Arg Glu Leu Val Ile Glu Lys Gln Pro Ser Gly Gln Phe Val Thr Pro 210 215 220 Asp Glu Leu Gly Ala Leu Ala Val Phe Leu Ala Ser Glu Ala Gly Arg 225 230 235 240 Gln Val Arg Gly Ala Ile Trp Asn Met Ala Gly Gly Trp Phe Ala Gln 245 250 255 <210> SEQ ID NO 62 <211> LENGTH: 254 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Bdh, AGY75962 <400> SEQUENCE: 62 Met Arg Leu Glu Asn Lys Val Ala Ile Val Thr Gly Ser Ala Met Gly 1 5 10 15 Ile Gly Lys Ala Ile Val Arg Asp Phe Val Asn Glu Gly Ala Lys Val 20 25 30 Ile Ile Ser Asp Ile Leu Glu Ala Glu Gly Gln Ala Leu Glu Glu Glu 35 40 45 Leu Gln Lys Lys Gly His Ser Val Tyr Phe Phe Lys Thr Asp Val Ser 50 55 60 Ser Glu Lys Asn Ile Lys Glu Leu Val Lys Phe Thr Leu Glu Lys Phe 65 70 75 80 Gly Thr Ile Asn Ile Leu Cys Asn Asn Ala Ala Val Asn Ile Pro Gly 85 90 95 Ser Val Leu Glu Leu Thr Glu Asp Ile Trp Asn Lys Thr Met Asp Val 100 105 110 Asn Val Lys Ser His Phe Leu Val Ser Lys His Val Ile Pro Val Met 115 120 125 Gln Lys Ala Gly Gly Gly Ser Ile Val Asn Thr Ala Ser Ala Asn Ser 130 135 140 Phe Val Ala Glu Pro Arg Leu Ser Ala Tyr Val Ala Ser Lys Gly Ala 145 150 155 160 Ile Leu Met Leu Thr Arg Ala Met Ala Leu Asp Phe Ala Lys Asp Asn 165 170 175 Ile Arg Val Asn Cys Ile Cys Pro Gly Trp Val Asp Thr Thr Phe Asn 180 185 190 Asp Ala His Ala Glu Leu Phe Gly Gly Arg Glu Ala Val Leu Lys Asp 195 200 205 Leu Ala Ser Val Gln Pro Ile Gly Arg Pro Ile Ala Pro Met Glu Ile 210 215 220 Ala Lys Ile Ala Thr Phe Leu Ala Ser Asp Asp Ser Ser Cys Met Thr 225 230 235 240 Gly Ser Pro Val Ile Ala Asp Gly Gly Ile Thr Ala Gly Val 245 250 <210> SEQ ID NO 63 <211> LENGTH: 607 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AOR, WP_013238665.1 <400> SEQUENCE: 63 Met Tyr Gly Tyr Asp Gly Lys Val Leu Arg Ile Asn Leu Lys Glu Arg 1 5 10 15 Thr Cys Lys Ser Glu Asn Leu Asp Leu Asp Lys Ala Lys Lys Phe Ile 20 25 30 Gly Cys Arg Gly Leu Gly Val Lys Thr Leu Phe Asp Glu Ile Asp Pro 35 40 45 Lys Ile Asp Ala Leu Ser Pro Glu Asn Lys Phe Ile Ile Val Thr Gly 50 55 60 Pro Leu Thr Gly Ala Pro Val Pro Thr Ser Gly Arg Phe Met Val Val 65 70 75 80 Thr Lys Ala Pro Leu Thr Gly Thr Ile Gly Ile Ser Asn Ser Gly Gly 85 90 95 Lys Trp Gly Val Asp Leu Lys Lys Ala Gly Trp Asp Met Ile Ile Val 100 105 110 Glu Asp Lys Ala Asp Ser Pro Val Tyr Ile Glu Ile Val Asp Asp Lys 115 120 125 Val Glu Ile Lys Asp Ala Ser Gln Leu Trp Gly Lys Val Thr Ser Glu 130 135 140 Thr Thr Lys Glu Leu Glu Lys Ile Thr Glu Asn Lys Ser Lys Val Leu 145 150 155 160 Cys Ile Gly Pro Ala Gly Glu Arg Leu Ser Leu Met Ala Ala Val Met 165 170 175 Asn Asp Val Asp Arg Thr Ala Ala Arg Gly Gly Val Gly Ala Val Met 180 185 190 Gly Ser Lys Asn Leu Lys Ala Ile Thr Val Lys Gly Thr Gly Lys Ile 195 200 205 Ala Leu Ala Asp Lys Glu Lys Val Lys Lys Val Ser Val Glu Lys Ile 210 215 220 Thr Thr Leu Lys Asn Asp Pro Val Ala Gly Gln Gly Met Pro Thr Tyr 225 230 235 240 Gly Thr Ala Ile Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro 245 250 255 Val Lys Asn Phe Gln Glu Ser Tyr Thr Asn Gln Ala Asp Lys Ile Ser 260 265 270 Gly Glu Thr Leu Thr Ala Asn Gln Leu Val Arg Lys Asn Pro Cys Tyr 275 280 285 Ser Cys Pro Ile Gly Cys Gly Arg Trp Val Arg Leu Lys Asp Gly Thr 290 295 300 Glu Cys Gly Gly Pro Glu Tyr Glu Thr Leu Trp Cys Phe Gly Ser Asp 305 310 315 320 Cys Gly Ser Tyr Asp Leu Asp Ala Ile Asn Glu Ala Asn Met Leu Cys 325 330 335 Asn Glu Tyr Gly Ile Asp Thr Ile Thr Cys Gly Ala Thr Ile Ala Ala 340 345 350 Ala Met Glu Leu Tyr Gln Arg Gly Tyr Ile Lys Asp Glu Glu Ile Ala 355 360 365 Gly Asp Asn Leu Ser Leu Lys Trp Gly Asp Thr Glu Ser Met Ile Gly 370 375 380 Trp Ile Lys Arg Met Val Tyr Ser Glu Gly Phe Gly Ala Lys Met Thr 385 390 395 400 Asn Gly Ser Tyr Arg Leu Cys Glu Gly Tyr Gly Ala Pro Glu Tyr Ser 405 410 415 Met Thr Val Lys Lys Gln Glu Ile Pro Ala Tyr Asp Pro Arg Gly Ile 420 425 430 Gln Gly His Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His 435 440 445 Ile Lys Gly Tyr Met Ile Asn Pro Glu Ile Leu Gly Tyr Pro Glu Lys 450 455 460 Leu Asp Arg Phe Ala Leu Asp Gly Lys Ala Ala Tyr Ala Lys Leu Phe 465 470 475 480 His Asp Leu Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr 485 490 495 Thr Phe Gly Leu Gly Ile Gln Asp Tyr Val Asp Met Tyr Asn Ala Val 500 505 510 Val Gly Glu Ser Thr Tyr Asp Ala Asp Ser Leu Leu Glu Ala Gly Asp 515 520 525 Arg Ile Trp Thr Leu Glu Lys Leu Phe Asn Leu Ala Ala Gly Ile Asp 530 535 540 Ser Ser Gln Asp Thr Leu Pro Lys Arg Leu Leu Glu Glu Pro Ile Pro 545 550 555 560 Asp Gly Pro Ser Lys Gly Glu Val His Arg Leu Asp Val Leu Leu Pro 565 570 575 Glu Tyr Tyr Ser Val Arg Gly Trp Ser Lys Glu Gly Ile Pro Thr Glu 580 585 590 Glu Thr Leu Lys Lys Leu Gly Leu Asp Glu Tyr Ile Gly Lys Phe 595 600 605 <210> SEQ ID NO 64 <211> LENGTH: 607 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AOR, WP_013238675.1 <400> SEQUENCE: 64 Met Tyr Gly Tyr Lys Gly Lys Val Leu Arg Ile Asn Leu Ser Ser Lys 1 5 10 15 Thr Tyr Ile Val Glu Glu Leu Lys Ile Asp Lys Ala Lys Lys Phe Ile 20 25 30 Gly Ala Arg Gly Leu Gly Val Lys Thr Leu Phe Asp Glu Val Asp Pro 35 40 45 Lys Val Asp Pro Leu Ser Pro Asp Asn Lys Phe Ile Ile Ala Ala Gly 50 55 60 Pro Leu Thr Gly Ala Pro Val Pro Thr Ser Gly Arg Phe Met Val Val 65 70 75 80 Thr Lys Ser Pro Leu Thr Gly Thr Ile Ala Ile Ala Asn Ser Gly Gly 85 90 95 Lys Trp Gly Ala Glu Phe Lys Ala Ala Gly Tyr Asp Met Ile Ile Val 100 105 110 Glu Gly Lys Ser Asp Lys Glu Val Tyr Val Asn Ile Val Asp Asp Lys 115 120 125 Val Glu Phe Arg Asp Ala Ser His Val Trp Gly Lys Leu Thr Glu Glu 130 135 140 Thr Thr Lys Met Leu Gln Gln Glu Thr Asp Ser Arg Ala Lys Val Leu 145 150 155 160 Cys Ile Gly Pro Ala Gly Glu Lys Leu Ser Leu Met Ala Ala Val Met 165 170 175 Asn Asp Val Asp Arg Thr Ala Gly Arg Gly Gly Val Gly Ala Val Met 180 185 190 Gly Ser Lys Asn Leu Lys Ala Ile Val Val Lys Gly Ser Gly Lys Val 195 200 205 Lys Leu Phe Asp Glu Gln Lys Val Lys Glu Val Ala Leu Glu Lys Thr 210 215 220 Asn Ile Leu Arg Lys Asp Pro Val Ala Gly Gly Gly Leu Pro Thr Tyr 225 230 235 240 Gly Thr Ala Val Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro 245 250 255 Val Lys Asn Phe Gln Lys Ser Tyr Thr Asp Gln Ala Asp Lys Ile Ser 260 265 270 Gly Glu Thr Leu Thr Lys Asp Cys Leu Val Arg Lys Asn Pro Cys Tyr 275 280 285 Arg Cys Pro Ile Ala Cys Gly Arg Trp Val Lys Leu Asp Asp Gly Thr 290 295 300 Glu Cys Gly Gly Pro Glu Tyr Glu Thr Leu Trp Ser Phe Gly Ser Asp 305 310 315 320 Cys Asp Val Tyr Asp Ile Asn Ala Val Asn Thr Ala Asn Met Leu Cys 325 330 335 Asn Glu Tyr Gly Leu Asp Thr Ile Thr Ala Gly Cys Thr Ile Ala Ala 340 345 350 Ala Met Glu Leu Tyr Gln Arg Gly Tyr Ile Lys Asp Glu Glu Ile Ala 355 360 365 Ala Asp Gly Leu Ser Leu Asn Trp Gly Asp Ala Lys Ser Met Val Glu 370 375 380 Trp Val Lys Lys Met Gly Leu Arg Glu Gly Phe Gly Asp Lys Met Ala 385 390 395 400 Asp Gly Ser Tyr Arg Leu Cys Asp Ser Tyr Gly Val Pro Glu Tyr Ser 405 410 415 Met Thr Val Lys Lys Gln Glu Leu Pro Ala Tyr Asp Pro Arg Gly Ile 420 425 430 Gln Gly His Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His 435 440 445 Ile Lys Gly Tyr Met Val Ser Pro Glu Ile Leu Gly Tyr Pro Glu Lys 450 455 460 Leu Asp Arg Leu Ala Val Glu Gly Lys Ala Gly Tyr Ala Arg Val Phe 465 470 475 480 His Asp Leu Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr 485 490 495 Thr Phe Gly Leu Gly Ala Gln Asp Tyr Val Asp Met Tyr Asn Ala Val 500 505 510 Val Gly Gly Glu Leu His Asp Val Asn Ser Leu Met Leu Ala Gly Asp 515 520 525 Arg Ile Trp Thr Leu Glu Lys Ile Phe Asn Leu Lys Ala Gly Ile Asp 530 535 540 Ser Ser Gln Asp Thr Leu Pro Lys Arg Leu Leu Glu Glu Gln Ile Pro 545 550 555 560 Glu Gly Pro Ser Lys Gly Glu Val His Lys Leu Asp Val Leu Leu Pro 565 570 575 Glu Tyr Tyr Ser Val Arg Gly Trp Asp Lys Asn Gly Ile Pro Thr Glu 580 585 590 Glu Thr Leu Lys Lys Leu Gly Leu Asp Glu Tyr Val Gly Lys Leu 595 600 605 <210> SEQ ID NO 65 <211> LENGTH: 607 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AOR, ADK15073.1 <400> SEQUENCE: 65 Met Tyr Gly Tyr Asp Gly Lys Val Leu Arg Ile Asn Leu Lys Glu Arg 1 5 10 15 Thr Cys Lys Ser Glu Asn Leu Asp Leu Asp Lys Ala Lys Lys Phe Ile 20 25 30 Gly Cys Arg Gly Leu Gly Val Lys Thr Leu Phe Asp Glu Ile Asp Pro 35 40 45 Lys Ile Asp Ala Leu Ser Pro Glu Asn Lys Phe Ile Ile Val Thr Gly 50 55 60 Pro Leu Thr Gly Ala Pro Val Pro Thr Ser Gly Arg Phe Met Val Val 65 70 75 80 Thr Lys Ala Pro Leu Thr Gly Thr Ile Gly Ile Ser Asn Ser Gly Gly 85 90 95 Lys Trp Gly Val Asp Leu Lys Lys Ala Gly Trp Asp Met Ile Ile Val 100 105 110 Glu Asp Lys Ala Asp Ser Pro Val Tyr Ile Glu Ile Val Asp Asp Lys 115 120 125 Val Glu Ile Lys Asp Ala Ser Gln Leu Trp Gly Lys Val Thr Ser Glu 130 135 140 Thr Thr Lys Glu Leu Glu Lys Ile Thr Glu Asn Lys Ser Lys Val Leu 145 150 155 160 Cys Ile Gly Pro Ala Gly Glu Arg Leu Ser Leu Met Ala Ala Val Met 165 170 175 Asn Asp Val Asp Arg Thr Ala Ala Arg Gly Gly Val Gly Ala Val Met 180 185 190 Gly Ser Lys Asn Leu Lys Ala Ile Thr Val Lys Gly Thr Gly Lys Ile 195 200 205 Ala Leu Ala Asp Lys Glu Lys Val Lys Lys Val Ser Val Glu Lys Ile 210 215 220 Thr Thr Leu Lys Asn Asp Pro Val Ala Gly Gln Gly Met Pro Thr Tyr 225 230 235 240 Gly Thr Ala Ile Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro 245 250 255 Val Lys Asn Phe Gln Glu Ser Tyr Thr Asn Gln Ala Asp Lys Ile Ser 260 265 270 Gly Glu Thr Leu Thr Ala Asn Gln Leu Val Arg Lys Asn Pro Cys Tyr 275 280 285 Ser Cys Pro Ile Gly Cys Gly Arg Trp Val Arg Leu Lys Asp Gly Thr 290 295 300 Glu Cys Gly Gly Pro Glu Tyr Glu Thr Leu Trp Cys Phe Gly Ser Asp 305 310 315 320 Cys Gly Ser Tyr Asp Leu Asp Ala Ile Asn Glu Ala Asn Met Leu Cys 325 330 335 Asn Glu Tyr Gly Ile Asp Thr Ile Thr Cys Gly Ala Thr Ile Ala Ala 340 345 350 Ala Met Glu Leu Tyr Gln Arg Gly Tyr Ile Lys Asp Glu Glu Ile Ala 355 360 365 Gly Asp Asn Leu Ser Leu Lys Trp Gly Asp Thr Glu Ser Met Ile Gly 370 375 380 Trp Ile Lys Arg Met Val Tyr Ser Glu Gly Phe Gly Ala Lys Met Thr 385 390 395 400 Asn Gly Ser Tyr Arg Leu Cys Glu Gly Tyr Gly Ala Pro Glu Tyr Ser 405 410 415 Met Thr Val Lys Lys Gln Glu Ile Pro Ala Tyr Asp Pro Arg Gly Ile 420 425 430 Gln Gly His Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His 435 440 445 Ile Lys Gly Tyr Met Ile Asn Pro Glu Ile Leu Gly Tyr Pro Glu Lys 450 455 460 Leu Asp Arg Phe Ala Leu Asp Gly Lys Ala Ala Tyr Ala Lys Leu Phe 465 470 475 480 His Asp Leu Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr 485 490 495 Thr Phe Gly Leu Gly Ile Gln Asp Tyr Val Asp Met Tyr Asn Ala Val 500 505 510 Val Gly Glu Ser Thr Tyr Asp Ala Asp Ser Leu Leu Glu Ala Gly Asp 515 520 525 Arg Ile Trp Thr Leu Glu Lys Leu Phe Asn Leu Ala Ala Gly Ile Asp 530 535 540 Ser Ser Gln Asp Thr Leu Pro Lys Arg Leu Leu Glu Glu Pro Ile Pro 545 550 555 560 Asp Gly Pro Ser Lys Gly Glu Val His Arg Leu Asp Val Leu Leu Pro 565 570 575 Glu Tyr Tyr Ser Val Arg Gly Trp Ser Lys Glu Gly Ile Pro Thr Glu 580 585 590 Glu Thr Leu Lys Lys Leu Gly Leu Asp Glu Tyr Ile Gly Lys Phe 595 600 605 <210> SEQ ID NO 66 <211> LENGTH: 607 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AOR, ADK15083.1 <400> SEQUENCE: 66 Met Tyr Gly Tyr Lys Gly Lys Val Leu Arg Ile Asn Leu Ser Ser Lys 1 5 10 15 Thr Tyr Ile Val Glu Glu Leu Lys Ile Asp Lys Ala Lys Lys Phe Ile 20 25 30 Gly Ala Arg Gly Leu Gly Val Lys Thr Leu Phe Asp Glu Val Asp Pro 35 40 45 Lys Val Asp Pro Leu Ser Pro Asp Asn Lys Phe Ile Ile Ala Ala Gly 50 55 60 Pro Leu Thr Gly Ala Pro Val Pro Thr Ser Gly Arg Phe Met Val Val 65 70 75 80 Thr Lys Ser Pro Leu Thr Gly Thr Ile Ala Ile Ala Asn Ser Gly Gly 85 90 95 Lys Trp Gly Ala Glu Phe Lys Ala Ala Gly Tyr Asp Met Ile Ile Val 100 105 110 Glu Gly Lys Ser Asp Lys Glu Val Tyr Val Asn Ile Val Asp Asp Lys 115 120 125 Val Glu Phe Arg Asp Ala Ser His Val Trp Gly Lys Leu Thr Glu Glu 130 135 140 Thr Thr Lys Met Leu Gln Gln Glu Thr Asp Ser Arg Ala Lys Val Leu 145 150 155 160 Cys Ile Gly Pro Ala Gly Glu Lys Leu Ser Leu Met Ala Ala Val Met 165 170 175 Asn Asp Val Asp Arg Thr Ala Gly Arg Gly Gly Val Gly Ala Val Met 180 185 190 Gly Ser Lys Asn Leu Lys Ala Ile Val Val Lys Gly Ser Gly Lys Val 195 200 205 Lys Leu Phe Asp Glu Gln Lys Val Lys Glu Val Ala Leu Glu Lys Thr 210 215 220 Asn Ile Leu Arg Lys Asp Pro Val Ala Gly Gly Gly Leu Pro Thr Tyr 225 230 235 240 Gly Thr Ala Val Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro 245 250 255 Val Lys Asn Phe Gln Lys Ser Tyr Thr Asp Gln Ala Asp Lys Ile Ser 260 265 270 Gly Glu Thr Leu Thr Lys Asp Cys Leu Val Arg Lys Asn Pro Cys Tyr 275 280 285 Arg Cys Pro Ile Ala Cys Gly Arg Trp Val Lys Leu Asp Asp Gly Thr 290 295 300 Glu Cys Gly Gly Pro Glu Tyr Glu Thr Leu Trp Ser Phe Gly Ser Asp 305 310 315 320 Cys Asp Val Tyr Asp Ile Asn Ala Val Asn Thr Ala Asn Met Leu Cys 325 330 335 Asn Glu Tyr Gly Leu Asp Thr Ile Thr Ala Gly Cys Thr Ile Ala Ala 340 345 350 Ala Met Glu Leu Tyr Gln Arg Gly Tyr Ile Lys Asp Glu Glu Ile Ala 355 360 365 Ala Asp Gly Leu Ser Leu Asn Trp Gly Asp Ala Lys Ser Met Val Glu 370 375 380 Trp Val Lys Lys Met Gly Leu Arg Glu Gly Phe Gly Asp Lys Met Ala 385 390 395 400 Asp Gly Ser Tyr Arg Leu Cys Asp Ser Tyr Gly Val Pro Glu Tyr Ser 405 410 415 Met Thr Val Lys Lys Gln Glu Leu Pro Ala Tyr Asp Pro Arg Gly Ile 420 425 430 Gln Gly His Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His 435 440 445 Ile Lys Gly Tyr Met Val Ser Pro Glu Ile Leu Gly Tyr Pro Glu Lys 450 455 460 Leu Asp Arg Leu Ala Val Glu Gly Lys Ala Gly Tyr Ala Arg Val Phe 465 470 475 480 His Asp Leu Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr 485 490 495 Thr Phe Gly Leu Gly Ala Gln Asp Tyr Val Asp Met Tyr Asn Ala Val 500 505 510 Val Gly Gly Glu Leu His Asp Val Asn Ser Leu Met Leu Ala Gly Asp 515 520 525 Arg Ile Trp Thr Leu Glu Lys Ile Phe Asn Leu Lys Ala Gly Ile Asp 530 535 540 Ser Ser Gln Asp Thr Leu Pro Lys Arg Leu Leu Glu Glu Gln Ile Pro 545 550 555 560 Glu Gly Pro Ser Lys Gly Glu Val His Lys Leu Asp Val Leu Leu Pro 565 570 575 Glu Tyr Tyr Ser Val Arg Gly Trp Asp Lys Asn Gly Ile Pro Thr Glu 580 585 590 Glu Thr Leu Lys Lys Leu Gly Leu Asp Glu Tyr Val Gly Lys Leu 595 600 605 <210> SEQ ID NO 67 <211> LENGTH: 405 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Adh, AGY76060.1 <400> SEQUENCE: 67 Met Lys Tyr Met Gly Ile Lys Ile Tyr Gly Asn Lys Ile Arg Gly Ile 1 5 10 15 Ile Met Glu Arg Phe Thr Leu Pro Arg Asp Ile Tyr Phe Gly Glu Asp 20 25 30 Ala Leu Gly Ala Leu Lys Thr Leu Lys Gly Lys Lys Ala Val Val Val 35 40 45 Val Gly Gly Gly Ser Met Lys Arg Phe Gly Phe Leu Asp Lys Val Glu 50 55 60 Glu Tyr Leu Lys Glu Ala Asn Ile Glu Val Lys Leu Ile Glu Gly Val 65 70 75 80 Glu Pro Asp Pro Ser Val Glu Thr Val Met Lys Gly Ala Lys Ile Met 85 90 95 Thr Glu Phe Gly Pro Asp Trp Ile Val Ala Ile Gly Gly Gly Ser Pro 100 105 110 Ile Asp Ala Ala Lys Ala Met Trp Leu Phe Tyr Glu Tyr Pro Asp Phe 115 120 125 Thr Phe Lys Gln Ala Ile Val Pro Phe Gly Leu Pro Glu Leu Arg Gln 130 135 140 Lys Ala Lys Phe Val Ala Ile Ala Ser Thr Ser Gly Thr Ala Thr Glu 145 150 155 160 Val Thr Ser Phe Ser Val Ile Thr Asp Tyr Lys Ala Lys Ile Lys Tyr 165 170 175 Pro Leu Ala Asp Phe Asn Leu Thr Pro Asp Ile Ala Ile Val Asp Pro 180 185 190 Ala Leu Ala Gln Thr Met Pro Pro Lys Leu Thr Ala His Thr Gly Met 195 200 205 Asp Ala Leu Thr His Ala Leu Glu Ala Tyr Val Ala Ser Ala Arg Ser 210 215 220 Asp Ile Ser Asp Pro Leu Ala Ile His Ser Ile Ile Met Thr Arg Asp 225 230 235 240 Asn Leu Leu Lys Ser Tyr Lys Gly Asp Lys Asp Ala Arg Asn Lys Met 245 250 255 His Ile Ser Gln Cys Leu Ala Gly Met Ala Phe Ser Asn Ala Leu Leu 260 265 270 Gly Ile Thr His Ser Leu Ala His Lys Thr Gly Ala Val Trp His Ile 275 280 285 Pro His Gly Cys Ala Asn Ala Ile Tyr Leu Pro Tyr Val Leu Asp Phe 290 295 300 Asn Lys Lys Ala Cys Ser Asp Arg Tyr Ala Asn Ile Ala Lys Ile Leu 305 310 315 320 Gly Leu Lys Gly Thr Thr Glu Asp Glu Leu Val Asp Ser Leu Val Lys 325 330 335 Met Val Gln Asp Met Asp Lys Glu Leu Asn Ile Pro Leu Thr Leu Lys 340 345 350 Asp Tyr Gly Ile Ser Lys Asp Asp Phe Asn Ser Asn Val Asp Phe Ile 355 360 365 Ala Lys Asn Ala Leu Leu Asp Ala Cys Thr Gly Ala Asn Pro Arg Pro 370 375 380 Ile Asp Phe Asp Gln Met Lys Lys Ile Leu Gln Cys Ile Tyr Asp Gly 385 390 395 400 Lys Lys Val Thr Phe 405 <210> SEQ ID NO 68 <211> LENGTH: 388 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Adh, ADK17019.1 <400> SEQUENCE: 68 Met Glu Arg Phe Thr Leu Pro Arg Asp Ile Tyr Phe Gly Glu Asp Ala 1 5 10 15 Leu Gly Ala Leu Lys Thr Leu Lys Gly Lys Lys Ala Val Val Val Val 20 25 30 Gly Gly Gly Ser Met Lys Arg Phe Gly Phe Leu Asp Lys Val Glu Glu 35 40 45 Tyr Leu Lys Glu Ala Asn Ile Glu Val Lys Leu Ile Glu Gly Val Glu 50 55 60 Pro Asp Pro Ser Val Glu Thr Val Met Lys Gly Ala Lys Ile Met Thr 65 70 75 80 Glu Phe Gly Pro Asp Trp Ile Val Ala Ile Gly Gly Gly Ser Pro Ile 85 90 95 Asp Ala Ala Lys Ala Met Trp Leu Phe Tyr Glu Tyr Pro Asp Phe Thr 100 105 110 Phe Lys Gln Ala Ile Val Pro Phe Gly Leu Pro Glu Leu Arg Gln Lys 115 120 125 Ala Lys Phe Val Ala Ile Ala Ser Thr Ser Gly Thr Ala Thr Glu Val 130 135 140 Thr Ser Phe Ser Val Ile Thr Asp Tyr Lys Ala Lys Ile Lys Tyr Pro 145 150 155 160 Leu Ala Asp Phe Asn Leu Thr Pro Asp Ile Ala Ile Val Asp Pro Ala 165 170 175 Leu Ala Gln Thr Met Pro Pro Lys Leu Thr Ala His Thr Gly Met Asp 180 185 190 Ala Leu Thr His Ala Leu Glu Ala Tyr Val Ala Ser Ala Arg Ser Asp 195 200 205 Ile Ser Asp Pro Leu Ala Ile His Ser Ile Ile Met Thr Arg Asp Asn 210 215 220 Leu Leu Lys Ser Tyr Lys Gly Asp Lys Asp Ala Arg Asn Lys Met His 225 230 235 240 Ile Ser Gln Cys Leu Ala Gly Met Ala Phe Ser Asn Ala Leu Leu Gly 245 250 255 Ile Thr His Ser Leu Ala His Lys Thr Gly Ala Val Trp His Ile Pro 260 265 270 His Gly Cys Ala Asn Ala Ile Tyr Leu Pro Tyr Val Leu Asp Phe Asn 275 280 285 Lys Lys Ala Cys Ser Asp Arg Tyr Ala Asn Ile Ala Lys Ile Leu Gly 290 295 300 Leu Lys Gly Thr Thr Glu Asp Glu Leu Val Asp Ser Leu Val Lys Met 305 310 315 320 Val Gln Asp Met Asp Lys Glu Leu Asn Ile Pro Leu Thr Leu Lys Asp 325 330 335 Tyr Gly Ile Ser Lys Asp Asp Phe Asn Ser Asn Val Asp Phe Ile Ala 340 345 350 Lys Asn Ala Leu Leu Asp Ala Cys Thr Gly Ala Asn Pro Arg Pro Ile 355 360 365 Asp Phe Asp Gln Met Lys Lys Ile Leu Gln Cys Ile Tyr Asp Gly Lys 370 375 380 Lys Val Thr Phe 385 <210> SEQ ID NO 69 <211> LENGTH: 390 <212> TYPE: PRT <213> ORGANISM: Clostridium acetobutylicum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: BdhB, NP_349891.1 <400> SEQUENCE: 69 Met Val Asp Phe Glu Tyr Ser Ile Pro Thr Arg Ile Phe Phe Gly Lys 1 5 10 15 Asp Lys Ile Asn Val Leu Gly Arg Glu Leu Lys Lys Tyr Gly Ser Lys 20 25 30 Val Leu Ile Val Tyr Gly Gly Gly Ser Ile Lys Arg Asn Gly Ile Tyr 35 40 45 Asp Lys Ala Val Ser Ile Leu Glu Lys Asn Ser Ile Lys Phe Tyr Glu 50 55 60 Leu Ala Gly Val Glu Pro Asn Pro Arg Val Thr Thr Val Glu Lys Gly 65 70 75 80 Val Lys Ile Cys Arg Glu Asn Gly Val Glu Val Val Leu Ala Ile Gly 85 90 95 Gly Gly Ser Ala Ile Asp Cys Ala Lys Val Ile Ala Ala Ala Cys Glu 100 105 110 Tyr Asp Gly Asn Pro Trp Asp Ile Val Leu Asp Gly Ser Lys Ile Lys 115 120 125 Arg Val Leu Pro Ile Ala Ser Ile Leu Thr Ile Ala Ala Thr Gly Ser 130 135 140 Glu Met Asp Thr Trp Ala Val Ile Asn Asn Met Asp Thr Asn Glu Lys 145 150 155 160 Leu Ile Ala Ala His Pro Asp Met Ala Pro Lys Phe Ser Ile Leu Asp 165 170 175 Pro Thr Tyr Thr Tyr Thr Val Pro Thr Asn Gln Thr Ala Ala Gly Thr 180 185 190 Ala Asp Ile Met Ser His Ile Phe Glu Val Tyr Phe Ser Asn Thr Lys 195 200 205 Thr Ala Tyr Leu Gln Asp Arg Met Ala Glu Ala Leu Leu Arg Thr Cys 210 215 220 Ile Lys Tyr Gly Gly Ile Ala Leu Glu Lys Pro Asp Asp Tyr Glu Ala 225 230 235 240 Arg Ala Asn Leu Met Trp Ala Ser Ser Leu Ala Ile Asn Gly Leu Leu 245 250 255 Thr Tyr Gly Lys Asp Thr Asn Trp Ser Val His Leu Met Glu His Glu 260 265 270 Leu Ser Ala Tyr Tyr Asp Ile Thr His Gly Val Gly Leu Ala Ile Leu 275 280 285 Thr Pro Asn Trp Met Glu Tyr Ile Leu Asn Asn Asp Thr Val Tyr Lys 290 295 300 Phe Val Glu Tyr Gly Val Asn Val Trp Gly Ile Asp Lys Glu Lys Asn 305 310 315 320 His Tyr Asp Ile Ala His Gln Ala Ile Gln Lys Thr Arg Asp Tyr Phe 325 330 335 Val Asn Val Leu Gly Leu Pro Ser Arg Leu Arg Asp Val Gly Ile Glu 340 345 350 Glu Glu Lys Leu Asp Ile Met Ala Lys Glu Ser Val Lys Leu Thr Gly 355 360 365 Gly Thr Ile Gly Asn Leu Arg Pro Val Asn Ala Ser Glu Val Leu Gln 370 375 380 Ile Phe Lys Lys Ser Val 385 390 <210> SEQ ID NO 70 <211> LENGTH: 387 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Bdh, WP_041897187.1 <400> SEQUENCE: 70 Met Glu Asn Phe Asn Tyr Ser Ile Pro Thr Lys Val Tyr Phe Gly Lys 1 5 10 15 Gly Gln Ile Lys Asn Leu Ala Ala Ile Ile Lys Glu Tyr Gly Asn Lys 20 25 30 Ile Phe Ile Ala Tyr Gly Gly Gly Ser Ile Lys Lys Ile Gly Leu Tyr 35 40 45 Asp Glu Met Ile Lys Ile Leu Asn Asp Asn Ser Ile Ser Tyr Val Glu 50 55 60 Leu Ser Gly Ile Glu Pro Asn Pro Arg Ile Glu Thr Val Arg Lys Gly 65 70 75 80 Ile Lys Ile Cys Lys Glu Asn Asn Val Glu Val Val Leu Ala Val Gly 85 90 95 Gly Gly Ser Thr Ile Asp Cys Ala Lys Val Ile Ala Ala Gly Val Lys 100 105 110 Tyr Glu Gly Asp Pro Trp Asp Leu Val Thr Ser Pro Gln Lys Ile Asn 115 120 125 Glu Val Leu Pro Ile Val Thr Ile Leu Thr Leu Ser Ala Thr Gly Ser 130 135 140 Glu Met Asp Pro His Ala Val Ile Ser Asp Met Thr Thr Asn Gln Lys 145 150 155 160 Leu Gly Thr Gly His Glu Asn Met Lys Pro Lys Ala Ser Ile Leu Asp 165 170 175 Pro Glu Tyr Thr Tyr Ser Val Pro Lys Asn Gln Thr Ala Ala Gly Thr 180 185 190 Ala Asp Ile Met Ser His Ile Phe Glu Thr Tyr Phe Asn His Thr Lys 195 200 205 Gly Val Asp Ile Gln Asp Ser Thr Ala Glu Gly Leu Leu Arg Ala Cys 210 215 220 Ile Lys Tyr Gly Lys Ile Ala Ile Glu Asn Pro Lys Asp Tyr Asp Ala 225 230 235 240 Arg Ala Asn Leu Met Trp Ala Ser Ser Trp Ala Ile Asn Gly Leu Ile 245 250 255 Ser Tyr Gly Thr Asn Ser Pro Trp Val Val His Pro Met Glu His Glu 260 265 270 Leu Ser Ala Phe Tyr Asp Ile Thr His Gly Val Gly Leu Ala Ile Leu 275 280 285 Thr Pro His Trp Met Lys Tyr Ser Leu Asp Asp Thr Thr Val Phe Lys 290 295 300 Phe Ala Gln Tyr Gly Ile Asn Val Trp Gly Ile Asp Lys Asn Leu Asp 305 310 315 320 Lys Phe Glu Ile Ala Asn Lys Ala Ile Glu Lys Thr Ser Glu Phe Phe 325 330 335 Lys Glu Leu Gly Ile Pro Ser Thr Leu Arg Glu Val Gly Ile Glu Glu 340 345 350 Glu Lys Leu Glu Leu Met Ala Lys Lys Ala Met Asn Pro Tyr Phe Lys 355 360 365 Tyr Ala Phe Lys Pro Leu Asp Glu Asn Asp Ile Leu Lys Ile Phe Lys 370 375 380 Ala Ala Leu 385 <210> SEQ ID NO 71 <211> LENGTH: 388 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Bdh1, YP_003780648.1 <400> SEQUENCE: 71 Met Gly Arg Phe Thr Leu Pro Arg Asp Ile Tyr Phe Gly Glu Asn Ala 1 5 10 15 Leu Glu Asn Leu Lys Asn Leu Asp Gly Asn Lys Ala Val Val Val Val 20 25 30 Gly Gly Gly Ser Met Lys Arg Phe Gly Phe Leu Ala Lys Val Glu Lys 35 40 45 Tyr Leu Lys Glu Thr Gly Met Glu Val Lys Leu Ile Glu Gly Val Glu 50 55 60 Pro Asp Pro Ser Val Asp Thr Val Met Asn Gly Ala Lys Ile Met Arg 65 70 75 80 Asp Phe Asn Pro Asp Trp Ile Val Ser Ile Gly Gly Gly Ser Pro Ile 85 90 95 Asp Ala Ala Lys Ala Met Trp Ile Phe Tyr Glu Tyr Pro Asp Phe Thr 100 105 110 Phe Glu Lys Ala Val Val Pro Phe Gly Ile Pro Lys Leu Arg Gln Lys 115 120 125 Ala Gln Phe Val Ala Ile Pro Ser Thr Ser Gly Thr Ala Thr Glu Val 130 135 140 Thr Ser Phe Ser Val Ile Thr Asp Tyr Lys Ala Lys Ile Lys Tyr Pro 145 150 155 160 Leu Ala Asp Phe Asn Leu Thr Pro Asp Ile Ala Ile Ile Asp Pro Ser 165 170 175 Leu Ala Glu Thr Met Pro Lys Lys Leu Thr Ala His Thr Gly Met Asp 180 185 190 Ala Leu Thr His Ala Ile Glu Ala Tyr Val Ala Ser Leu His Ser Asp 195 200 205 Phe Ser Asp Pro Leu Ala Met His Ala Ile Thr Met Ile His Lys Tyr 210 215 220 Leu Leu Lys Ser Tyr Glu Glu Asp Lys Glu Ala Arg Gly His Met His 225 230 235 240 Ile Ala Gln Cys Leu Ala Gly Met Ala Phe Ser Asn Ala Leu Leu Gly 245 250 255 Ile Thr His Ser Ile Ala His Lys Thr Gly Ala Val Phe His Ile Pro 260 265 270 His Gly Cys Ala Asn Ala Ile Tyr Leu Pro Tyr Val Ile Asp Phe Asn 275 280 285 Lys Lys Ala Cys Ser Glu Arg Tyr Ala Lys Ile Ala Lys Lys Leu His 290 295 300 Leu Ser Gly Asn Ser Glu Asp Glu Leu Ile Asp Ser Leu Thr Glu Met 305 310 315 320 Ile Arg Thr Met Asn Lys Lys Met Asp Ile Pro Leu Thr Ile Lys Asp 325 330 335 Tyr Gly Ile Ser Glu Asn Asp Phe Asn Glu Asn Leu Asp Phe Ile Ala 340 345 350 His Asn Ala Met Met Asp Ala Cys Thr Gly Ser Asn Pro Arg Ala Ile 355 360 365 Thr Glu Glu Glu Met Lys Lys Leu Leu Gln Tyr Met Tyr Asn Gly Gln 370 375 380 Lys Val Asn Phe 385 <210> SEQ ID NO 72 <211> LENGTH: 405 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Bdh1, AGY76060.1 <400> SEQUENCE: 72 Met Lys Tyr Met Gly Ile Lys Ile Tyr Gly Asn Lys Ile Arg Gly Ile 1 5 10 15 Ile Met Glu Arg Phe Thr Leu Pro Arg Asp Ile Tyr Phe Gly Glu Asp 20 25 30 Ala Leu Gly Ala Leu Lys Thr Leu Lys Gly Lys Lys Ala Val Val Val 35 40 45 Val Gly Gly Gly Ser Met Lys Arg Phe Gly Phe Leu Asp Lys Val Glu 50 55 60 Glu Tyr Leu Lys Glu Ala Asn Ile Glu Val Lys Leu Ile Glu Gly Val 65 70 75 80 Glu Pro Asp Pro Ser Val Glu Thr Val Met Lys Gly Ala Lys Ile Met 85 90 95 Thr Glu Phe Gly Pro Asp Trp Ile Val Ala Ile Gly Gly Gly Ser Pro 100 105 110 Ile Asp Ala Ala Lys Ala Met Trp Leu Phe Tyr Glu Tyr Pro Asp Phe 115 120 125 Thr Phe Lys Gln Ala Ile Val Pro Phe Gly Leu Pro Glu Leu Arg Gln 130 135 140 Lys Ala Lys Phe Val Ala Ile Ala Ser Thr Ser Gly Thr Ala Thr Glu 145 150 155 160 Val Thr Ser Phe Ser Val Ile Thr Asp Tyr Lys Ala Lys Ile Lys Tyr 165 170 175 Pro Leu Ala Asp Phe Asn Leu Thr Pro Asp Ile Ala Ile Val Asp Pro 180 185 190 Ala Leu Ala Gln Thr Met Pro Pro Lys Leu Thr Ala His Thr Gly Met 195 200 205 Asp Ala Leu Thr His Ala Leu Glu Ala Tyr Val Ala Ser Ala Arg Ser 210 215 220 Asp Ile Ser Asp Pro Leu Ala Ile His Ser Ile Ile Met Thr Arg Asp 225 230 235 240 Asn Leu Leu Lys Ser Tyr Lys Gly Asp Lys Asp Ala Arg Asn Lys Met 245 250 255 His Ile Ser Gln Cys Leu Ala Gly Met Ala Phe Ser Asn Ala Leu Leu 260 265 270 Gly Ile Thr His Ser Leu Ala His Lys Thr Gly Ala Val Trp His Ile 275 280 285 Pro His Gly Cys Ala Asn Ala Ile Tyr Leu Pro Tyr Val Leu Asp Phe 290 295 300 Asn Lys Lys Ala Cys Ser Asp Arg Tyr Ala Asn Ile Ala Lys Ile Leu 305 310 315 320 Gly Leu Lys Gly Thr Thr Glu Asp Glu Leu Val Asp Ser Leu Val Lys 325 330 335 Met Val Gln Asp Met Asp Lys Glu Leu Asn Ile Pro Leu Thr Leu Lys 340 345 350 Asp Tyr Gly Ile Ser Lys Asp Asp Phe Asn Ser Asn Val Asp Phe Ile 355 360 365 Ala Lys Asn Ala Leu Leu Asp Ala Cys Thr Gly Ala Asn Pro Arg Pro 370 375 380 Ile Asp Phe Asp Gln Met Lys Lys Ile Leu Gln Cys Ile Tyr Asp Gly 385 390 395 400 Lys Lys Val Thr Phe 405 <210> SEQ ID NO 73 <211> LENGTH: 388 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Bdh2, YP_003782121.1 <400> SEQUENCE: 73 Met Glu Arg Phe Thr Leu Pro Arg Asp Ile Tyr Phe Gly Glu Asp Ala 1 5 10 15 Leu Gly Ala Leu Lys Thr Leu Lys Gly Lys Lys Ala Val Val Val Val 20 25 30 Gly Gly Gly Ser Met Lys Arg Phe Gly Phe Leu Asp Lys Val Glu Glu 35 40 45 Tyr Leu Lys Glu Ala Asn Ile Glu Val Lys Leu Ile Glu Gly Val Glu 50 55 60 Pro Asp Pro Ser Val Glu Thr Val Met Lys Gly Ala Lys Ile Met Thr 65 70 75 80 Glu Phe Gly Pro Asp Trp Ile Val Ala Ile Gly Gly Gly Ser Pro Ile 85 90 95 Asp Ala Ala Lys Ala Met Trp Leu Phe Tyr Glu Tyr Pro Asp Phe Thr 100 105 110 Phe Lys Gln Ala Ile Val Pro Phe Gly Leu Pro Glu Leu Arg Gln Lys 115 120 125 Ala Lys Phe Val Ala Ile Ala Ser Thr Ser Gly Thr Ala Thr Glu Val 130 135 140 Thr Ser Phe Ser Val Ile Thr Asp Tyr Lys Ala Lys Ile Lys Tyr Pro 145 150 155 160 Leu Ala Asp Phe Asn Leu Thr Pro Asp Ile Ala Ile Val Asp Pro Ala 165 170 175 Leu Ala Gln Thr Met Pro Pro Lys Leu Thr Ala His Thr Gly Met Asp 180 185 190 Ala Leu Thr His Ala Leu Glu Ala Tyr Val Ala Ser Ala Arg Ser Asp 195 200 205 Ile Ser Asp Pro Leu Ala Ile His Ser Ile Ile Met Thr Arg Asp Asn 210 215 220 Leu Leu Lys Ser Tyr Lys Gly Asp Lys Asp Ala Arg Asn Lys Met His 225 230 235 240 Ile Ser Gln Cys Leu Ala Gly Met Ala Phe Ser Asn Ala Leu Leu Gly 245 250 255 Ile Thr His Ser Leu Ala His Lys Thr Gly Ala Val Trp His Ile Pro 260 265 270 His Gly Cys Ala Asn Ala Ile Tyr Leu Pro Tyr Val Leu Asp Phe Asn 275 280 285 Lys Lys Ala Cys Ser Asp Arg Tyr Ala Asn Ile Ala Lys Ile Leu Gly 290 295 300 Leu Lys Gly Thr Thr Glu Asp Glu Leu Val Asp Ser Leu Val Lys Met 305 310 315 320 Val Gln Asp Met Asp Lys Glu Leu Asn Ile Pro Leu Thr Leu Lys Asp 325 330 335 Tyr Gly Ile Ser Lys Asp Asp Phe Asn Ser Asn Val Asp Phe Ile Ala 340 345 350 Lys Asn Ala Leu Leu Asp Ala Cys Thr Gly Ala Asn Pro Arg Pro Ile 355 360 365 Asp Phe Asp Gln Met Lys Lys Ile Leu Gln Cys Ile Tyr Asp Gly Lys 370 375 380 Lys Val Thr Phe 385 <210> SEQ ID NO 74 <211> LENGTH: 388 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Bdh2, AGY74784.1 <400> SEQUENCE: 74 Met Gly Arg Phe Thr Leu Pro Arg Asp Ile Tyr Phe Gly Glu Asn Ala 1 5 10 15 Leu Glu Asn Leu Lys Asn Leu Asp Gly Asn Lys Ala Val Val Val Val 20 25 30 Gly Gly Gly Ser Met Lys Arg Phe Gly Phe Leu Ala Lys Val Glu Lys 35 40 45 Tyr Leu Lys Glu Thr Gly Met Glu Val Lys Leu Ile Glu Gly Val Glu 50 55 60 Pro Asp Pro Ser Val Asp Thr Val Met Asn Gly Ala Lys Ile Met Arg 65 70 75 80 Asp Phe Asn Pro Asp Trp Ile Val Ser Ile Gly Gly Gly Ser Pro Ile 85 90 95 Asp Ala Ala Lys Ala Met Trp Ile Phe Tyr Glu Tyr Pro Asp Phe Thr 100 105 110 Phe Glu Lys Ala Val Val Pro Phe Gly Ile Pro Lys Leu Arg Gln Lys 115 120 125 Ala Gln Phe Val Ala Ile Pro Ser Thr Ser Gly Thr Ala Thr Glu Val 130 135 140 Thr Ser Phe Ser Val Ile Thr Asp Tyr Lys Ala Lys Ile Lys Tyr Pro 145 150 155 160 Leu Ala Asp Phe Asn Leu Thr Pro Asp Ile Ala Ile Ile Asp Pro Ser 165 170 175 Leu Ala Glu Thr Met Pro Lys Lys Leu Thr Ala His Thr Gly Met Asp 180 185 190 Ala Leu Thr His Ala Ile Glu Ala Tyr Val Ala Ser Leu His Ser Asp 195 200 205 Phe Ser Asp Pro Leu Ala Met His Ala Ile Thr Met Ile His Lys Tyr 210 215 220 Leu Leu Lys Ser Tyr Glu Glu Asp Lys Glu Ala Arg Gly His Met His 225 230 235 240 Ile Ala Gln Cys Leu Ala Gly Met Ala Phe Ser Asn Ala Leu Leu Gly 245 250 255 Ile Thr His Ser Ile Ala His Lys Thr Gly Ala Val Phe His Ile Pro 260 265 270 His Gly Cys Ala Asn Ala Ile Tyr Leu Pro Tyr Val Ile Asp Phe Asn 275 280 285 Lys Lys Ala Cys Ser Glu Arg Tyr Ala Lys Ile Ala Lys Lys Leu His 290 295 300 Leu Ser Gly Asn Ser Glu Asp Glu Leu Ile Asp Ser Leu Thr Glu Met 305 310 315 320 Ile Arg Thr Met Asn Lys Lys Met Asp Ile Pro Leu Thr Ile Lys Asp 325 330 335 Tyr Gly Ile Ser Glu Asn Asp Phe Asn Glu Asn Leu Asp Phe Ile Ala 340 345 350 His Asn Ala Met Met Asp Ala Cys Thr Gly Ser Asn Pro Arg Ala Ile 355 360 365 Thr Glu Glu Glu Met Lys Lys Leu Leu Gln Tyr Met Tyr Asn Gly Gln 370 375 380 Lys Val Asn Phe 385 <210> SEQ ID NO 75 <211> LENGTH: 862 <212> TYPE: PRT <213> ORGANISM: Clostridium acetobutylicum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AdhE1, NP_149325.1 <400> SEQUENCE: 75 Met Lys Val Thr Thr Val Lys Glu Leu Asp Glu Lys Leu Lys Val Ile 1 5 10 15 Lys Glu Ala Gln Lys Lys Phe Ser Cys Tyr Ser Gln Glu Met Val Asp 20 25 30 Glu Ile Phe Arg Asn Ala Ala Met Ala Ala Ile Asp Ala Arg Ile Glu 35 40 45 Leu Ala Lys Ala Ala Val Leu Glu Thr Gly Met Gly Leu Val Glu Asp 50 55 60 Lys Val Ile Lys Asn His Phe Ala Gly Glu Tyr Ile Tyr Asn Lys Tyr 65 70 75 80 Lys Asp Glu Lys Thr Cys Gly Ile Ile Glu Arg Asn Glu Pro Tyr Gly 85 90 95 Ile Thr Lys Ile Ala Glu Pro Ile Gly Val Val Ala Ala Ile Ile Pro 100 105 110 Val Thr Asn Pro Thr Ser Thr Thr Ile Phe Lys Ser Leu Ile Ser Leu 115 120 125 Lys Thr Arg Asn Gly Ile Phe Phe Ser Pro His Pro Arg Ala Lys Lys 130 135 140 Ser Thr Ile Leu Ala Ala Lys Thr Ile Leu Asp Ala Ala Val Lys Ser 145 150 155 160 Gly Ala Pro Glu Asn Ile Ile Gly Trp Ile Asp Glu Pro Ser Ile Glu 165 170 175 Leu Thr Gln Tyr Leu Met Gln Lys Ala Asp Ile Thr Leu Ala Thr Gly 180 185 190 Gly Pro Ser Leu Val Lys Ser Ala Tyr Ser Ser Gly Lys Pro Ala Ile 195 200 205 Gly Val Gly Pro Gly Asn Thr Pro Val Ile Ile Asp Glu Ser Ala His 210 215 220 Ile Lys Met Ala Val Ser Ser Ile Ile Leu Ser Lys Thr Tyr Asp Asn 225 230 235 240 Gly Val Ile Cys Ala Ser Glu Gln Ser Val Ile Val Leu Lys Ser Ile 245 250 255 Tyr Asn Lys Val Lys Asp Glu Phe Gln Glu Arg Gly Ala Tyr Ile Ile 260 265 270 Lys Lys Asn Glu Leu Asp Lys Val Arg Glu Val Ile Phe Lys Asp Gly 275 280 285 Ser Val Asn Pro Lys Ile Val Gly Gln Ser Ala Tyr Thr Ile Ala Ala 290 295 300 Met Ala Gly Ile Lys Val Pro Lys Thr Thr Arg Ile Leu Ile Gly Glu 305 310 315 320 Val Thr Ser Leu Gly Glu Glu Glu Pro Phe Ala His Glu Lys Leu Ser 325 330 335 Pro Val Leu Ala Met Tyr Glu Ala Asp Asn Phe Asp Asp Ala Leu Lys 340 345 350 Lys Ala Val Thr Leu Ile Asn Leu Gly Gly Leu Gly His Thr Ser Gly 355 360 365 Ile Tyr Ala Asp Glu Ile Lys Ala Arg Asp Lys Ile Asp Arg Phe Ser 370 375 380 Ser Ala Met Lys Thr Val Arg Thr Phe Val Asn Ile Pro Thr Ser Gln 385 390 395 400 Gly Ala Ser Gly Asp Leu Tyr Asn Phe Arg Ile Pro Pro Ser Phe Thr 405 410 415 Leu Gly Cys Gly Phe Trp Gly Gly Asn Ser Val Ser Glu Asn Val Gly 420 425 430 Pro Lys His Leu Leu Asn Ile Lys Thr Val Ala Glu Arg Arg Glu Asn 435 440 445 Met Leu Trp Phe Arg Val Pro His Lys Val Tyr Phe Lys Phe Gly Cys 450 455 460 Leu Gln Phe Ala Leu Lys Asp Leu Lys Asp Leu Lys Lys Lys Arg Ala 465 470 475 480 Phe Ile Val Thr Asp Ser Asp Pro Tyr Asn Leu Asn Tyr Val Asp Ser 485 490 495 Ile Ile Lys Ile Leu Glu His Leu Asp Ile Asp Phe Lys Val Phe Asn 500 505 510 Lys Val Gly Arg Glu Ala Asp Leu Lys Thr Ile Lys Lys Ala Thr Glu 515 520 525 Glu Met Ser Ser Phe Met Pro Asp Thr Ile Ile Ala Leu Gly Gly Thr 530 535 540 Pro Glu Met Ser Ser Ala Lys Leu Met Trp Val Leu Tyr Glu His Pro 545 550 555 560 Glu Val Lys Phe Glu Asp Leu Ala Ile Lys Phe Met Asp Ile Arg Lys 565 570 575 Arg Ile Tyr Thr Phe Pro Lys Leu Gly Lys Lys Ala Met Leu Val Ala 580 585 590 Ile Thr Thr Ser Ala Gly Ser Gly Ser Glu Val Thr Pro Phe Ala Leu 595 600 605 Val Thr Asp Asn Asn Thr Gly Asn Lys Tyr Met Leu Ala Asp Tyr Glu 610 615 620 Met Thr Pro Asn Met Ala Ile Val Asp Ala Glu Leu Met Met Lys Met 625 630 635 640 Pro Lys Gly Leu Thr Ala Tyr Ser Gly Ile Asp Ala Leu Val Asn Ser 645 650 655 Ile Glu Ala Tyr Thr Ser Val Tyr Ala Ser Glu Tyr Thr Asn Gly Leu 660 665 670 Ala Leu Glu Ala Ile Arg Leu Ile Phe Lys Tyr Leu Pro Glu Ala Tyr 675 680 685 Lys Asn Gly Arg Thr Asn Glu Lys Ala Arg Glu Lys Met Ala His Ala 690 695 700 Ser Thr Met Ala Gly Met Ala Ser Ala Asn Ala Phe Leu Gly Leu Cys 705 710 715 720 His Ser Met Ala Ile Lys Leu Ser Ser Glu His Asn Ile Pro Ser Gly 725 730 735 Ile Ala Asn Ala Leu Leu Ile Glu Glu Val Ile Lys Phe Asn Ala Val 740 745 750 Asp Asn Pro Val Lys Gln Ala Pro Cys Pro Gln Tyr Lys Tyr Pro Asn 755 760 765 Thr Ile Phe Arg Tyr Ala Arg Ile Ala Asp Tyr Ile Lys Leu Gly Gly 770 775 780 Asn Thr Asp Glu Glu Lys Val Asp Leu Leu Ile Asn Lys Ile His Glu 785 790 795 800 Leu Lys Lys Ala Leu Asn Ile Pro Thr Ser Ile Lys Asp Ala Gly Val 805 810 815 Leu Glu Glu Asn Phe Tyr Ser Ser Leu Asp Arg Ile Ser Glu Leu Ala 820 825 830 Leu Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Phe Pro Leu Thr Ser 835 840 845 Glu Ile Lys Glu Met Tyr Ile Asn Cys Phe Lys Lys Gln Pro 850 855 860 <210> SEQ ID NO 76 <211> LENGTH: 858 <212> TYPE: PRT <213> ORGANISM: Clostridium acetobutylicum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AdhE2, NP_149199.1 <400> SEQUENCE: 76 Met Lys Val Thr Asn Gln Lys Glu Leu Lys Gln Lys Leu Asn Glu Leu 1 5 10 15 Arg Glu Ala Gln Lys Lys Phe Ala Thr Tyr Thr Gln Glu Gln Val Asp 20 25 30 Lys Ile Phe Lys Gln Cys Ala Ile Ala Ala Ala Lys Glu Arg Ile Asn 35 40 45 Leu Ala Lys Leu Ala Val Glu Glu Thr Gly Ile Gly Leu Val Glu Asp 50 55 60 Lys Ile Ile Lys Asn His Phe Ala Ala Glu Tyr Ile Tyr Asn Lys Tyr 65 70 75 80 Lys Asn Glu Lys Thr Cys Gly Ile Ile Asp His Asp Asp Ser Leu Gly 85 90 95 Ile Thr Lys Val Ala Glu Pro Ile Gly Ile Val Ala Ala Ile Val Pro 100 105 110 Thr Thr Asn Pro Thr Ser Thr Ala Ile Phe Lys Ser Leu Ile Ser Leu 115 120 125 Lys Thr Arg Asn Ala Ile Phe Phe Ser Pro His Pro Arg Ala Lys Lys 130 135 140 Ser Thr Ile Ala Ala Ala Lys Leu Ile Leu Asp Ala Ala Val Lys Ala 145 150 155 160 Gly Ala Pro Lys Asn Ile Ile Gly Trp Ile Asp Glu Pro Ser Ile Glu 165 170 175 Leu Ser Gln Asp Leu Met Ser Glu Ala Asp Ile Ile Leu Ala Thr Gly 180 185 190 Gly Pro Ser Met Val Lys Ala Ala Tyr Ser Ser Gly Lys Pro Ala Ile 195 200 205 Gly Val Gly Ala Gly Asn Thr Pro Ala Ile Ile Asp Glu Ser Ala Asp 210 215 220 Ile Asp Met Ala Val Ser Ser Ile Ile Leu Ser Lys Thr Tyr Asp Asn 225 230 235 240 Gly Val Ile Cys Ala Ser Glu Gln Ser Ile Leu Val Met Asn Ser Ile 245 250 255 Tyr Glu Lys Val Lys Glu Glu Phe Val Lys Arg Gly Ser Tyr Ile Leu 260 265 270 Asn Gln Asn Glu Ile Ala Lys Ile Lys Glu Thr Met Phe Lys Asn Gly 275 280 285 Ala Ile Asn Ala Asp Ile Val Gly Lys Ser Ala Tyr Ile Ile Ala Lys 290 295 300 Met Ala Gly Ile Glu Val Pro Gln Thr Thr Lys Ile Leu Ile Gly Glu 305 310 315 320 Val Gln Ser Val Glu Lys Ser Glu Leu Phe Ser His Glu Lys Leu Ser 325 330 335 Pro Val Leu Ala Met Tyr Lys Val Lys Asp Phe Asp Glu Ala Leu Lys 340 345 350 Lys Ala Gln Arg Leu Ile Glu Leu Gly Gly Ser Gly His Thr Ser Ser 355 360 365 Leu Tyr Ile Asp Ser Gln Asn Asn Lys Asp Lys Val Lys Glu Phe Gly 370 375 380 Leu Ala Met Lys Thr Ser Arg Thr Phe Ile Asn Met Pro Ser Ser Gln 385 390 395 400 Gly Ala Ser Gly Asp Leu Tyr Asn Phe Ala Ile Ala Pro Ser Phe Thr 405 410 415 Leu Gly Cys Gly Thr Trp Gly Gly Asn Ser Val Ser Gln Asn Val Glu 420 425 430 Pro Lys His Leu Leu Asn Ile Lys Ser Val Ala Glu Arg Arg Glu Asn 435 440 445 Met Leu Trp Phe Lys Val Pro Gln Lys Ile Tyr Phe Lys Tyr Gly Cys 450 455 460 Leu Arg Phe Ala Leu Lys Glu Leu Lys Asp Met Asn Lys Lys Arg Ala 465 470 475 480 Phe Ile Val Thr Asp Lys Asp Leu Phe Lys Leu Gly Tyr Val Asn Lys 485 490 495 Ile Thr Lys Val Leu Asp Glu Ile Asp Ile Lys Tyr Ser Ile Phe Thr 500 505 510 Asp Ile Lys Ser Asp Pro Thr Ile Asp Ser Val Lys Lys Gly Ala Lys 515 520 525 Glu Met Leu Asn Phe Glu Pro Asp Thr Ile Ile Ser Ile Gly Gly Gly 530 535 540 Ser Pro Met Asp Ala Ala Lys Val Met His Leu Leu Tyr Glu Tyr Pro 545 550 555 560 Glu Ala Glu Ile Glu Asn Leu Ala Ile Asn Phe Met Asp Ile Arg Lys 565 570 575 Arg Ile Cys Asn Phe Pro Lys Leu Gly Thr Lys Ala Ile Ser Val Ala 580 585 590 Ile Pro Thr Thr Ala Gly Thr Gly Ser Glu Ala Thr Pro Phe Ala Val 595 600 605 Ile Thr Asn Asp Glu Thr Gly Met Lys Tyr Pro Leu Thr Ser Tyr Glu 610 615 620 Leu Thr Pro Asn Met Ala Ile Ile Asp Thr Glu Leu Met Leu Asn Met 625 630 635 640 Pro Arg Lys Leu Thr Ala Ala Thr Gly Ile Asp Ala Leu Val His Ala 645 650 655 Ile Glu Ala Tyr Val Ser Val Met Ala Thr Asp Tyr Thr Asp Glu Leu 660 665 670 Ala Leu Arg Ala Ile Lys Met Ile Phe Lys Tyr Leu Pro Arg Ala Tyr 675 680 685 Lys Asn Gly Thr Asn Asp Ile Glu Ala Arg Glu Lys Met Ala His Ala 690 695 700 Ser Asn Ile Ala Gly Met Ala Phe Ala Asn Ala Phe Leu Gly Val Cys 705 710 715 720 His Ser Met Ala His Lys Leu Gly Ala Met His His Val Pro His Gly 725 730 735 Ile Ala Cys Ala Val Leu Ile Glu Glu Val Ile Lys Tyr Asn Ala Thr 740 745 750 Asp Cys Pro Thr Lys Gln Thr Ala Phe Pro Gln Tyr Lys Ser Pro Asn 755 760 765 Ala Lys Arg Lys Tyr Ala Glu Ile Ala Glu Tyr Leu Asn Leu Lys Gly 770 775 780 Thr Ser Asp Thr Glu Lys Val Thr Ala Leu Ile Glu Ala Ile Ser Lys 785 790 795 800 Leu Lys Ile Asp Leu Ser Ile Pro Gln Asn Ile Ser Ala Ala Gly Ile 805 810 815 Asn Lys Lys Asp Phe Tyr Asn Thr Leu Asp Lys Met Ser Glu Leu Ala 820 825 830 Phe Asp Asp Gln Cys Thr Thr Ala Asn Pro Arg Tyr Pro Leu Ile Ser 835 840 845 Glu Leu Lys Asp Ile Tyr Ile Lys Ser Phe 850 855 <210> SEQ ID NO 77 <211> LENGTH: 860 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AdhE, WP_041893626.1 <400> SEQUENCE: 77 Met Arg Val Thr Asn Pro Glu Glu Leu Thr Lys Arg Ile Glu Gln Ile 1 5 10 15 Arg Glu Ala Gln Arg Glu Phe Ala Lys Phe Ser Gln Glu Glu Val Asp 20 25 30 Glu Ile Phe Arg Gln Ala Ala Met Ala Ala Asn Asp Ala Arg Ile Thr 35 40 45 Leu Ala Lys Met Ala Val Glu Glu Ser Gly Met Gly Ile Val Glu Asp 50 55 60 Lys Val Ile Lys Asn His Phe Ala Ala Glu Tyr Ile Tyr Asn Gln Tyr 65 70 75 80 Lys Asp Thr Lys Thr Cys Gly Val Ile Glu Arg Asp Glu Met Phe Gly 85 90 95 Ile Thr His Ile Ala Glu Pro Ile Gly Val Ile Ala Ala Ile Val Pro 100 105 110 Thr Thr Asn Pro Thr Ser Thr Ala Ile Phe Lys Thr Leu Ile Ala Leu 115 120 125 Lys Thr Arg Asn Gly Ile Ile Ile Ser Pro His Pro Arg Ala Lys Asn 130 135 140 Ser Thr Ile Ala Ala Ala Lys Ile Val Leu Glu Ala Ala Glu Arg Ala 145 150 155 160 Gly Ala Pro Lys Gly Ile Ile Gly Trp Ile Asp Glu Pro Ser Ile Glu 165 170 175 Leu Ser Arg Asn Val Met Ser Glu Ser Asp Ile Ile Leu Ala Thr Gly 180 185 190 Gly Pro Gly Met Val Arg Ala Ala Tyr Ser Ser Gly Lys Pro Ala Ile 195 200 205 Gly Val Gly Ala Gly Asn Thr Pro Ala Ile Ile Asp Asp Thr Ala His 210 215 220 Ile Lys Met Ala Val Asn Ser Ile Leu Leu Ser Lys Thr Phe Asp Asn 225 230 235 240 Gly Val Val Cys Ala Ser Glu Gln Ser Ile Ile Ala Met Glu Ser Val 245 250 255 Tyr Asp Glu Val Arg Lys Glu Leu Asp Glu Arg Gly Ala Tyr Ile Leu 260 265 270 Lys Gly Asp Glu Val Asp Lys Val Arg Ser Ile Ile Leu Asp Pro Lys 275 280 285 Gly Ser Leu Asn Ser Glu Ile Val Gly Gln Ser Ala Tyr Lys Ile Ala 290 295 300 Lys Met Ala Gly Val Glu Val Ser Glu Ala Val Lys Val Leu Ile Gly 305 310 315 320 Glu Val Glu Ser Pro Glu Leu Glu Glu Pro Phe Ser His Glu Lys Leu 325 330 335 Ser Pro Ile Leu Gly Met Tyr Lys Ala Lys Thr Phe Asp Asp Ala Leu 340 345 350 Arg Leu Ala Ser Arg Met Ile Glu Leu Gly Gly Phe Gly His Thr Ser 355 360 365 Ile Leu Tyr Thr Asn Gln Val Glu Ser Val Asp Arg Ile Glu Lys Phe 370 375 380 Gly Val Ala Met Lys Thr Ala Arg Thr Leu Ile Asn Met Pro Ala Ser 385 390 395 400 Gln Gly Ala Ile Gly Asp Ile Tyr Asn Phe Lys Leu Ala Pro Ser Leu 405 410 415 Thr Leu Gly Cys Gly Ser Trp Gly Gly Asn Ser Ile Ser Glu Asn Val 420 425 430 Gly Pro Lys His Leu Ile Asn Val Lys Arg Ile Ala Glu Arg Arg Glu 435 440 445 Asn Met Leu Trp Phe Arg Val Pro Asp Lys Ile Tyr Phe Lys Phe Gly 450 455 460 Cys Leu Pro Ile Ala Leu Glu Glu Leu Asn Ala Met Lys Lys Lys Arg 465 470 475 480 Ala Phe Ile Val Thr Asp Arg Val Leu Phe Asp Leu Gly Tyr Thr His 485 490 495 Lys Ile Thr Asp Ile Leu Ser Glu Asn His Ile Glu Tyr Lys Ile Phe 500 505 510 Ser Asp Val Glu Pro Asp Pro Thr Leu Lys Ala Ala Lys Leu Gly Ala 515 520 525 Asp Ala Met Arg Asp Phe Asn Pro Asp Val Ile Ile Ala Ile Gly Gly 530 535 540 Gly Ser Pro Met Asp Ala Ala Lys Ile Met Trp Val Met Tyr Glu His 545 550 555 560 Pro Asp Val Arg Phe Glu Asp Leu Ala Met Arg Phe Met Asp Ile Arg 565 570 575 Lys Arg Val Tyr Glu Phe Pro Pro Met Gly Glu Arg Ala Ile Leu Val 580 585 590 Ala Ile Pro Thr Ser Ala Gly Thr Gly Ser Glu Val Thr Pro Phe Ala 595 600 605 Val Ile Thr Asp Gln Gln Thr Gly Val Lys Tyr Pro Leu Ala Asp Tyr 610 615 620 Ala Leu Thr Pro Asn Met Ala Ile Ile Asp Ala Glu Leu Met Met Ser 625 630 635 640 Met Pro Lys Gly Leu Thr Ala Ala Ser Gly Ile Asp Ala Leu Val His 645 650 655 Ala Ile Glu Ala Tyr Val Ser Val Leu Ala Ser Glu Tyr Thr Asn Gly 660 665 670 Leu Ala Leu Glu Ala Ile Arg Leu Thr Phe Lys Tyr Leu Pro Asp Ala 675 680 685 Tyr Asn Gly Gly Thr Thr Asn Ile Lys Ala Arg Glu Lys Met Ala His 690 695 700 Ala Ser Ser Val Ala Gly Met Ala Phe Ala Asn Ala Phe Leu Gly Ile 705 710 715 720 Cys His Ser Met Ala His Lys Leu Gly Ala Phe His His Val Pro His 725 730 735 Gly Ile Ala Asn Ala Leu Leu Ile Asp Glu Val Ile Arg Phe Asn Ala 740 745 750 Thr Asp Ala Pro Arg Lys Gln Ala Ala Phe Pro Gln Tyr Lys Tyr Pro 755 760 765 Asn Ala Gly Trp Arg Tyr Ala Arg Ile Ala Asp Tyr Leu Asn Leu Gly 770 775 780 Gly Asn Thr Glu Glu Glu Lys Val Glu Leu Leu Ile Lys Ala Ile Asp 785 790 795 800 Asp Leu Lys Val Lys Val Arg Ile Pro Lys Ser Ile Lys Glu Phe Gly 805 810 815 Val Ser Glu Glu Lys Phe Tyr Asp Ser Met Asp Glu Met Val Glu Gln 820 825 830 Ala Phe Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Tyr Pro Leu Met 835 840 845 Ser Glu Ile Lys Glu Met Tyr Ile Lys Ser Tyr Asn 850 855 860 <210> SEQ ID NO 78 <211> LENGTH: 870 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AdhE1, WP_023163372.1 <400> SEQUENCE: 78 Met Lys Val Thr Asn Val Glu Glu Leu Met Lys Arg Leu Glu Glu Ile 1 5 10 15 Lys Asp Ala Gln Lys Lys Phe Ala Thr Tyr Thr Gln Glu Gln Val Asp 20 25 30 Glu Ile Phe Arg Gln Ala Ala Met Ala Ala Asn Ser Ala Arg Ile Glu 35 40 45 Leu Ala Lys Met Ala Val Glu Glu Ser Gly Met Gly Ile Val Glu Asp 50 55 60 Lys Val Ile Lys Asn His Phe Ala Ser Glu Tyr Ile Tyr Asn Lys Tyr 65 70 75 80 Lys Asp Glu Lys Thr Cys Gly Val Leu Glu Arg Asp Ala Gly Phe Gly 85 90 95 Ile Val Arg Ile Ala Glu Pro Val Gly Val Ile Ala Ala Val Val Pro 100 105 110 Thr Thr Asn Pro Thr Ser Thr Ala Ile Phe Lys Ser Leu Ile Ala Leu 115 120 125 Lys Thr Arg Asn Gly Ile Ile Phe Ser Pro His Pro Arg Ala Lys Lys 130 135 140 Ser Thr Ile Ala Ala Ala Lys Ile Val Leu Asp Ala Ala Val Lys Ala 145 150 155 160 Gly Ala Pro Glu Gly Ile Ile Gly Trp Ile Asp Glu Pro Ser Ile Glu 165 170 175 Leu Ser Gln Val Val Met Gly Glu Ala Asn Leu Ile Leu Ala Thr Gly 180 185 190 Gly Pro Gly Met Val Lys Ala Ala Tyr Ser Ser Gly Lys Pro Ala Val 195 200 205 Gly Val Gly Pro Gly Asn Thr Pro Ala Val Ile Asp Glu Ser Ala Asp 210 215 220 Ile Lys Met Ala Val Asn Ser Ile Leu Leu Ser Lys Thr Phe Asp Asn 225 230 235 240 Gly Met Ile Cys Ala Ser Glu Gln Ser Val Ile Val Leu Asp Ser Ile 245 250 255 Tyr Glu Glu Val Lys Lys Glu Phe Ala Tyr Arg Gly Ala Tyr Ile Leu 260 265 270 Ser Lys Asp Glu Thr Asp Lys Val Gly Lys Ile Ile Leu Lys Asn Gly 275 280 285 Ala Leu Asn Ala Gly Ile Val Gly Gln Pro Ala Phe Lys Ile Ala Gln 290 295 300 Leu Ala Gly Val Asp Val Pro Glu Lys Ala Lys Val Leu Ile Gly Glu 305 310 315 320 Val Glu Ser Val Glu Leu Glu Glu Pro Phe Ser His Glu Lys Leu Ser 325 330 335 Pro Val Leu Ala Met Tyr Arg Ala Arg Asn Phe Glu Asp Ala Ile Ala 340 345 350 Lys Thr Asp Lys Leu Val Arg Ala Gly Gly Phe Gly His Thr Ser Ser 355 360 365 Leu Tyr Ile Asn Pro Met Thr Glu Lys Ala Lys Val Glu Lys Phe Ser 370 375 380 Thr Met Met Lys Thr Ser Arg Thr Ile Ile Asn Thr Pro Ser Ser Gln 385 390 395 400 Gly Gly Ile Gly Asp Ile Tyr Asn Phe Lys Leu Ala Pro Ser Leu Thr 405 410 415 Leu Gly Cys Gly Ser Trp Gly Gly Asn Ser Val Ser Glu Asn Val Gly 420 425 430 Pro Lys His Leu Leu Asn Ile Lys Ser Val Ala Glu Arg Arg Glu Asn 435 440 445 Met Leu Trp Phe Arg Val Pro Glu Lys Val Tyr Phe Lys Tyr Gly Ser 450 455 460 Leu Gly Val Ala Leu Lys Glu Leu Lys Val Met Asn Lys Lys Lys Val 465 470 475 480 Phe Ile Val Thr Asp Lys Val Leu Tyr Gln Leu Gly Tyr Val Asp Lys 485 490 495 Val Thr Lys Val Leu Glu Glu Leu Lys Ile Ser Tyr Lys Val Phe Thr 500 505 510 Asp Val Glu Pro Asp Pro Thr Leu Ala Thr Ala Lys Lys Gly Ala Ala 515 520 525 Glu Leu Leu Ser Tyr Glu Pro Asp Thr Ile Ile Ser Val Gly Gly Gly 530 535 540 Ser Ala Met Asp Ala Ala Lys Ile Met Trp Val Met Tyr Glu His Pro 545 550 555 560 Glu Val Lys Phe Glu Asp Leu Ala Met Arg Phe Met Asp Ile Arg Lys 565 570 575 Arg Val Tyr Val Phe Pro Lys Met Gly Glu Lys Ala Met Met Ile Ser 580 585 590 Val Ala Thr Ser Ala Gly Thr Gly Ser Glu Val Thr Pro Phe Ala Val 595 600 605 Ile Thr Asp Glu Lys Thr Gly Ala Lys Tyr Pro Leu Ala Asp Tyr Glu 610 615 620 Leu Thr Pro Asp Met Ala Ile Val Asp Ala Glu Leu Met Met Gly Met 625 630 635 640 Pro Arg Gly Leu Thr Ala Ala Ser Gly Ile Asp Ala Leu Thr His Ala 645 650 655 Leu Glu Ala Tyr Val Ser Ile Met Ala Thr Glu Phe Thr Asn Gly Leu 660 665 670 Ala Leu Glu Ala Val Lys Leu Ile Phe Glu Tyr Leu Pro Lys Ala Tyr 675 680 685 Thr Glu Gly Thr Thr Asn Val Lys Ala Arg Glu Lys Met Ala His Ala 690 695 700 Ser Cys Ile Ala Gly Met Ala Phe Ala Asn Ala Phe Leu Gly Val Cys 705 710 715 720 His Ser Met Ala His Lys Leu Gly Ala Gln His His Ile Pro His Gly 725 730 735 Ile Ala Asn Ala Leu Met Ile Asp Glu Val Ile Lys Phe Asn Ala Val 740 745 750 Asp Asp Pro Ile Lys Gln Ala Ala Phe Pro Gln Tyr Glu Tyr Pro Asn 755 760 765 Ala Arg Tyr Arg Tyr Ala Gln Ile Ala Asp Cys Leu Asn Leu Gly Gly 770 775 780 Asn Thr Glu Glu Glu Lys Val Gln Leu Leu Ile Asn Ala Ile Asp Asp 785 790 795 800 Leu Lys Ala Lys Leu Asn Ile Pro Glu Thr Ile Lys Glu Ala Gly Val 805 810 815 Ser Glu Asp Lys Phe Tyr Ala Thr Leu Asp Lys Met Ser Glu Leu Ala 820 825 830 Phe Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Tyr Pro Leu Ile Ser 835 840 845 Glu Ile Lys Gln Met Tyr Ile Asn Val Phe Asp Lys Thr Glu Pro Ile 850 855 860 Val Glu Asp Glu Glu Lys 865 870 <210> SEQ ID NO 79 <211> LENGTH: 877 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AdhE2, WP_023163373.1 <400> SEQUENCE: 79 Met Lys Val Thr Lys Val Thr Asn Val Glu Glu Leu Met Lys Lys Leu 1 5 10 15 Asp Glu Val Thr Ala Ala Gln Lys Lys Phe Ser Ser Tyr Thr Gln Glu 20 25 30 Gln Val Asp Glu Ile Phe Arg Gln Ala Ala Met Ala Ala Asn Ser Ala 35 40 45 Arg Ile Asp Leu Ala Lys Met Ala Val Glu Glu Ser Gly Met Gly Ile 50 55 60 Val Glu Asp Lys Val Ile Lys Asn His Phe Val Ala Glu Tyr Ile Tyr 65 70 75 80 Asn Lys Tyr Lys Gly Glu Lys Thr Cys Gly Val Leu Glu Gln Asp Glu 85 90 95 Gly Phe Gly Met Val Arg Ile Ala Glu Pro Val Gly Val Ile Ala Ala 100 105 110 Val Val Pro Thr Thr Asn Pro Thr Ser Thr Ala Ile Phe Lys Ser Leu 115 120 125 Ile Ala Leu Lys Thr Arg Asn Gly Ile Val Phe Ser Pro His Pro Arg 130 135 140 Ala Lys Lys Ser Thr Ile Ala Ala Ala Lys Ile Val Leu Asp Ala Ala 145 150 155 160 Val Lys Ala Gly Ala Pro Glu Gly Ile Ile Gly Trp Ile Asp Glu Pro 165 170 175 Ser Ile Glu Leu Ser Gln Val Val Met Lys Glu Ala Asp Leu Ile Leu 180 185 190 Ala Thr Gly Gly Pro Gly Met Val Lys Ala Ala Tyr Ser Ser Gly Lys 195 200 205 Pro Ala Ile Gly Val Gly Pro Gly Asn Thr Pro Ala Val Ile Asp Glu 210 215 220 Ser Ala Asp Ile Lys Met Ala Val Asn Ser Ile Leu Leu Ser Lys Thr 225 230 235 240 Phe Asp Asn Gly Met Ile Cys Ala Ser Glu Gln Ser Val Ile Val Ala 245 250 255 Ser Ser Ile Tyr Asp Glu Val Lys Lys Glu Phe Ala Asp Arg Gly Ala 260 265 270 Tyr Ile Leu Ser Lys Asp Glu Thr Asp Lys Val Gly Lys Thr Ile Met 275 280 285 Ile Asn Gly Ala Leu Asn Ala Gly Ile Val Gly Gln Ser Ala Phe Lys 290 295 300 Ile Ala Gln Met Ala Gly Val Ser Val Pro Glu Asp Ala Lys Ile Leu 305 310 315 320 Ile Gly Glu Val Lys Ser Val Glu Pro Glu Glu Glu Pro Phe Ala His 325 330 335 Glu Lys Leu Ser Pro Val Leu Ala Met Tyr Lys Ala Lys Asp Phe Asp 340 345 350 Glu Ala Leu Leu Lys Ala Gly Arg Leu Val Glu Arg Gly Gly Ile Gly 355 360 365 His Thr Ser Val Leu Tyr Val Asn Ser Met Thr Glu Lys Val Lys Val 370 375 380 Glu Lys Phe Arg Glu Thr Met Lys Thr Gly Arg Thr Leu Ile Asn Met 385 390 395 400 Pro Ser Ala Gln Gly Ala Ile Gly Asp Ile Tyr Asn Phe Lys Leu Ala 405 410 415 Pro Ser Leu Thr Leu Gly Cys Gly Ser Trp Gly Gly Asn Ser Val Ser 420 425 430 Glu Asn Val Gly Pro Lys His Leu Leu Asn Ile Lys Ser Val Ala Glu 435 440 445 Arg Arg Glu Asn Met Leu Trp Phe Arg Val Pro Glu Lys Val Tyr Phe 450 455 460 Lys Tyr Gly Ser Leu Gly Val Ala Leu Lys Glu Leu Arg Ile Met Glu 465 470 475 480 Lys Lys Lys Ala Phe Ile Val Thr Asp Lys Val Leu Tyr Gln Leu Gly 485 490 495 Tyr Val Asp Lys Ile Thr Lys Asn Leu Asp Glu Leu Arg Val Ser Tyr 500 505 510 Lys Ile Phe Thr Asp Val Glu Pro Asp Pro Thr Leu Ala Thr Ala Lys 515 520 525 Lys Gly Ala Ala Glu Leu Leu Ser Tyr Glu Pro Asp Thr Ile Ile Ala 530 535 540 Val Gly Gly Gly Ser Ala Met Asp Ala Ala Lys Ile Met Trp Val Met 545 550 555 560 Tyr Glu His Pro Glu Val Arg Phe Glu Asp Leu Ala Met Arg Phe Met 565 570 575 Asp Ile Arg Lys Arg Val Tyr Val Phe Pro Lys Met Gly Glu Lys Ala 580 585 590 Met Met Ile Ser Val Ala Thr Ser Ala Gly Thr Gly Ser Glu Val Thr 595 600 605 Pro Phe Ala Val Ile Thr Asp Glu Arg Thr Gly Ala Lys Tyr Pro Leu 610 615 620 Ala Asp Tyr Glu Leu Thr Pro Asn Met Ala Ile Val Asp Ala Glu Leu 625 630 635 640 Met Met Gly Met Pro Lys Gly Leu Thr Ala Ala Ser Gly Ile Asp Ala 645 650 655 Leu Thr His Ala Leu Glu Ala Tyr Val Ser Ile Met Ala Ser Glu Tyr 660 665 670 Thr Asn Gly Leu Ala Leu Glu Ala Thr Arg Leu Val Phe Lys Tyr Leu 675 680 685 Pro Ile Ala Tyr Thr Glu Gly Thr Ile Asn Val Lys Ala Arg Glu Lys 690 695 700 Met Ala His Ala Ser Cys Ile Ala Gly Met Ala Phe Ala Asn Ala Phe 705 710 715 720 Leu Gly Val Cys His Ser Met Ala His Lys Leu Gly Ala Gln His His 725 730 735 Ile Pro His Gly Ile Ala Asn Ala Leu Met Ile Asp Glu Val Ile Lys 740 745 750 Phe Asn Ala Val Glu Ala Pro Arg Lys Gln Ala Ala Phe Pro Gln Tyr 755 760 765 Lys Tyr Pro Asn Val Lys Arg Arg Tyr Ala Arg Ile Ala Asp Tyr Leu 770 775 780 Asn Leu Gly Gly Ser Thr Asp Asp Glu Lys Val Gln Leu Leu Ile Asn 785 790 795 800 Ala Ile Asp Asp Leu Lys Thr Lys Leu Asn Ile Pro Lys Thr Ile Lys 805 810 815 Glu Ala Gly Val Ser Glu Asp Lys Phe Tyr Ala Thr Leu Asp Thr Met 820 825 830 Ser Glu Leu Ala Phe Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Tyr 835 840 845 Pro Leu Ile Gly Glu Ile Lys Gln Met Tyr Ile Asn Ala Phe Asp Thr 850 855 860 Pro Lys Ala Thr Val Glu Lys Lys Thr Arg Lys Lys Lys 865 870 875 <210> SEQ ID NO 80 <211> LENGTH: 468 <212> TYPE: PRT <213> ORGANISM: Clostridium saccharoperbutylacetonicum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Bld, AAP42563.1 <400> SEQUENCE: 80 Met Ile Lys Asp Thr Leu Val Ser Ile Thr Lys Asp Leu Lys Leu Lys 1 5 10 15 Thr Asn Val Glu Asn Ala Asn Leu Lys Asn Tyr Lys Asp Asp Ser Ser 20 25 30 Cys Phe Gly Val Phe Glu Asn Val Glu Asn Ala Ile Ser Asn Ala Val 35 40 45 His Ala Gln Lys Ile Leu Ser Leu His Tyr Thr Lys Glu Gln Arg Glu 50 55 60 Lys Ile Ile Thr Glu Ile Arg Lys Ala Ala Leu Glu Asn Lys Glu Ile 65 70 75 80 Leu Ala Thr Met Ile Leu Glu Glu Thr His Met Gly Arg Tyr Glu Asp 85 90 95 Lys Ile Leu Lys His Glu Leu Val Ala Lys Tyr Thr Pro Gly Thr Glu 100 105 110 Asp Leu Thr Thr Thr Ala Trp Ser Gly Asp Asn Gly Leu Thr Val Val 115 120 125 Glu Met Ser Pro Tyr Gly Val Ile Gly Ala Ile Thr Pro Ser Thr Asn 130 135 140 Pro Thr Glu Thr Val Ile Cys Asn Ser Ile Gly Met Ile Ala Ala Gly 145 150 155 160 Asn Thr Val Val Phe Asn Gly His Pro Gly Ala Lys Lys Cys Val Ala 165 170 175 Phe Ala Val Glu Met Ile Asn Lys Ala Ile Ile Ser Cys Gly Gly Pro 180 185 190 Glu Asn Leu Val Thr Thr Ile Lys Asn Pro Thr Met Asp Ser Leu Asp 195 200 205 Ala Ile Ile Lys His Pro Ser Ile Lys Leu Leu Cys Gly Thr Gly Gly 210 215 220 Pro Gly Met Val Lys Thr Leu Leu Asn Ser Gly Lys Lys Ala Ile Gly 225 230 235 240 Ala Gly Ala Gly Asn Pro Pro Val Ile Val Asp Asp Thr Ala Asp Ile 245 250 255 Glu Lys Ala Gly Lys Ser Ile Ile Glu Gly Cys Ser Phe Asp Asn Asn 260 265 270 Leu Pro Cys Ile Ala Glu Lys Glu Val Phe Val Phe Glu Asn Val Ala 275 280 285 Asp Asp Leu Ile Ser Asn Met Leu Lys Asn Asn Ala Val Ile Ile Asn 290 295 300 Glu Asp Gln Val Ser Lys Leu Ile Asp Leu Val Leu Gln Lys Asn Asn 305 310 315 320 Glu Thr Gln Glu Tyr Ser Ile Asn Lys Lys Trp Val Gly Lys Asp Ala 325 330 335 Lys Leu Phe Leu Asp Glu Ile Asp Val Glu Ser Pro Ser Ser Val Lys 340 345 350 Cys Ile Ile Cys Glu Val Ser Ala Arg His Pro Phe Val Met Thr Glu 355 360 365 Leu Met Met Pro Ile Leu Pro Ile Val Arg Val Lys Asp Ile Asp Glu 370 375 380 Ala Ile Glu Tyr Ala Lys Ile Ala Glu Gln Asn Arg Lys His Ser Ala 385 390 395 400 Tyr Ile Tyr Ser Lys Asn Ile Asp Asn Leu Asn Arg Phe Glu Arg Glu 405 410 415 Ile Asp Thr Thr Ile Phe Val Lys Asn Ala Lys Ser Phe Ala Gly Val 420 425 430 Gly Tyr Glu Ala Glu Gly Phe Thr Thr Phe Thr Ile Ala Gly Ser Thr 435 440 445 Gly Glu Gly Ile Thr Ser Ala Arg Asn Phe Thr Arg Gln Arg Arg Cys 450 455 460 Val Leu Ala Gly 465 <210> SEQ ID NO 81 <211> LENGTH: 562 <212> TYPE: PRT <213> ORGANISM: Aquincola tertiaricarbonis <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: HcmAB, large subunit, AFK77668.1 <400> SEQUENCE: 81 Met Thr Trp Leu Glu Pro Gln Ile Lys Ser Gln Leu Gln Ser Glu Arg 1 5 10 15 Lys Asp Trp Glu Ala Asn Glu Val Gly Ala Phe Leu Lys Lys Ala Pro 20 25 30 Glu Arg Lys Glu Gln Phe His Thr Ile Gly Asp Phe Pro Val Gln Arg 35 40 45 Thr Tyr Thr Ala Ala Asp Ile Ala Asp Thr Pro Leu Glu Asp Ile Gly 50 55 60 Leu Pro Gly Arg Tyr Pro Phe Thr Arg Gly Pro Tyr Pro Thr Met Tyr 65 70 75 80 Arg Ser Arg Thr Trp Thr Met Arg Gln Ile Ala Gly Phe Gly Thr Gly 85 90 95 Glu Asp Thr Asn Lys Arg Phe Lys Tyr Leu Ile Ala Gln Gly Gln Thr 100 105 110 Gly Ile Ser Thr Asp Phe Asp Met Pro Thr Leu Met Gly Tyr Asp Ser 115 120 125 Asp His Pro Met Ser Asp Gly Glu Val Gly Arg Glu Gly Val Ala Ile 130 135 140 Asp Thr Leu Ala Asp Met Glu Ala Leu Leu Ala Asp Ile Asp Leu Glu 145 150 155 160 Lys Ile Ser Val Ser Phe Thr Ile Asn Pro Ser Ala Trp Ile Leu Leu 165 170 175 Ala Met Tyr Val Ala Leu Gly Glu Lys Arg Gly Tyr Asp Leu Asn Lys 180 185 190 Leu Ser Gly Thr Val Gln Ala Asp Ile Leu Lys Glu Tyr Met Ala Gln 195 200 205 Lys Glu Tyr Ile Tyr Pro Ile Ala Pro Ser Val Arg Ile Val Arg Asp 210 215 220 Ile Ile Thr Tyr Ser Ala Lys Asn Leu Lys Arg Tyr Asn Pro Ile Asn 225 230 235 240 Ile Ser Gly Tyr His Ile Ser Glu Ala Gly Ser Ser Pro Leu Gln Glu 245 250 255 Ala Ala Phe Thr Leu Ala Asn Leu Ile Thr Tyr Val Asn Glu Val Thr 260 265 270 Lys Thr Gly Met His Val Asp Glu Phe Ala Pro Arg Leu Ala Phe Phe 275 280 285 Phe Val Ser Gln Gly Asp Phe Phe Glu Glu Val Ala Lys Phe Arg Ala 290 295 300 Leu Arg Arg Cys Tyr Ala Lys Ile Met Lys Glu Arg Phe Gly Ala Arg 305 310 315 320 Asn Pro Glu Ser Met Arg Leu Arg Phe His Cys Gln Thr Ala Ala Ala 325 330 335 Thr Leu Thr Lys Pro Gln Tyr Met Val Asn Val Val Arg Thr Ser Leu 340 345 350 Gln Ala Leu Ser Ala Val Leu Gly Gly Ala Gln Ser Leu His Thr Asn 355 360 365 Gly Tyr Asp Glu Ala Phe Ala Ile Pro Thr Glu Asp Ala Met Lys Met 370 375 380 Ala Leu Arg Thr Gln Gln Ile Ile Ala Glu Glu Ser Gly Val Ala Asp 385 390 395 400 Val Ile Asp Pro Leu Gly Gly Ser Tyr Tyr Val Glu Ala Leu Thr Thr 405 410 415 Glu Tyr Glu Lys Lys Ile Phe Glu Ile Leu Glu Glu Val Glu Lys Arg 420 425 430 Gly Gly Thr Ile Lys Leu Ile Glu Gln Gly Trp Phe Gln Lys Gln Ile 435 440 445 Ala Asp Phe Ala Tyr Glu Thr Ala Leu Arg Lys Gln Ser Gly Gln Lys 450 455 460 Pro Val Ile Gly Val Asn Arg Phe Val Glu Asn Glu Glu Asp Val Lys 465 470 475 480 Ile Glu Ile His Pro Tyr Asp Asn Thr Thr Ala Glu Arg Gln Ile Ser 485 490 495 Arg Thr Arg Arg Val Arg Ala Glu Arg Asp Glu Ala Lys Val Gln Ala 500 505 510 Met Leu Asp Gln Leu Val Ala Val Ala Lys Asp Glu Ser Gln Asn Leu 515 520 525 Met Pro Leu Thr Ile Glu Leu Val Lys Ala Gly Ala Thr Met Gly Asp 530 535 540 Ile Val Glu Lys Leu Lys Gly Ile Trp Gly Thr Tyr Arg Glu Thr Pro 545 550 555 560 Val Phe <210> SEQ ID NO 82 <211> LENGTH: 136 <212> TYPE: PRT <213> ORGANISM: Aquincola tertiaricarbonis <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: HcmAB, small subunit, AFK77665.1 <400> SEQUENCE: 82 Met Asp Gln Thr Pro Ile Arg Val Leu Leu Ala Lys Val Gly Leu Asp 1 5 10 15 Gly His Asp Arg Gly Val Lys Val Val Ala Arg Ala Leu Arg Asp Ala 20 25 30 Gly Met Asp Val Ile Tyr Ser Gly Leu His Arg Thr Pro Glu Glu Val 35 40 45 Val Asn Thr Ala Ile Gln Glu Asp Val Asp Val Leu Gly Val Ser Leu 50 55 60 Leu Ser Gly Val Gln Leu Thr Val Phe Pro Lys Ile Phe Lys Leu Leu 65 70 75 80 Asp Glu Arg Gly Ala Gly Asp Leu Ile Val Ile Ala Gly Gly Val Met 85 90 95 Pro Asp Glu Asp Ala Ala Ala Ile Arg Lys Leu Gly Val Arg Glu Val 100 105 110 Leu Leu Gln Asp Thr Pro Pro Gln Ala Ile Ile Asp Ser Ile Arg Ser 115 120 125 Leu Val Ala Ala Arg Gly Ala Arg 130 135 <210> SEQ ID NO 83 <211> LENGTH: 563 <212> TYPE: PRT <213> ORGANISM: Kyrpidia tusciae <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: HcmAB, large subunit, WP_013074530.1 <400> SEQUENCE: 83 Met Ala Asp Gln Glu Lys Leu Phe Asn Gly Asp Glu Ile Arg Arg Ile 1 5 10 15 Arg Gln Glu Lys Glu Arg Trp Tyr Arg Glu Thr Val Lys Gly Asn Asp 20 25 30 Gly Gly Asn Asp Tyr Val Thr Asp Ser Gly Ile Pro Val Asn Leu Ile 35 40 45 Tyr Gly Pro Asp Asp Ile Ala Asp Phe Asp Tyr Leu Lys Glu Ser Gly 50 55 60 Phe Ser Gly Glu Pro Pro Tyr Val Arg Gly Val Tyr Pro Asn Met Tyr 65 70 75 80 Arg Gly Arg Leu Phe Thr Ile Arg Gln Ile Ala Gly Phe Gly Thr Pro 85 90 95 Glu Asp Thr Asn Arg Arg Phe Lys Phe Leu Leu Glu Asn Gly Ala Thr 100 105 110 Gly Thr Ser Val Val Leu Asp Leu Pro Thr Ile Arg Gly Tyr Asp Ser 115 120 125 Asp Asp Pro Lys Ala Glu Gly His Val Gly Ala Ala Gly Val Ala Ile 130 135 140 Asp Ser Leu Glu Asp Met Glu Ala Leu Tyr Asp Gly Ile Pro Ile Asp 145 150 155 160 Gln Val Ser Ser Asn Ile Val Thr His Leu Pro Ser Thr Thr Val Val 165 170 175 Leu Met Ala Met Phe Val Ala Met Ala Glu Lys Arg Gly Leu Pro Leu 180 185 190 Glu Lys Leu Ser Gly Thr Asn Gln Asn Asp Phe Leu Met Glu Thr Thr 195 200 205 Ile Gly Ser Ser Leu Glu Ile Leu Pro Pro Lys Ala Ser Phe Arg Leu 210 215 220 Gln Cys Asp Ser Ile Glu Tyr Ala Ser Lys Arg Leu Pro Arg Trp Asn 225 230 235 240 Pro Val Ser Tyr Asn Gly Tyr Asn Leu Arg Glu Ala Gly Thr Thr Ala 245 250 255 Val Gln Glu Val Gly Cys Ala Ile Ala Asn Ala Ile Ala Thr Thr Glu 260 265 270 Glu Leu Ile Arg Arg Gly Asn Asp Val Asp Asp Phe Ala Lys Arg Leu 275 280 285 Ser Phe Phe Trp Asn Leu Phe Asn Asp Phe Phe Glu Glu Ile Ala Lys 290 295 300 Cys Arg Ala Ser Arg Leu Val Trp Tyr Asp Val Met Lys Asn Arg Phe 305 310 315 320 Gly Ala Lys Asn Pro Arg Ser Tyr Leu Met Arg Phe His Val Gln Thr 325 330 335 Gly Gly Ile Thr Leu Thr Lys Val Glu Pro Leu Asn Asn Ile Ala Arg 340 345 350 Ser Ala Ile Gln Gly Leu Ala Ala Val Leu Gly Gly Ala Gln Ser Leu 355 360 365 His Ile Asp Ser Tyr Asp Glu Ala Tyr Ser Ala Pro Thr Glu Gln Ala 370 375 380 Ala Leu Val Ser Leu Arg Thr Gln Gln Ile Ile Gln Val Glu Thr Gly 385 390 395 400 Val Val Asn Thr Val Asp Pro Leu Ala Gly Ser Tyr Tyr Val Glu Tyr 405 410 415 Leu Thr Arg Glu Met Ala Glu His Ile Arg Ala Tyr Ile Asp Gln Ile 420 425 430 Glu Ser Arg Gly Gly Ile Ile Ala Val Val Glu Ser Gly Trp Leu His 435 440 445 Arg Glu Ile Ala Glu Phe Ala Tyr Arg Thr Gln Gln Asp Ile Glu Thr 450 455 460 Gly Lys Arg Lys Val Val Gly Leu Asn Tyr Phe Pro Ser Lys Glu Ala 465 470 475 480 Glu Thr Lys Val Glu Val Phe Arg Tyr Pro Glu Asp Ala Glu Arg Met 485 490 495 Gln Lys Glu Lys Leu Ala Lys Leu Arg Ala Arg Arg Asp Pro Val Lys 500 505 510 Val Glu Gln Thr Leu Arg Val Leu Arg Glu Lys Cys His Glu Asp Val 515 520 525 Asn Ile Leu Pro Tyr Val Lys Asp Ala Val Glu Ala Tyr Cys Thr Leu 530 535 540 Gly Glu Ile Gln Asn Val Phe Arg Glu Glu Phe Gly Leu Trp Gln Phe 545 550 555 560 Pro Leu Val <210> SEQ ID NO 84 <211> LENGTH: 132 <212> TYPE: PRT <213> ORGANISM: Kyrpidia tusciae <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: HcmAB, small subunit, WP_013074531.1 <400> SEQUENCE: 84 Met Glu Lys Lys Ile Lys Val Ile Met Val Lys Leu Gly Leu Asp Ile 1 5 10 15 His Trp Arg Gly Ala Leu Val Val Ser Lys Met Leu Arg Asp Arg Gly 20 25 30 Met Glu Val Val Tyr Leu Gly Asn Leu Phe Pro Glu Gln Ile Val Gln 35 40 45 Ala Ala Val Gln Glu Gly Ala Asp Val Val Gly Leu Ser Thr Leu Gly 50 55 60 Gly Asn His Leu Thr Leu Gly Pro Lys Val Val Glu Leu Leu Arg Ala 65 70 75 80 Lys Gly Met Glu Glu Val Leu Val Ile Met Gly Gly Val Ile Pro Glu 85 90 95 Glu Asp Val Pro Ala Leu Lys Glu Ala Gly Ile Ala Glu Val Phe Gly 100 105 110 Pro Glu Thr Pro Ile Asp Ala Ile Glu Ser Phe Ile Arg Ser Arg Phe 115 120 125 Pro Asp Arg Asp 130 <210> SEQ ID NO 85 <211> LENGTH: 327 <212> TYPE: PRT <213> ORGANISM: Aquincola tertiaricarbonis <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: MeaB, AFK77667.1 <400> SEQUENCE: 85 Met Thr Tyr Val Pro Ser Ser Ala Leu Leu Glu Gln Leu Arg Ala Gly 1 5 10 15 Asn Thr Trp Ala Leu Gly Arg Leu Ile Ser Arg Ala Glu Ala Gly Val 20 25 30 Ala Glu Ala Arg Pro Ala Leu Ala Glu Val Tyr Arg His Ala Gly Ser 35 40 45 Ala His Val Ile Gly Leu Thr Gly Val Pro Gly Ser Gly Lys Ser Thr 50 55 60 Leu Val Ala Lys Leu Thr Ala Ala Leu Arg Lys Arg Gly Glu Lys Val 65 70 75 80 Gly Ile Val Ala Ile Asp Pro Ser Ser Pro Tyr Ser Gly Gly Ala Ile 85 90 95 Leu Gly Asp Arg Ile Arg Met Thr Glu Leu Ala Asn Asp Ser Gly Val 100 105 110 Phe Ile Arg Ser Met Ala Thr Arg Gly Ala Thr Gly Gly Met Ala Arg 115 120 125 Ala Ala Leu Asp Ala Val Asp Leu Leu Asp Val Ala Gly Tyr His Thr 130 135 140 Ile Ile Leu Glu Thr Val Gly Val Gly Gln Asp Glu Val Glu Val Ala 145 150 155 160 His Ala Ser Asp Thr Thr Val Val Val Ser Ala Pro Gly Leu Gly Asp 165 170 175 Glu Ile Gln Ala Ile Lys Ala Gly Val Leu Glu Ile Ala Asp Ile His 180 185 190 Val Val Ser Lys Cys Asp Arg Asp Asp Ala Asn Arg Thr Leu Thr Asp 195 200 205 Leu Lys Gln Met Leu Thr Leu Gly Thr Met Val Gly Pro Lys Arg Ala 210 215 220 Trp Ala Ile Pro Val Val Gly Val Ser Ser Tyr Thr Gly Glu Gly Val 225 230 235 240 Asp Asp Leu Leu Gly Arg Ile Ala Ala His Arg Gln Ala Thr Ala Asp 245 250 255 Thr Glu Leu Gly Arg Glu Arg Arg Arg Arg Val Ala Glu Phe Arg Leu 260 265 270 Gln Lys Thr Ala Glu Thr Leu Leu Leu Glu Arg Phe Thr Thr Gly Ala 275 280 285 Gln Pro Phe Ser Pro Ala Leu Ala Asp Ser Leu Ser Asn Arg Ala Ser 290 295 300 Asp Pro Tyr Ala Ala Ala Arg Glu Leu Ile Ala Arg Thr Ile Arg Lys 305 310 315 320 Glu Tyr Ser Asn Asp Leu Ala 325 <210> SEQ ID NO 86 <211> LENGTH: 312 <212> TYPE: PRT <213> ORGANISM: Kyrpidia tusciae <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: MeaB, WP_013074529.1 <400> SEQUENCE: 86 Met Gln Glu Leu Leu Ser Arg Phe Asp Ala Gly Asp Pro Val Ala Leu 1 5 10 15 Gly Lys Leu Leu Lys Glu Val Glu Asn Gly Thr Ser Ser Gly Lys Glu 20 25 30 Ala Leu Arg Cys Thr Ala Ser Arg Gln Gly Arg Ala His Val Val Gly 35 40 45 Ile Thr Gly Pro Pro Gly Ala Gly Lys Ser Thr Leu Thr Ala Lys Leu 50 55 60 Ser Lys Arg Trp Ala Glu Ala Gly Arg Glu Val Gly Ile Val Cys Val 65 70 75 80 Asp Pro Thr Ser Pro Phe Ser Gly Gly Ala Leu Leu Gly Asp Arg Ile 85 90 95 Arg Met Leu Glu Leu Ser Ser Phe Pro Asn Val Phe Ile Lys Ser Leu 100 105 110 Ala Thr Arg Gly Ser Leu Gly Gly Met Ala Ala Ser Thr Ala Asp Ile 115 120 125 Ile Gln Leu Met Asp Ala Tyr Gly Lys Glu Val Val Val Val Glu Thr 130 135 140 Val Gly Val Gly Gln Val Glu Phe Asp Val Met Asp Leu Ser Asp Thr 145 150 155 160 Val Val Leu Val Asn Val Pro Gly Leu Gly Asp Ser Ile Gln Ala Leu 165 170 175 Lys Ala Gly Ile Leu Glu Ile Ala Asp Ile Phe Val Ile Asn Gln Ala 180 185 190 Asp Arg Pro Gly Ala Glu Asp Ser Val Arg Asp Leu Arg Gln Met Leu 195 200 205 Ala Asp Arg Lys Glu Thr Gly Trp Leu Trp Pro Val Val Lys Thr Val 210 215 220 Ala Thr Arg Gly Glu Gly Ile Asp Arg Leu Ala Glu Ala Ile Glu Ser 225 230 235 240 His Arg Ala Tyr Leu Lys Arg Glu Gln Leu Trp Glu Glu Lys Arg Cys 245 250 255 Arg Arg Asn Arg Gln Arg Leu Met Gln Glu Met Asp Arg Leu Phe Arg 260 265 270 Gln His Val Leu Thr Arg Ile Arg Thr Asp Pro Thr Ala Arg Ala Leu 275 280 285 Phe Glu Glu Val Glu Lys Gly Thr Gln Asp Pro Tyr Ser Ala Ala Arg 290 295 300 His Leu Phe Gln Glu Ile Val Asn 305 310 <210> SEQ ID NO 87 <211> LENGTH: 301 <212> TYPE: PRT <213> ORGANISM: Clostridium acetobutylicum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Ptb, WP_010966357.1 <400> SEQUENCE: 87 Met Ile Lys Ser Phe Asn Glu Ile Ile Met Lys Val Lys Ser Lys Glu 1 5 10 15 Met Lys Lys Val Ala Val Ala Val Ala Gln Asp Glu Pro Val Leu Glu 20 25 30 Ala Val Arg Asp Ala Lys Lys Asn Gly Ile Ala Asp Ala Ile Leu Val 35 40 45 Gly Asp His Asp Glu Ile Val Ser Ile Ala Leu Lys Ile Gly Met Asp 50 55 60 Val Asn Asp Phe Glu Ile Val Asn Glu Pro Asn Val Lys Lys Ala Ala 65 70 75 80 Leu Lys Ala Val Glu Leu Val Ser Thr Gly Lys Ala Asp Met Val Met 85 90 95 Lys Gly Leu Val Asn Thr Ala Thr Phe Leu Arg Ser Val Leu Asn Lys 100 105 110 Glu Val Gly Leu Arg Thr Gly Lys Thr Met Ser His Val Ala Val Phe 115 120 125 Glu Thr Glu Lys Phe Asp Arg Leu Leu Phe Leu Thr Asp Val Ala Phe 130 135 140 Asn Thr Tyr Pro Glu Leu Lys Glu Lys Ile Asp Ile Val Asn Asn Ser 145 150 155 160 Val Lys Val Ala His Ala Ile Gly Ile Glu Asn Pro Lys Val Ala Pro 165 170 175 Ile Cys Ala Val Glu Val Ile Asn Pro Lys Met Pro Ser Thr Leu Asp 180 185 190 Ala Ala Met Leu Ser Lys Met Ser Asp Arg Gly Gln Ile Lys Gly Cys 195 200 205 Val Val Asp Gly Pro Leu Ala Leu Asp Ile Ala Leu Ser Glu Glu Ala 210 215 220 Ala His His Lys Gly Val Thr Gly Glu Val Ala Gly Lys Ala Asp Ile 225 230 235 240 Phe Leu Met Pro Asn Ile Glu Thr Gly Asn Val Met Tyr Lys Thr Leu 245 250 255 Thr Tyr Thr Thr Asp Ser Lys Asn Gly Gly Ile Leu Val Gly Thr Ser 260 265 270 Ala Pro Val Val Leu Thr Ser Arg Ala Asp Ser His Glu Thr Lys Met 275 280 285 Asn Ser Ile Ala Leu Ala Ala Leu Val Ala Gly Asn Lys 290 295 300 <210> SEQ ID NO 88 <211> LENGTH: 302 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Ptb <400> SEQUENCE: 88 Met Ser Lys Asn Phe Asp Glu Leu Leu Ser Arg Leu Lys Glu Val Pro 1 5 10 15 Thr Lys Lys Val Ala Val Ala Val Ala Gln Asp Glu Pro Val Leu Glu 20 25 30 Ala Ile Lys Glu Ala Thr Glu Asn Asn Ile Ala Glu Ala Ile Leu Val 35 40 45 Gly Asp Lys Gln Gln Ile His Glu Ile Ala Lys Lys Ile Asn Leu Asp 50 55 60 Leu Ser Asp Tyr Glu Ile Met Asp Ile Lys Asp Pro Lys Lys Ala Thr 65 70 75 80 Leu Glu Ala Val Lys Leu Val Ser Ser Gly His Ala Asp Met Leu Met 85 90 95 Lys Gly Leu Val Asp Thr Ala Thr Phe Leu Arg Ser Val Leu Asn Lys 100 105 110 Glu Val Gly Leu Arg Thr Gly Lys Leu Met Ser His Val Ala Val Phe 115 120 125 Asp Val Glu Gly Trp Asp Arg Leu Leu Phe Leu Thr Asp Ala Ala Phe 130 135 140 Asn Thr Tyr Pro Glu Phe Lys Asp Lys Val Gly Met Ile Asn Asn Ala 145 150 155 160 Val Val Val Ala His Ala Cys Gly Ile Asp Val Pro Arg Ile Ala Pro 165 170 175 Ile Cys Pro Val Glu Val Val Asn Thr Ser Met Gln Ser Thr Val Asp 180 185 190 Ala Ala Leu Leu Ala Lys Met Ser Asp Arg Gly Gln Ile Lys Gly Cys 195 200 205 Ile Ile Asp Gly Pro Phe Ala Leu Asp Asn Ala Ile Ser Glu Glu Ala 210 215 220 Ala His His Lys Gly Val Thr Gly Ser Val Ala Gly Lys Ala Asp Ile 225 230 235 240 Leu Leu Leu Pro Asn Ile Glu Ala Ala Asn Val Met Tyr Lys Thr Leu 245 250 255 Thr Tyr Phe Ser Lys Ser Arg Asn Gly Gly Leu Leu Val Gly Thr Ser 260 265 270 Ala Pro Val Ile Leu Thr Ser Arg Ala Asp Ser Phe Glu Thr Lys Val 275 280 285 Asn Ser Ile Ala Leu Ala Ala Leu Val Ala Ala Arg Asn Lys 290 295 300 <210> SEQ ID NO 89 <211> LENGTH: 302 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Ptb, WP_041893500.1 <400> SEQUENCE: 89 Met Ser Lys Asn Phe Asp Glu Leu Leu Ser Arg Leu Lys Glu Val Pro 1 5 10 15 Thr Lys Lys Val Ala Val Ala Val Ala Gln Asp Glu Pro Val Leu Glu 20 25 30 Ala Ile Lys Glu Ala Thr Glu Asn Asn Ile Ala Gln Ala Ile Leu Val 35 40 45 Gly Asp Lys Gln Gln Ile His Glu Ile Ala Lys Lys Ile Asn Leu Asp 50 55 60 Leu Ser Asp Tyr Glu Ile Met Asp Ile Lys Asp Pro Lys Lys Ala Thr 65 70 75 80 Leu Glu Ala Val Lys Leu Val Ser Ser Gly His Ala Asp Met Leu Met 85 90 95 Lys Gly Leu Val Asp Thr Ala Thr Phe Leu Arg Ser Val Leu Asn Lys 100 105 110 Glu Val Gly Leu Arg Thr Gly Lys Leu Met Ser His Val Ala Val Phe 115 120 125 Asp Val Glu Gly Trp Asp Arg Leu Leu Phe Leu Thr Asp Ala Ala Phe 130 135 140 Asn Thr Tyr Pro Glu Phe Lys Asp Lys Val Gly Met Ile Asn Asn Ala 145 150 155 160 Val Val Val Ala His Ala Cys Gly Ile Asp Val Pro Arg Ile Ala Pro 165 170 175 Ile Cys Pro Val Glu Val Val Asn Thr Ser Met Gln Ser Thr Val Asp 180 185 190 Ala Ala Leu Leu Ala Lys Met Ser Asp Arg Gly Gln Ile Lys Gly Cys 195 200 205 Val Ile Asp Gly Pro Phe Ala Leu Asp Asn Ala Ile Ser Glu Glu Ala 210 215 220 Ala His His Lys Gly Val Thr Gly Ser Val Ala Gly Lys Ala Asp Ile 225 230 235 240 Leu Leu Leu Pro Asn Ile Glu Ala Ala Asn Val Met Tyr Lys Thr Leu 245 250 255 Thr Tyr Phe Ser Lys Ser Arg Asn Gly Gly Leu Leu Val Gly Thr Ser 260 265 270 Ala Pro Val Ile Leu Thr Ser Arg Ala Asp Ser Phe Glu Thr Lys Val 275 280 285 Asn Ser Ile Ala Leu Ala Ala Leu Val Ala Ala Arg Asn Lys 290 295 300 <210> SEQ ID NO 90 <211> LENGTH: 355 <212> TYPE: PRT <213> ORGANISM: Clostridium acetobutylicum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Buk, WP_010966356.1 <400> SEQUENCE: 90 Met Tyr Arg Leu Leu Ile Ile Asn Pro Gly Ser Thr Ser Thr Lys Ile 1 5 10 15 Gly Ile Tyr Asp Asp Glu Lys Glu Ile Phe Glu Lys Thr Leu Arg His 20 25 30 Ser Ala Glu Glu Ile Glu Lys Tyr Asn Thr Ile Phe Asp Gln Phe Gln 35 40 45 Phe Arg Lys Asn Val Ile Leu Asp Ala Leu Lys Glu Ala Asn Ile Glu 50 55 60 Val Ser Ser Leu Asn Ala Val Val Gly Arg Gly Gly Leu Leu Lys Pro 65 70 75 80 Ile Val Ser Gly Thr Tyr Ala Val Asn Gln Lys Met Leu Glu Asp Leu 85 90 95 Lys Val Gly Val Gln Gly Gln His Ala Ser Asn Leu Gly Gly Ile Ile 100 105 110 Ala Asn Glu Ile Ala Lys Glu Ile Asn Val Pro Ala Tyr Ile Val Asp 115 120 125 Pro Val Val Val Asp Glu Leu Asp Glu Val Ser Arg Ile Ser Gly Met 130 135 140 Ala Asp Ile Pro Arg Lys Ser Ile Phe His Ala Leu Asn Gln Lys Ala 145 150 155 160 Val Ala Arg Arg Tyr Ala Lys Glu Val Gly Lys Lys Tyr Glu Asp Leu 165 170 175 Asn Leu Ile Val Val His Met Gly Gly Gly Thr Ser Val Gly Thr His 180 185 190 Lys Asp Gly Arg Val Ile Glu Val Asn Asn Thr Leu Asp Gly Glu Gly 195 200 205 Pro Phe Ser Pro Glu Arg Ser Gly Gly Val Pro Ile Gly Asp Leu Val 210 215 220 Arg Leu Cys Phe Ser Asn Lys Tyr Thr Tyr Glu Glu Val Met Lys Lys 225 230 235 240 Ile Asn Gly Lys Gly Gly Val Val Ser Tyr Leu Asn Thr Ile Asp Phe 245 250 255 Lys Ala Val Val Asp Lys Ala Leu Glu Gly Asp Lys Lys Cys Ala Leu 260 265 270 Ile Tyr Glu Ala Phe Thr Phe Gln Val Ala Lys Glu Ile Gly Lys Cys 275 280 285 Ser Thr Val Leu Lys Gly Asn Val Asp Ala Ile Ile Leu Thr Gly Gly 290 295 300 Ile Ala Tyr Asn Glu His Val Cys Asn Ala Ile Glu Asp Arg Val Lys 305 310 315 320 Phe Ile Ala Pro Val Val Arg Tyr Gly Gly Glu Asp Glu Leu Leu Ala 325 330 335 Leu Ala Glu Gly Gly Leu Arg Val Leu Arg Gly Glu Glu Lys Ala Lys 340 345 350 Glu Tyr Lys 355 <210> SEQ ID NO 91 <211> LENGTH: 355 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Buk, WP_011967556 <400> SEQUENCE: 91 Met Ser Tyr Lys Leu Leu Ile Ile Asn Pro Gly Ser Thr Ser Thr Lys 1 5 10 15 Ile Gly Val Tyr Glu Gly Glu Lys Glu Leu Phe Glu Glu Thr Leu Arg 20 25 30 His Thr Asn Glu Glu Ile Lys Arg Tyr Asp Thr Ile Tyr Asp Gln Phe 35 40 45 Glu Phe Arg Lys Glu Val Ile Leu Asn Val Leu Lys Glu Lys Asn Phe 50 55 60 Asp Ile Lys Thr Leu Ser Ala Ile Val Gly Arg Gly Gly Met Leu Arg 65 70 75 80 Pro Val Glu Gly Gly Thr Tyr Ala Val Asn Asp Ala Met Val Glu Asp 85 90 95 Leu Lys Val Gly Val Gln Gly Pro His Ala Ser Asn Leu Gly Gly Ile 100 105 110 Ile Ala Lys Ser Ile Gly Asp Glu Leu Asn Ile Pro Ser Phe Ile Val 115 120 125 Asp Pro Val Val Thr Asp Glu Leu Ala Asp Val Ala Arg Leu Ser Gly 130 135 140 Val Pro Glu Leu Pro Arg Lys Ser Lys Phe His Ala Leu Asn Gln Lys 145 150 155 160 Ala Val Ala Lys Arg Tyr Gly Lys Glu Ser Gly Gln Gly Tyr Glu Asn 165 170 175 Leu Asn Leu Val Val Val His Met Gly Gly Gly Val Ser Val Gly Ala 180 185 190 His Asn His Gly Lys Val Val Asp Val Asn Asn Ala Leu Asp Gly Asp 195 200 205 Gly Pro Phe Ser Pro Glu Arg Ala Gly Ser Val Pro Ile Gly Asp Leu 210 215 220 Val Lys Met Cys Phe Ser Gly Lys Tyr Ser Glu Ala Glu Val Tyr Gly 225 230 235 240 Lys Ala Val Gly Lys Gly Gly Phe Val Gly Tyr Leu Asn Thr Asn Asp 245 250 255 Val Lys Gly Val Ile Asp Lys Met Glu Glu Gly Asp Lys Glu Cys Glu 260 265 270 Ser Ile Tyr Lys Ala Phe Val Tyr Gln Ile Ser Lys Ala Ile Gly Glu 275 280 285 Met Ser Val Val Leu Glu Gly Lys Val Asp Gln Ile Ile Phe Thr Gly 290 295 300 Gly Ile Ala Tyr Ser Pro Thr Leu Val Pro Asp Leu Lys Ala Lys Val 305 310 315 320 Glu Trp Ile Ala Pro Val Thr Val Tyr Pro Gly Glu Asp Glu Leu Leu 325 330 335 Ala Leu Ala Gln Gly Ala Ile Arg Val Leu Asp Gly Glu Glu Gln Ala 340 345 350 Lys Val Tyr 355 <210> SEQ ID NO 92 <211> LENGTH: 355 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Buk, WP_017209677 <400> SEQUENCE: 92 Met Ser Tyr Lys Leu Leu Ile Ile Asn Pro Gly Ser Thr Ser Thr Lys 1 5 10 15 Ile Gly Val Tyr Glu Gly Glu Lys Glu Leu Phe Glu Glu Thr Leu Arg 20 25 30 His Thr Asn Glu Glu Ile Lys Arg Tyr Asp Thr Ile Tyr Asp Gln Phe 35 40 45 Glu Phe Arg Lys Glu Val Ile Leu Asn Val Leu Lys Glu Lys Asn Phe 50 55 60 Asp Ile Lys Thr Leu Ser Ala Ile Val Gly Arg Gly Gly Met Leu Arg 65 70 75 80 Pro Val Glu Gly Gly Thr Tyr Ala Val Asn Asp Ala Met Val Glu Asp 85 90 95 Leu Lys Val Gly Val Gln Gly Pro His Ala Ser Asn Leu Gly Gly Ile 100 105 110 Ile Ala Lys Ser Ile Gly Asp Glu Leu Asn Ile Pro Ser Phe Ile Val 115 120 125 Asp Pro Val Val Thr Asp Glu Leu Ala Asp Val Ala Arg Leu Ser Gly 130 135 140 Val Pro Glu Leu Pro Arg Lys Ser Lys Phe His Ala Leu Asn Gln Lys 145 150 155 160 Ala Val Ala Lys Arg Tyr Gly Lys Glu Ser Gly Gln Gly Tyr Glu Asn 165 170 175 Leu Asn Leu Val Val Val His Met Gly Gly Gly Val Ser Val Gly Ala 180 185 190 His Asn His Gly Lys Val Val Asp Val Asn Asn Ala Leu Asp Gly Asp 195 200 205 Gly Pro Phe Ser Pro Glu Arg Ala Gly Ser Val Pro Ile Gly Asp Leu 210 215 220 Val Lys Met Cys Phe Ser Gly Lys Tyr Ser Glu Ala Glu Val Tyr Gly 225 230 235 240 Lys Val Val Gly Lys Gly Gly Phe Val Gly Tyr Leu Asn Thr Asn Asp 245 250 255 Val Lys Gly Val Ile Asp Lys Met Glu Glu Gly Asp Lys Glu Cys Gly 260 265 270 Ser Ile Tyr Lys Ala Phe Val Tyr Gln Ile Ser Lys Ala Ile Gly Glu 275 280 285 Met Ser Val Val Leu Glu Gly Lys Val Asp Gln Ile Ile Phe Thr Gly 290 295 300 Gly Ile Ala Tyr Ser Pro Thr Leu Val Pro Asp Leu Lys Ala Lys Val 305 310 315 320 Glu Trp Ile Ala Pro Val Thr Val Tyr Pro Gly Glu Asp Glu Leu Leu 325 330 335 Ala Leu Ala Gln Gly Ala Ile Arg Val Leu Asp Gly Glu Glu Gln Ala 340 345 350 Lys Val Tyr 355 <210> SEQ ID NO 93 <211> LENGTH: 355 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Buk, WP_026886638 <400> SEQUENCE: 93 Met Ser Tyr Lys Leu Leu Ile Ile Asn Pro Gly Ser Thr Ser Thr Lys 1 5 10 15 Ile Gly Val Tyr Glu Gly Glu Lys Glu Leu Phe Glu Glu Thr Leu Arg 20 25 30 His Thr Asn Glu Glu Ile Lys Arg Tyr Asp Thr Ile Tyr Asp Gln Phe 35 40 45 Glu Phe Arg Lys Glu Val Ile Leu Asn Val Leu Lys Glu Lys Asn Phe 50 55 60 Asp Ile Lys Thr Leu Ser Ala Ile Val Gly Arg Gly Gly Met Leu Arg 65 70 75 80 Pro Val Glu Gly Gly Thr Tyr Ala Val Asn Asp Ala Met Val Glu Asp 85 90 95 Leu Lys Val Gly Val Gln Gly Pro His Ala Ser Asn Leu Gly Gly Ile 100 105 110 Ile Ala Lys Ser Ile Gly Asp Glu Leu Asn Ile Pro Ser Phe Ile Val 115 120 125 Asp Pro Val Val Thr Asp Glu Leu Ala Asp Val Ala Arg Leu Ser Gly 130 135 140 Val Pro Glu Leu Pro Arg Lys Ser Lys Phe His Ala Leu Asn Gln Lys 145 150 155 160 Ala Val Ala Lys Arg Tyr Gly Lys Glu Ser Gly Gln Gly Tyr Glu Asn 165 170 175 Leu Asn Leu Val Val Val His Met Gly Gly Gly Val Ser Val Gly Ala 180 185 190 His Asn His Gly Lys Val Val Asp Val Asn Asn Ala Leu Asp Gly Asp 195 200 205 Gly Pro Phe Ser Pro Glu Arg Ala Gly Ser Val Pro Ile Gly Asp Leu 210 215 220 Val Lys Met Cys Phe Ser Gly Lys Tyr Ser Glu Ala Glu Val Tyr Gly 225 230 235 240 Lys Val Val Gly Lys Gly Gly Phe Val Gly Tyr Leu Asn Thr Asn Asp 245 250 255 Val Lys Gly Val Ile Asp Asn Met Glu Ser Gly Asp Lys Glu Cys Glu 260 265 270 Ser Ile Tyr Lys Ala Phe Val Tyr Gln Ile Ser Lys Ala Ile Gly Glu 275 280 285 Met Ser Val Val Leu Glu Gly Lys Val Asp Gln Ile Ile Phe Thr Gly 290 295 300 Gly Ile Ala Tyr Ser Pro Thr Leu Val Pro Asp Leu Lys Glu Lys Val 305 310 315 320 Glu Trp Ile Ala Pro Val Thr Val Tyr Pro Gly Glu Asp Glu Leu Leu 325 330 335 Ala Leu Ala Gln Gly Ala Ile Arg Val Leu Asp Gly Glu Glu Gln Ala 340 345 350 Lys Val Tyr 355 <210> SEQ ID NO 94 <211> LENGTH: 355 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Buk, WP_041893502 <400> SEQUENCE: 94 Met Ser Tyr Lys Leu Leu Ile Ile Asn Pro Gly Ser Thr Ser Thr Lys 1 5 10 15 Ile Gly Val Tyr Glu Gly Glu Lys Glu Leu Phe Glu Glu Thr Leu Arg 20 25 30 His Thr Asn Glu Glu Ile Lys Arg Tyr Asp Thr Ile Tyr Asp Gln Phe 35 40 45 Glu Phe Arg Lys Glu Val Ile Leu Asn Val Leu Lys Glu Lys Asn Phe 50 55 60 Asp Ile Lys Thr Leu Ser Ala Ile Val Gly Arg Gly Gly Met Leu Arg 65 70 75 80 Pro Val Glu Gly Gly Thr Tyr Ala Val Asn Asp Ala Met Val Glu Asp 85 90 95 Leu Lys Val Gly Val Gln Gly Pro His Ala Ser Asn Leu Gly Gly Ile 100 105 110 Ile Ala Lys Ser Ile Gly Asp Glu Leu Ser Ile Pro Ser Phe Ile Val 115 120 125 Asp Pro Val Val Thr Asp Glu Leu Ala Asp Val Ala Arg Leu Ser Gly 130 135 140 Val Pro Glu Leu Pro Arg Lys Ser Lys Phe His Ala Leu Asn Gln Lys 145 150 155 160 Ala Val Ala Lys Arg Tyr Gly Lys Glu Ser Gly Gln Gly Tyr Glu Asn 165 170 175 Leu Asn Leu Val Val Val His Met Gly Gly Gly Val Ser Val Gly Ala 180 185 190 His Asn His Gly Lys Val Val Asp Val Asn Asn Ala Leu Asp Gly Asp 195 200 205 Gly Pro Phe Ser Pro Glu Arg Ala Gly Ser Val Pro Ile Gly Asp Leu 210 215 220 Val Lys Met Cys Phe Ser Gly Lys Tyr Ser Glu Ala Glu Val Tyr Gly 225 230 235 240 Lys Val Val Gly Lys Gly Gly Phe Val Gly Tyr Leu Asn Thr Asn Asp 245 250 255 Val Lys Gly Val Ile Asp Lys Met Glu Glu Gly Asp Lys Glu Cys Gly 260 265 270 Ser Ile Tyr Lys Ala Phe Val Tyr Gln Ile Ser Lys Ala Ile Gly Glu 275 280 285 Met Ser Val Val Leu Glu Gly Lys Val Asp Gln Ile Ile Phe Thr Gly 290 295 300 Gly Ile Ala Tyr Ser Pro Thr Leu Val Pro Asp Leu Lys Ala Lys Val 305 310 315 320 Glu Trp Ile Ala Pro Val Thr Val Tyr Pro Gly Glu Asp Glu Leu Leu 325 330 335 Ala Leu Ala Gln Gly Ala Ile Arg Val Leu Asp Gly Glu Glu Gln Ala 340 345 350 Lys Val Tyr 355 <210> SEQ ID NO 95 <211> LENGTH: 40 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pACYCDuet-ptb-buk - pACYC-ptb-R1, reverse <400> SEQUENCE: 95 aagtttttac tcatatgtat atctccttct tatacttaac 40 <210> SEQ ID NO 96 <211> LENGTH: 40 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pACYCDuet-ptb-buk - ptb-pACYC-F1, forward <400> SEQUENCE: 96 agaaggagat atacatatga gtaaaaactt tgatgagtta 40 <210> SEQ ID NO 97 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pACYCDuet-ptb-buk - buk-pACYC-R1, reverse <400> SEQUENCE: 97 accagactcg agggtaccta gtaaacctta gcttgttc 38 <210> SEQ ID NO 98 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pACYCDuet-ptb-buk - pACYC-buk-F1, forward <400> SEQUENCE: 98 taaggtttac taggtaccct cgagtctggt aaagaaac 38 <210> SEQ ID NO 99 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pCOLADuet-thlA-adc - thlA-adc-R1, reverse <400> SEQUENCE: 99 acatatgtat atctccttct tactagcact tttctagcaa tattg 45 <210> SEQ ID NO 100 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pCOLADuet-thlA-adc - adc-ThlA-F1, forward <400> SEQUENCE: 100 agtaagaagg agatatacat atgttagaaa gtgaagtatc taaac 45 <210> SEQ ID NO 101 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pCOLADuet-thlA-adc - adc-pCOLA-R1, reverse <400> SEQUENCE: 101 cagactcgag ggtaccttat tttactgaaa gataatcatg tac 43 <210> SEQ ID NO 102 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pCOLADuet-thlA-adc - pCOLA-adc-F1, forward <400> SEQUENCE: 102 tctttcagta aaataaggta ccctcgagtc tggtaaagaa ac 42 <210> SEQ ID NO 103 <211> LENGTH: 40 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pCOLADuet-thlA-adc - thlA-pCOLA-F1, forward <400> SEQUENCE: 103 gaaggagata tacatatgaa agaagttgta atagctagtg 40 <210> SEQ ID NO 104 <211> LENGTH: 40 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pCOLADuet-thlA-adc - pCOLA-thlA-R1, reverse <400> SEQUENCE: 104 acaacttctt tcatatgtat atctccttct tatacttaac 40 <210> SEQ ID NO 105 <211> LENGTH: 5791 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pACYC-ptb-buk, plasmid <400> SEQUENCE: 105 ggggaattgt gagcggataa caattcccct gtagaaataa ttttgtttaa ctttaataag 60 gagatatacc atgggcagca gccatcacca tcatcaccac agccaggatc cgaattcgag 120 ctcggcgcgc ctgcaggtcg acaagcttgc ggccgcataa tgcttaagtc gaacagaaag 180 taatcgtatt gtacacggcc gcataatcga aattaatacg actcactata ggggaattgt 240 gagcggataa caattcccca tcttagtata ttagttaagt ataagaagga gatatacata 300 tgagtaaaaa ctttgatgag ttattatcaa gattaaagga agttccaaca aaaaaagtgg 360 ctgtagccgt agcacaagat gaaccagtat tagaggctat aaaagaagct acagaaaata 420 acatcgcaca agcaatattg gttggtgata aacaacaaat ccatgaaatc gcaaagaaaa 480 taaacttgga cttatctgat tatgaaataa tggatattaa agatccaaag aaagcaacat 540 tagaagcagt aaaattagtt tctagtggtc atgcagatat gttaatgaaa ggtctagttg 600 atactgcaac attcctaaga agcgtattaa acaaagaggt tggtcttaga acaggaaaat 660 taatgtccca tgtagctgtg tttgatgtgg aaggttggga tagactgtta tttttaactg 720 atgcagcatt taatacatat ccagaattta aggataaagt tggaatgata aataatgcag 780 ttgtagttgc tcatgcatgt ggaatagatg ttccaagagt agcacctata tgcccagttg 840 aagttgtaaa tacaagtatg caatcaacag ttgatgcagc attgttagct aaaatgagtg 900 acagggggca aattaaagga tgcgtaattg atggaccttt tgccttagat aatgcaatat 960 cagaagaagc agctcatcat aaaggtgtta caggatcagt agcaggtaaa gctgatatat 1020 tattattacc aaatatagaa gcagcaaatg taatgtataa aacattaaca tatttctcta 1080 aatcaagaaa tggtggactt ttagtaggta catcagcacc agtaatttta acttcaagag 1140 cagattcatt cgaaactaaa gttaattcaa ttgctcttgc agcattagtt gcagcaagaa 1200 ataagtaata aatcaatcca taataattaa tgcataatta atggagagat ttatatggaa 1260 tttgcaatgc actattagat tctataataa tttcttctga aaattatgca ttatgactgt 1320 atagaatgca ttaaatttaa gggggattca gaatgtcata taagctatta ataatcaatc 1380 caggttcaac atcaacaaag attggtgttt acgaaggaga aaaggaacta tttgaagaaa 1440 ctttgagaca cacaaatgaa gaaataaaga gatatgatac aatatatgat caatttgaat 1500 ttagaaaaga agttatatta aatgttctta aagaaaagaa ttttgatata aagactctaa 1560 gtgctattgt tggtagaggt ggaatgctta gaccagttga aggtggaaca tatgcagtaa 1620 atgatgcaat ggttgaagat ttaaaagttg gagttcaagg acctcatgct tctaaccttg 1680 gcggaataat tgccaagtca attggagatg aattaaatat tccatcattt atagtagatc 1740 cagttgttac agatgagtta gcagatgtag caagactatc tggagtacca gaactaccaa 1800 gaaaaagtaa attccatgct ttaaatcaaa aagcggtagc taaaagatat ggaaaagaaa 1860 gtggacaagg atatgaaaac ctaaatcttg tagttgtaca tatgggtgga ggcgtttcag 1920 ttggtgctca caatcatggg aaagttgtcg atgtaaataa tgcattagat ggagatggcc 1980 cattctcacc agaaagagct ggatcagttc caattggtga tttagttaaa atgtgtttta 2040 gtggaaaata tagtgaagca gaagtatatg gcaaggctgt aggaaaaggt ggatttgttg 2100 gttatctaaa cacaaatgat gtaaaaggtg ttattgataa gatggaagaa ggagataaag 2160 aatgtgaatc aatatacaaa gcatttgttt atcaaatttc aaaagcaatc ggagaaatgt 2220 cagttgtatt agaaggtaaa gttgatcaaa ttatttttac cggaggaatt gcatactcac 2280 caacacttgt tccagacctt aaagcaaaag ttgaatggat agccccagtt acagtttatc 2340 ctggagaaga tgaattactt gctctagctc aaggtgctat aagagtactt gatggagaag 2400 aacaagctaa ggtttactag gtaccctcga gtctggtaaa gaaaccgctg ctgcgaaatt 2460 tgaacgccag cacatggact cgtctactag cgcagcttaa ttaacctagg ctgctgccac 2520 cgctgagcaa taactagcat aaccccttgg ggcctctaaa cgggtcttga ggggtttttt 2580 gctgaaacct caggcatttg agaagcacac ggtcacactg cttccggtag tcaataaacc 2640 ggtaaaccag caatagacat aagcggctat ttaacgaccc tgccctgaac cgacgacaag 2700 ctgacgaccg ggtctccgca agtggcactt ttcggggaaa tgtgcgcgga acccctattt 2760 gtttattttt ctaaatacat tcaaatatgt atccgctcat gaattaattc ttagaaaaac 2820 tcatcgagca tcaaatgaaa ctgcaattta ttcatatcag gattatcaat accatatttt 2880 tgaaaaagcc gtttctgtaa tgaaggagaa aactcaccga ggcagttcca taggatggca 2940 agatcctggt atcggtctgc gattccgact cgtccaacat caatacaacc tattaatttc 3000 ccctcgtcaa aaataaggtt atcaagtgag aaatcaccat gagtgacgac tgaatccggt 3060 gagaatggca aaagtttatg catttctttc cagacttgtt caacaggcca gccattacgc 3120 tcgtcatcaa aatcactcgc atcaaccaaa ccgttattca ttcgtgattg cgcctgagcg 3180 agacgaaata cgcggtcgct gttaaaagga caattacaaa caggaatcga atgcaaccgg 3240 cgcaggaaca ctgccagcgc atcaacaata ttttcacctg aatcaggata ttcttctaat 3300 acctggaatg ctgttttccc ggggatcgca gtggtgagta accatgcatc atcaggagta 3360 cggataaaat gcttgatggt cggaagaggc ataaattccg tcagccagtt tagtctgacc 3420 atctcatctg taacatcatt ggcaacgcta cctttgccat gtttcagaaa caactctggc 3480 gcatcgggct tcccatacaa tcgatagatt gtcgcacctg attgcccgac attatcgcga 3540 gcccatttat acccatataa atcagcatcc atgttggaat ttaatcgcgg cctagagcaa 3600 gacgtttccc gttgaatatg gctcatactc ttcctttttc aatattattg aagcatttat 3660 cagggttatt gtctcatgag cggatacata tttgaatgta tttagaaaaa taaacaaata 3720 ggcatgctag cgcagaaacg tcctagaaga tgccaggagg atacttagca gagagacaat 3780 aaggccggag cgaagccgtt tttccatagg ctccgccccc ctgacgaaca tcacgaaatc 3840 tgacgctcaa atcagtggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc 3900 cctgatggct ccctcttgcg ctctcctgtt cccgtcctgc ggcgtccgtg ttgtggtgga 3960 ggctttaccc aaatcaccac gtcccgttcc gtgtagacag ttcgctccaa gctgggctgt 4020 gtgcaagaac cccccgttca gcccgactgc tgcgccttat ccggtaacta tcatcttgag 4080 tccaacccgg aaagacacga caaaacgcca ctggcagcag ccattggtaa ctgagaatta 4140 gtggatttag atatcgagag tcttgaagtg gtggcctaac agaggctaca ctgaaaggac 4200 agtatttggt atctgcgctc cactaaagcc agttaccagg ttaagcagtt ccccaactga 4260 cttaaccttc gatcaaaccg cctccccagg cggttttttc gtttacagag caggagatta 4320 cgacgatcgt aaaaggatct caagaagatc ctttacggat tcccgacacc atcactctag 4380 atttcagtgc aatttatctc ttcaaatgta gcacctgaag tcagccccat acgatataag 4440 ttgtaattct catgttagtc atgccccgcg cccaccggaa ggagctgact gggttgaagg 4500 ctctcaaggg catcggtcga gatcccggtg cctaatgagt gagctaactt acattaattg 4560 cgttgcgctc actgcccgct ttccagtcgg gaaacctgtc gtgccagctg cattaatgaa 4620 tcggccaacg cgcggggaga ggcggtttgc gtattgggcg ccagggtggt ttttcttttc 4680 accagtgaga cgggcaacag ctgattgccc ttcaccgcct ggccctgaga gagttgcagc 4740 aagcggtcca cgctggtttg ccccagcagg cgaaaatcct gtttgatggt ggttaacggc 4800 gggatataac atgagctgtc ttcggtatcg tcgtatccca ctaccgagat gtccgcacca 4860 acgcgcagcc cggactcggt aatggcgcgc attgcgccca gcgccatctg atcgttggca 4920 accagcatcg cagtgggaac gatgccctca ttcagcattt gcatggtttg ttgaaaaccg 4980 gacatggcac tccagtcgcc ttcccgttcc gctatcggct gaatttgatt gcgagtgaga 5040 tatttatgcc agccagccag acgcagacgc gccgagacag aacttaatgg gcccgctaac 5100 agcgcgattt gctggtgacc caatgcgacc agatgctcca cgcccagtcg cgtaccgtct 5160 tcatgggaga aaataatact gttgatgggt gtctggtcag agacatcaag aaataacgcc 5220 ggaacattag tgcaggcagc ttccacagca atggcatcct ggtcatccag cggatagtta 5280 atgatcagcc cactgacgcg ttgcgcgaga agattgtgca ccgccgcttt acaggcttcg 5340 acgccgcttc gttctaccat cgacaccacc acgctggcac ccagttgatc ggcgcgagat 5400 ttaatcgccg cgacaatttg cgacggcgcg tgcagggcca gactggaggt ggcaacgcca 5460 atcagcaacg actgtttgcc cgccagttgt tgtgccacgc ggttgggaat gtaattcagc 5520 tccgccatcg ccgcttccac tttttcccgc gttttcgcag aaacgtggct ggcctggttc 5580 accacgcggg aaacggtctg ataagagaca ccggcatact ctgcgacatc gtataacgtt 5640 actggtttca cattcaccac cctgaattga ctctcttccg ggcgctatca tgccataccg 5700 cgaaaggttt tgcgccattc gatggtgtcc gggatctcga cgctctccct tatgcgactc 5760 ctgcattagg aaattaatac gactcactat a 5791 <210> SEQ ID NO 106 <211> LENGTH: 5609 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pCOLA-thlA-adc, plasmid <400> SEQUENCE: 106 ggggaattgt gagcggataa caattcccct gtagaaataa ttttgtttaa ctttaataag 60 gagatatacc atgggcagca gccatcacca tcatcaccac agccaggatc cgaattcgag 120 ctcggcgcgc ctgcaggtcg acaagcttgc ggccgcataa tgcttaagtc gaacagaaag 180 taatcgtatt gtacacggcc gcataatcga aattaatacg actcactata ggggaattgt 240 gagcggataa caattcccca tcttagtata ttagttaagt ataagaagga gatatacata 300 tgaaagaagt tgtaatagct agtgcagtaa gaacagcgat tggatcttat ggaaagtctc 360 ttaaggatgt accagcagta gatttaggag ctacagctat aaaggaagca gttaaaaaag 420 caggaataaa accagaggat gttaatgaag tcattttagg aaatgttctt caagcaggtt 480 taggacagaa tccagcaaga caggcatctt ttaaagcagg attaccagtt gaaattccag 540 ctatgactat taataaggtt tgtggttcag gacttagaac agttagctta gcagcacaaa 600 ttataaaagc aggagatgct gacgtaataa tagcaggtgg tatggaaaat atgtctagag 660 ctccttactt agcgaataac gctagatggg gatatagaat gggaaacgct aaatttgttg 720 atgaaatgat cactgacgga ttgtgggatg catttaatga ttaccacatg ggaataacag 780 cagaaaacat agctgagaga tggaacattt caagagaaga acaagatgag tttgctcttg 840 catcacaaaa aaaagctgaa gaagctataa aatcaggtca atttaaagat gaaatagttc 900 ctgtagtaat taaaggcaga aagggagaaa ctgtagttga tacagatgag caccctagat 960 ttggatcaac tatagaagga cttgcaaaat taaaacctgc cttcaaaaaa gatggaacag 1020 ttacagctgg taatgcatca ggattaaatg actgtgcagc agtacttgta atcatgagtg 1080 cagaaaaagc taaagagctt ggagtaaaac cacttgctaa gatagtttct tatggttcag 1140 caggagttga cccagcaata atgggatatg gacctttcta tgcaacaaaa gcagctattg 1200 aaaaagcagg ttggacagtt gatgaattag atttaataga atcaaatgaa gcttttgcag 1260 ctcaaagttt agcagtagca aaagatttaa aatttgatat gaataaagta aatgtaaatg 1320 gaggagctat tgcccttggt catccaattg gagcatcagg tgcaagaata ctcgttactc 1380 ttgtacacgc aatgcaaaaa agagatgcaa aaaaaggctt agcaacttta tgtataggtg 1440 gcggacaagg aacagcaata ttgctagaaa agtgctagta agaaggagat atacatatgt 1500 tagaaagtga agtatctaaa caaattacaa ctccacttgc tgctccagcg tttcctagag 1560 gaccatatag gtttcacaat agagaatatc taaacattat ttatcgaact gatttagatg 1620 ctcttcgaaa aatagtacca gagccacttg aattagatag agcatatgtt agatttgaaa 1680 tgatggctat gcctgataca accggactag gctcatatac agaatgtggt caagctattc 1740 cagtaaaata taatggtgtt aagggtgact acttgcatat gatgtatcta gataatgaac 1800 ctgctattgc tgttggaaga gaaagtagcg cttatccaaa aaagcttggc tatccaaagc 1860 tatttgttga ttcagatact ttagttggga cacttaaata tggtacatta ccagtagcta 1920 ctgcaacaat gggatataag cacgagcctc tagatcttaa agaagcctat gctcaaattg 1980 caagacccaa ttttatgcta aaaatcattc aaggttacga tggtaagcca agaatttgtg 2040 aactaatatg tgcagaaaat actgatataa ctattcacgg tgcttggact ggaagtgcac 2100 gtctacaatt atttagccat gcactagctc ctcttgctga tttacctgta ttagagattg 2160 tatcagcatc tcatatcctc acagatttaa ctcttggaac acctaaggtt gtacatgatt 2220 atctttcagt aaaataaggt accctcgagt ctggtaaaga aaccgctgct gcgaaatttg 2280 aacgccagca catggactcg tctactagcg cagcttaatt aacctaggct gctgccaccg 2340 ctgagcaata actagcataa ccccttgggg cctctaaacg ggtcttgagg ggttttttgc 2400 tgaaacctca ggcatttgag aagcacacgg tcacactgct tccggtagtc aataaaccgg 2460 taaaccagca atagacataa gcggctattt aacgaccctg ccctgaaccg acgacaagct 2520 gacgaccggg tctccgcaag tggcactttt cggggaaatg tgcgcggaac ccctatttgt 2580 ttatttttct aaatacattc aaatatgtat ccgctcatga attaattctt agaaaaactc 2640 atcgagcatc aaatgaaact gcaatttatt catatcagga ttatcaatac catatttttg 2700 aaaaagccgt ttctgtaatg aaggagaaaa ctcaccgagg cagttccata ggatggcaag 2760 atcctggtat cggtctgcga ttccgactcg tccaacatca atacaaccta ttaatttccc 2820 ctcgtcaaaa ataaggttat caagtgagaa atcaccatga gtgacgactg aatccggtga 2880 gaatggcaaa agtttatgca tttctttcca gacttgttca acaggccagc cattacgctc 2940 gtcatcaaaa tcactcgcat caaccaaacc gttattcatt cgtgattgcg cctgagcgag 3000 acgaaatacg cggtcgctgt taaaaggaca attacaaaca ggaatcgaat gcaaccggcg 3060 caggaacact gccagcgcat caacaatatt ttcacctgaa tcaggatatt cttctaatac 3120 ctggaatgct gttttcccgg ggatcgcagt ggtgagtaac catgcatcat caggagtacg 3180 gataaaatgc ttgatggtcg gaagaggcat aaattccgtc agccagttta gtctgaccat 3240 ctcatctgta acatcattgg caacgctacc tttgccatgt ttcagaaaca actctggcgc 3300 atcgggcttc ccatacaatc gatagattgt cgcacctgat tgcccgacat tatcgcgagc 3360 ccatttatac ccatataaat cagcatccat gttggaattt aatcgcggcc tagagcaaga 3420 cgtttcccgt tgaatatggc tcatactctt cctttttcaa tattattgaa gcatttatca 3480 gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata aacaaatagg 3540 catgctagcg cagaaacgtc ctagaagatg ccaggaggat acttagcaga gagacaataa 3600 ggccggagcg aagccgtttt tccataggct ccgcccccct gacgaacatc acgaaatctg 3660 acgctcaaat cagtggtggc gaaacccgac aggactataa agataccagg cgtttccccc 3720 tgatggctcc ctcttgcgct ctcctgttcc cgtcctgcgg cgtccgtgtt gtggtggagg 3780 ctttacccaa atcaccacgt cccgttccgt gtagacagtt cgctccaagc tgggctgtgt 3840 gcaagaaccc cccgttcagc ccgactgctg cgccttatcc ggtaactatc atcttgagtc 3900 caacccggaa agacacgaca aaacgccact ggcagcagcc attggtaact gagaattagt 3960 ggatttagat atcgagagtc ttgaagtggt ggcctaacag aggctacact gaaaggacag 4020 tatttggtat ctgcgctcca ctaaagccag ttaccaggtt aagcagttcc ccaactgact 4080 taaccttcga tcaaaccgcc tccccaggcg gttttttcgt ttacagagca ggagattacg 4140 acgatcgtaa aaggatctca agaagatcct ttacggattc ccgacaccat cactctagat 4200 ttcagtgcaa tttatctctt caaatgtagc acctgaagtc agccccatac gatataagtt 4260 gtaattctca tgttagtcat gccccgcgcc caccggaagg agctgactgg gttgaaggct 4320 ctcaagggca tcggtcgaga tcccggtgcc taatgagtga gctaacttac attaattgcg 4380 ttgcgctcac tgcccgcttt ccagtcggga aacctgtcgt gccagctgca ttaatgaatc 4440 ggccaacgcg cggggagagg cggtttgcgt attgggcgcc agggtggttt ttcttttcac 4500 cagtgagacg ggcaacagct gattgccctt caccgcctgg ccctgagaga gttgcagcaa 4560 gcggtccacg ctggtttgcc ccagcaggcg aaaatcctgt ttgatggtgg ttaacggcgg 4620 gatataacat gagctgtctt cggtatcgtc gtatcccact accgagatgt ccgcaccaac 4680 gcgcagcccg gactcggtaa tggcgcgcat tgcgcccagc gccatctgat cgttggcaac 4740 cagcatcgca gtgggaacga tgccctcatt cagcatttgc atggtttgtt gaaaaccgga 4800 catggcactc cagtcgcctt cccgttccgc tatcggctga atttgattgc gagtgagata 4860 tttatgccag ccagccagac gcagacgcgc cgagacagaa cttaatgggc ccgctaacag 4920 cgcgatttgc tggtgaccca atgcgaccag atgctccacg cccagtcgcg taccgtcttc 4980 atgggagaaa ataatactgt tgatgggtgt ctggtcagag acatcaagaa ataacgccgg 5040 aacattagtg caggcagctt ccacagcaat ggcatcctgg tcatccagcg gatagttaat 5100 gatcagccca ctgacgcgtt gcgcgagaag attgtgcacc gccgctttac aggcttcgac 5160 gccgcttcgt tctaccatcg acaccaccac gctggcaccc agttgatcgg cgcgagattt 5220 aatcgccgcg acaatttgcg acggcgcgtg cagggccaga ctggaggtgg caacgccaat 5280 cagcaacgac tgtttgcccg ccagttgttg tgccacgcgg ttgggaatgt aattcagctc 5340 cgccatcgcc gcttccactt tttcccgcgt tttcgcagaa acgtggctgg cctggttcac 5400 cacgcgggaa acggtctgat aagagacacc ggcatactct gcgacatcgt ataacgttac 5460 tggtttcaca ttcaccaccc tgaattgact ctcttccggg cgctatcatg ccataccgcg 5520 aaaggttttg cgccattcga tggtgtccgg gatctcgacg ctctccctta tgcgactcct 5580 gcattaggaa attaatacga ctcactata 5609 <210> SEQ ID NO 107 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: thlA-ptb-R1, reverse <400> SEQUENCE: 107 atttcctccc tttctagcac ttttctagca atattg 36 <210> SEQ ID NO 108 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: adc-buk-F1, forward <400> SEQUENCE: 108 taaggtttac taaggaggtt gttttatgtt agaaag 36 <210> SEQ ID NO 109 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: thlA-ptb-F1, forward <400> SEQUENCE: 109 gctagaaaag tgctagaaag ggaggaaatg aacatg 36 <210> SEQ ID NO 110 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Buk-adc-R1, reverse <400> SEQUENCE: 110 aaaacaacct ccttagtaaa ccttagcttg ttcttc 36 <210> SEQ ID NO 111 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pDuet-insert2-R1, forward <400> SEQUENCE: 111 catatgtata tctccttctt atacttaac 29 <210> SEQ ID NO 112 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: insert2-pDuet-F1, forward <400> SEQUENCE: 112 gttaagtata agaaggagat atacatatg 29 <210> SEQ ID NO 113 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pDuet-insert2-F1, forward <400> SEQUENCE: 113 cctcgagtct ggtaaagaaa c 21 <210> SEQ ID NO 114 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: insert2-pDuet-R1, forward <400> SEQUENCE: 114 gtttctttac cagactcgag g 21 <210> SEQ ID NO 115 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pCDF-phaB - pACYC-phaB-R1, forward <400> SEQUENCE: 115 ctattctttg tgtcatggta tatctcctta ttaaag 36 <210> SEQ ID NO 116 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pCDF-phaB - phaB-pACYC-F1, forward <400> SEQUENCE: 116 ataaggagat ataccatgac acaaagaata gcatac 36 <210> SEQ ID NO 117 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pcdf-phab - pacyc-phab-f1, forward <400> SEQUENCE: 117 tggtttacac atgggataag atccgaattc gagctc 36 <210> SEQ ID NO 118 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pCDF-phaB - phaB-pACYC-R1, forward <400> SEQUENCE: 118 agctcgaatt cggatcttat cccatgtgta aaccac 36 <210> SEQ ID NO 119 <211> LENGTH: 4486 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pCDF-phaB, plasmid <400> SEQUENCE: 119 ggggaattgt gagcggataa caattcccct gtagaaataa ttttgtttaa ctttaataag 60 gagatatacc atgacacaaa gaatagcata cgtaacaggt ggtatgggtg gtataggaac 120 tgcaatatgt caaagattag caaaagatgg atttagagtt gtagctggat gcggaccaaa 180 tagtcctaga agagaaaagt ggttagaaca acaaaaagca cttggatttg atttcatagc 240 ttctgaaggt aacgtagcag attgggactc aactaaaact gcttttgata aagttaaatc 300 tgaagttggt gaagttgatg tattaataaa taatgcaggt attactagag atgtagtatt 360 tagaaagatg acaagagctg actgggatgc agtaatagat actaatctta ctagtctttt 420 caatgtaact aagcaggtaa ttgatggtat ggcagataga ggttggggta gaatagtaaa 480 tattagttca gttaatggac aaaaaggtca gtttggacag acaaattatt ctacagctaa 540 agcaggtctt catggtttta caatggcttt agcacaggaa gttgctacaa aaggtgttac 600 agttaacact gttagtccag gatatattgc tactgacatg gtaaaggcta taagacaaga 660 tgttcttgat aaaattgttg ctacaatacc agtaaagaga ttaggacttc ctgaagagat 720 agcatctatt tgtgcatggt tatcaagtga agaatcagga ttctcaactg gtgctgattt 780 ttcattaaac ggtggtttac acatgggata agatccgaat tcgagctcgg cgcgcctgca 840 ggtcgacaag cttgcggccg cataatgctt aagtcgaaca gaaagtaatc gtattgtaca 900 cggccgcata atcgaaatta atacgactca ctatagggga attgtgagcg gataacaatt 960 ccccatctta gtatattagt taagtataag aaggagatat acatatggca gatctcaatt 1020 ggatatcggc cggccacgcg atcgctgacg tcggtaccct cgagtctggt aaagaaaccg 1080 ctgctgcgaa atttgaacgc cagcacatgg actcgtctac tagcgcagct taattaacct 1140 aggctgctgc caccgctgag caataactag cataacccct tggggcctct aaacgggtct 1200 tgaggggttt tttgctgaaa cctcaggcat ttgagaagca cacggtcaca ctgcttccgg 1260 tagtcaataa accggtaaac cagcaataga cataagcggc tatttaacga ccctgccctg 1320 aaccgacgac cgggtcatcg tggccggatc ttgcggcccc tcggcttgaa cgaattgtta 1380 gacattattt gccgactacc ttggtgatct cgcctttcac gtagtggaca aattcttcca 1440 actgatctgc gcgcgaggcc aagcgatctt cttcttgtcc aagataagcc tgtctagctt 1500 caagtatgac gggctgatac tgggccggca ggcgctccat tgcccagtcg gcagcgacat 1560 ccttcggcgc gattttgccg gttactgcgc tgtaccaaat gcgggacaac gtaagcacta 1620 catttcgctc atcgccagcc cagtcgggcg gcgagttcca tagcgttaag gtttcattta 1680 gcgcctcaaa tagatcctgt tcaggaaccg gatcaaagag ttcctccgcc gctggaccta 1740 ccaaggcaac gctatgttct cttgcttttg tcagcaagat agccagatca atgtcgatcg 1800 tggctggctc gaagatacct gcaagaatgt cattgcgctg ccattctcca aattgcagtt 1860 cgcgcttagc tggataacgc cacggaatga tgtcgtcgtg cacaacaatg gtgacttcta 1920 cagcgcggag aatctcgctc tctccagggg aagccgaagt ttccaaaagg tcgttgatca 1980 aagctcgccg cgttgtttca tcaagcctta cggtcaccgt aaccagcaaa tcaatatcac 2040 tgtgtggctt caggccgcca tccactgcgg agccgtacaa atgtacggcc agcaacgtcg 2100 gttcgagatg gcgctcgatg acgccaacta cctctgatag ttgagtcgat acttcggcga 2160 tcaccgcttc cctcatactc ttcctttttc aatattattg aagcatttat cagggttatt 2220 gtctcatgag cggatacata tttgaatgta tttagaaaaa taaacaaata gctagctcac 2280 tcggtcgcta cgctccgggc gtgagactgc ggcgggcgct gcggacacat acaaagttac 2340 ccacagattc cgtggataag caggggacta acatgtgagg caaaacagca gggccgcgcc 2400 ggtggcgttt ttccataggc tccgccctcc tgccagagtt cacataaaca gacgcttttc 2460 cggtgcatct gtgggagccg tgaggctcaa ccatgaatct gacagtacgg gcgaaacccg 2520 acaggactta aagatcccca ccgtttccgg cgggtcgctc cctcttgcgc tctcctgttc 2580 cgaccctgcc gtttaccgga tacctgttcc gcctttctcc cttacgggaa gtgtggcgct 2640 ttctcatagc tcacacactg gtatctcggc tcggtgtagg tcgttcgctc caagctgggc 2700 tgtaagcaag aactccccgt tcagcccgac tgctgcgcct tatccggtaa ctgttcactt 2760 gagtccaacc cggaaaagca cggtaaaacg ccactggcag cagccattgg taactgggag 2820 ttcgcagagg atttgtttag ctaaacacgc ggttgctctt gaagtgtgcg ccaaagtccg 2880 gctacactgg aaggacagat ttggttgctg tgctctgcga aagccagtta ccacggttaa 2940 gcagttcccc aactgactta accttcgatc aaaccacctc cccaggtggt tttttcgttt 3000 acagggcaaa agattacgcg cagaaaaaaa ggatctcaag aagatccttt gatcttttct 3060 actgaaccgc tctagatttc agtgcaattt atctcttcaa atgtagcacc tgaagtcagc 3120 cccatacgat ataagttgta attctcatgt tagtcatgcc ccgcgcccac cggaaggagc 3180 tgactgggtt gaaggctctc aagggcatcg gtcgagatcc cggtgcctaa tgagtgagct 3240 aacttacatt aattgcgttg cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc 3300 agctgcatta atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt gggcgccagg 3360 gtggtttttc ttttcaccag tgagacgggc aacagctgat tgcccttcac cgcctggccc 3420 tgagagagtt gcagcaagcg gtccacgctg gtttgcccca gcaggcgaaa atcctgtttg 3480 atggtggtta acggcgggat ataacatgag ctgtcttcgg tatcgtcgta tcccactacc 3540 gagatgtccg caccaacgcg cagcccggac tcggtaatgg cgcgcattgc gcccagcgcc 3600 atctgatcgt tggcaaccag catcgcagtg ggaacgatgc cctcattcag catttgcatg 3660 gtttgttgaa aaccggacat ggcactccag tcgccttccc gttccgctat cggctgaatt 3720 tgattgcgag tgagatattt atgccagcca gccagacgca gacgcgccga gacagaactt 3780 aatgggcccg ctaacagcgc gatttgctgg tgacccaatg cgaccagatg ctccacgccc 3840 agtcgcgtac cgtcttcatg ggagaaaata atactgttga tgggtgtctg gtcagagaca 3900 tcaagaaata acgccggaac attagtgcag gcagcttcca cagcaatggc atcctggtca 3960 tccagcggat agttaatgat cagcccactg acgcgttgcg cgagaagatt gtgcaccgcc 4020 gctttacagg cttcgacgcc gcttcgttct accatcgaca ccaccacgct ggcacccagt 4080 tgatcggcgc gagatttaat cgccgcgaca atttgcgacg gcgcgtgcag ggccagactg 4140 gaggtggcaa cgccaatcag caacgactgt ttgcccgcca gttgttgtgc cacgcggttg 4200 ggaatgtaat tcagctccgc catcgccgct tccacttttt cccgcgtttt cgcagaaacg 4260 tggctggcct ggttcaccac gcgggaaacg gtctgataag agacaccggc atactctgcg 4320 acatcgtata acgttactgg tttcacattc accaccctga attgactctc ttccgggcgc 4380 tatcatgcca taccgcgaaa ggttttgcgc cattcgatgg tgtccgggat ctcgacgctc 4440 tcccttatgc gactcctgca ttaggaaatt aatacgactc actata 4486 <210> SEQ ID NO 120 <211> LENGTH: 5221 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pCDF-phaB-bdh1, plasmid <400> SEQUENCE: 120 ggggaattgt gagcggataa caattcccct gtagaaataa ttttgtttaa ctttaataag 60 gagatatacc atgacacaaa gaatagcata cgtaacaggt ggtatgggtg gtataggaac 120 tgcaatatgt caaagattag caaaagatgg atttagagtt gtagctggat gcggaccaaa 180 tagtcctaga agagaaaagt ggttagaaca acaaaaagca cttggatttg atttcatagc 240 ttctgaaggt aacgtagcag attgggactc aactaaaact gcttttgata aagttaaatc 300 tgaagttggt gaagttgatg tattaataaa taatgcaggt attactagag atgtagtatt 360 tagaaagatg acaagagctg actgggatgc agtaatagat actaatctta ctagtctttt 420 caatgtaact aagcaggtaa ttgatggtat ggcagataga ggttggggta gaatagtaaa 480 tattagttca gttaatggac aaaaaggtca gtttggacag acaaattatt ctacagctaa 540 agcaggtctt catggtttta caatggcttt agcacaggaa gttgctacaa aaggtgttac 600 agttaacact gttagtccag gatatattgc tactgacatg gtaaaggcta taagacaaga 660 tgttcttgat aaaattgttg ctacaatacc agtaaagaga ttaggacttc ctgaagagat 720 agcatctatt tgtgcatggt tatcaagtga agaatcagga ttctcaactg gtgctgattt 780 ttcattaaac ggtggtttac acatgggata agatccgaat tcgagctcgg cgcgcctgca 840 ggtcgacaag cttgcggccg cataatgctt aagtcgaaca gaaagtaatc gtattgtaca 900 cggccgcata atcgaaatta atacgactca ctatagggga attgtgagcg gataacaatt 960 ccccatctta gtatattagt taagtataag aaggagatat acatatgcaa ttaaaaggta 1020 aaagtgcaat agtaactggt gcagcaagtg gaataggaaa agcaatagca gaattacttg 1080 caaaagaagg tgcagcagta gcaatagctg atttaaattt agaagcagca agagcagcag 1140 cagctggaat agaagcagct ggcggaaaag ctatagctgt agcaatggat gtaactagtg 1200 aagcaagtgt aaatcaagca actgatgaag tagcacaagc atttggaaat atagatatat 1260 tagtaagtaa tgctggaata caaatagtaa atcctataca aaattatgca tttagtgatt 1320 ggaaaaaaat gcaagcaata catgtagatg gtgcattttt aactactaaa gcagcattga 1380 aatatatgta tagagataaa agaggtggaa ctgtaatata tatgggaagt gtacattctc 1440 atgaagcaag tcctttaaaa agtgcttatg tagcagcaaa acatgcatta ttaggattag 1500 caagagtatt agctaaagaa ggtgctgaat tcaacgtaag atctcacgtt atatgtcctg 1560 gatttgtaag aactccttta gtagataaac aaatacctga acaagcaaaa gaattaggaa 1620 taagtgaaga agaagtagtt agaagagtaa tgttaggtgg aacagtagac ggtgtattta 1680 ctactgtaga tgatgtagca agaactgcat tatttttatg tgcatttcct agtgcagcat 1740 taactggaca aagttttata gtaagtcatg gatggtatat gcaataaggt accctcgagt 1800 ctggtaaaga aaccgctgct gcgaaatttg aacgccagca catggactcg tctactagcg 1860 cagcttaatt aacctaggct gctgccaccg ctgagcaata actagcataa ccccttgggg 1920 cctctaaacg ggtcttgagg ggttttttgc tgaaacctca ggcatttgag aagcacacgg 1980 tcacactgct tccggtagtc aataaaccgg taaaccagca atagacataa gcggctattt 2040 aacgaccctg ccctgaaccg acgaccgggt catcgtggcc ggatcttgcg gcccctcggc 2100 ttgaacgaat tgttagacat tatttgccga ctaccttggt gatctcgcct ttcacgtagt 2160 ggacaaattc ttccaactga tctgcgcgcg aggccaagcg atcttcttct tgtccaagat 2220 aagcctgtct agcttcaagt atgacgggct gatactgggc cggcaggcgc tccattgccc 2280 agtcggcagc gacatccttc ggcgcgattt tgccggttac tgcgctgtac caaatgcggg 2340 acaacgtaag cactacattt cgctcatcgc cagcccagtc gggcggcgag ttccatagcg 2400 ttaaggtttc atttagcgcc tcaaatagat cctgttcagg aaccggatca aagagttcct 2460 ccgccgctgg acctaccaag gcaacgctat gttctcttgc ttttgtcagc aagatagcca 2520 gatcaatgtc gatcgtggct ggctcgaaga tacctgcaag aatgtcattg cgctgccatt 2580 ctccaaattg cagttcgcgc ttagctggat aacgccacgg aatgatgtcg tcgtgcacaa 2640 caatggtgac ttctacagcg cggagaatct cgctctctcc aggggaagcc gaagtttcca 2700 aaaggtcgtt gatcaaagct cgccgcgttg tttcatcaag ccttacggtc accgtaacca 2760 gcaaatcaat atcactgtgt ggcttcaggc cgccatccac tgcggagccg tacaaatgta 2820 cggccagcaa cgtcggttcg agatggcgct cgatgacgcc aactacctct gatagttgag 2880 tcgatacttc ggcgatcacc gcttccctca tactcttcct ttttcaatat tattgaagca 2940 tttatcaggg ttattgtctc atgagcggat acatatttga atgtatttag aaaaataaac 3000 aaatagctag ctcactcggt cgctacgctc cgggcgtgag actgcggcgg gcgctgcgga 3060 cacatacaaa gttacccaca gattccgtgg ataagcaggg gactaacatg tgaggcaaaa 3120 cagcagggcc gcgccggtgg cgtttttcca taggctccgc cctcctgcca gagttcacat 3180 aaacagacgc ttttccggtg catctgtggg agccgtgagg ctcaaccatg aatctgacag 3240 tacgggcgaa acccgacagg acttaaagat ccccaccgtt tccggcgggt cgctccctct 3300 tgcgctctcc tgttccgacc ctgccgttta ccggatacct gttccgcctt tctcccttac 3360 gggaagtgtg gcgctttctc atagctcaca cactggtatc tcggctcggt gtaggtcgtt 3420 cgctccaagc tgggctgtaa gcaagaactc cccgttcagc ccgactgctg cgccttatcc 3480 ggtaactgtt cacttgagtc caacccggaa aagcacggta aaacgccact ggcagcagcc 3540 attggtaact gggagttcgc agaggatttg tttagctaaa cacgcggttg ctcttgaagt 3600 gtgcgccaaa gtccggctac actggaagga cagatttggt tgctgtgctc tgcgaaagcc 3660 agttaccacg gttaagcagt tccccaactg acttaacctt cgatcaaacc acctccccag 3720 gtggtttttt cgtttacagg gcaaaagatt acgcgcagaa aaaaaggatc tcaagaagat 3780 cctttgatct tttctactga accgctctag atttcagtgc aatttatctc ttcaaatgta 3840 gcacctgaag tcagccccat acgatataag ttgtaattct catgttagtc atgccccgcg 3900 cccaccggaa ggagctgact gggttgaagg ctctcaaggg catcggtcga gatcccggtg 3960 cctaatgagt gagctaactt acattaattg cgttgcgctc actgcccgct ttccagtcgg 4020 gaaacctgtc gtgccagctg cattaatgaa tcggccaacg cgcggggaga ggcggtttgc 4080 gtattgggcg ccagggtggt ttttcttttc accagtgaga cgggcaacag ctgattgccc 4140 ttcaccgcct ggccctgaga gagttgcagc aagcggtcca cgctggtttg ccccagcagg 4200 cgaaaatcct gtttgatggt ggttaacggc gggatataac atgagctgtc ttcggtatcg 4260 tcgtatccca ctaccgagat gtccgcacca acgcgcagcc cggactcggt aatggcgcgc 4320 attgcgccca gcgccatctg atcgttggca accagcatcg cagtgggaac gatgccctca 4380 ttcagcattt gcatggtttg ttgaaaaccg gacatggcac tccagtcgcc ttcccgttcc 4440 gctatcggct gaatttgatt gcgagtgaga tatttatgcc agccagccag acgcagacgc 4500 gccgagacag aacttaatgg gcccgctaac agcgcgattt gctggtgacc caatgcgacc 4560 agatgctcca cgcccagtcg cgtaccgtct tcatgggaga aaataatact gttgatgggt 4620 gtctggtcag agacatcaag aaataacgcc ggaacattag tgcaggcagc ttccacagca 4680 atggcatcct ggtcatccag cggatagtta atgatcagcc cactgacgcg ttgcgcgaga 4740 agattgtgca ccgccgcttt acaggcttcg acgccgcttc gttctaccat cgacaccacc 4800 acgctggcac ccagttgatc ggcgcgagat ttaatcgccg cgacaatttg cgacggcgcg 4860 tgcagggcca gactggaggt ggcaacgcca atcagcaacg actgtttgcc cgccagttgt 4920 tgtgccacgc ggttgggaat gtaattcagc tccgccatcg ccgcttccac tttttcccgc 4980 gttttcgcag aaacgtggct ggcctggttc accacgcggg aaacggtctg ataagagaca 5040 ccggcatact ctgcgacatc gtataacgtt actggtttca cattcaccac cctgaattga 5100 ctctcttccg ggcgctatca tgccataccg cgaaaggttt tgcgccattc gatggtgtcc 5160 gggatctcga cgctctccct tatgcgactc ctgcattagg aaattaatac gactcactat 5220 a 5221 <210> SEQ ID NO 121 <211> LENGTH: 10922 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pMTL8225-budA::thlA-phaB, plasmid <400> SEQUENCE: 121 aaactccttt ttgataatct catgaccaaa atcccttaac gtgagttttc gttccactga 60 gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag atcctttttt tctgcgcgta 120 atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa 180 gagctaccaa ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact 240 gttcttctag tgtagccgta gttaggccac cacttcaaga actctgtagc accgcctaca 300 tacctcgctc tgctaatcct gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt 360 accgggttgg actcaagacg atagttaccg gataaggcgc agcggtcggg ctgaacgggg 420 ggttcgtgca cacagcccag cttggagcga acgacctaca ccgaactgag atacctacag 480 cgtgagctat gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta 540 agcggcaggg tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggtat 600 ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg 660 tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc 720 ttttgctggc cttttgctca catgttcttt cctgcgttat cccctgattc tgtggataac 780 cgtattaccg cctttgagtg agctgatacc gctcgccgca gccgaacgac cgagcgcagc 840 gagtcagtga gcgaggaagc ggaagagcgc ccaatacgca gggccccctg cttcggggtc 900 attatagcga ttttttcggt atatccatcc tttttcgcac gatatacagg attttgccaa 960 agggttcgtg tagactttcc ttggtgtatc caacggcgtc agccgggcag gataggtgaa 1020 gtaggcccac ccgcgagcgg gtgttccttc ttcactgtcc cttattcgca cctggcggtg 1080 ctcaacggga atcctgctct gcgaggctgg ccggctaccg ccggcgtaac agatgagggc 1140 aagcggatgg ctgatgaaac caagccaacc aggaagggca gcccacctat caaggtgtac 1200 tgccttccag acgaacgaag agcgattgag gaaaaggcgg cggcggccgg catgagcctg 1260 tcggcctacc tgctggccgt cggccagggc tacaaaatca cgggcgtcgt ggactatgag 1320 cacgtccgcg agctggcccg catcaatggc gacctgggcc gcctgggcgg cctgctgaaa 1380 ctctggctca ccgacgaccc gcgcacggcg cggttcggtg atgccacgat cctcgccctg 1440 ctggcgaaga tcgaagagaa gcaggacgag cttggcaagg tcatgatggg cgtggtccgc 1500 ccgagggcag agccatgact tttttagccg ctaaaacggc cggggggtgc gcgtgattgc 1560 caagcacgtc cccatgcgct ccatcaagaa gagcgacttc gcggagctgg tgaagtacat 1620 caccgacgag caaggcaaga ccgatcgggc cccctgcagg ataaaaaaat tgtagataaa 1680 ttttataaaa tagttttatc tacaattttt ttatcaggaa acagctatga ccgcggccgc 1740 ggcgccaagc ttagaaaaat ataaataaga agtagcttta agagaattaa attattaaga 1800 aaagcaaagg tgtttaaaaa ataaattttt aaacaccttt gcttttctta aattataaat 1860 aagataaaaa agaatcctga ataaaataaa aaggggtgtc tcaaaatttt attttgagac 1920 gacccctttt tattctatat gtcgatgcta tagctgagat cgtggaattc ttgttagcta 1980 ccagattcac atttaagttg tttctctaaa ccacagatta tcaattcaag tccaaaaaga 2040 aatgctggtt ctgcgccttg atgatcaaat aactctattg cttgtcttaa caatggaggc 2100 attgaatctg ttgttggtgt ttctctttcc tcttttgcaa cttgatgttc ttgatcctcc 2160 aatacgcaac ctaaagtaaa atgtcctaca gcacttagtg cgtataaggc attttctaaa 2220 ctaaaaccct gttgacataa gaatgctaat tgattttcta atgtttcata ttgtttttca 2280 gttggtctag ttcctaaatg tactttagcc ccatctctat gtgataatag agcacaacga 2340 aaagatttag cgttattcct aagaaaatct tgccatgatt caccttctaa aggacaaaag 2400 tgagtgtgat gtctatctaa catttcaata gctaaggcgt caagtaaagc tctcttattc 2460 ttcacatgcc aatacaacgt aggttgttct actccaagtt tctgagctaa ctttcttgta 2520 gttagtcctt ctattccaac ttcatttagt aattccaatg cactattgat aactttactt 2580 ttatcaagtc tagacatcat ttaatatcct cctcttcaat atatttaagt cgactgatcg 2640 gatcctgatc ggagctccca tggcggccgg tcgatatcga tgtgtagtag cctgtgaaat 2700 aagtaaggaa aaaaaagaag taagtgttat atatgatgat tattttgtag atgtagatag 2760 gataatagaa tccatagaaa atataggtta tacagttata taaaaattac tttaaaatct 2820 atcattgata gggtaaaata taaatcgtat aaagttgtgt aatttttaag gaggtgtgtt 2880 acagacgtcc gcgagagacc ttaaatatat tgaagaggag gaaatacata tggtttcaag 2940 atatgttcca gatatgggag atttaatatg ggttgatttt gatccaacaa aaggatcaga 3000 acaagcagga catagaccag cagttgtttt atcaccattt atgtataata ataaaacagg 3060 aatgtgttta tgtgttccat gtacaacaca atcaaaagga tatccatttg aagttgtttt 3120 atcaggacaa gaaagagatg gagttgcatt agcagatcaa gttaaatcaa tagcatggag 3180 agcaagagga gcaacaaaaa aaggaacagt tgcaccagaa gaattacaat taataaaagc 3240 aaaaataaat gttttaatag gataatgtta ttaagctagc ataaaaataa gaagcctgca 3300 tttgcaggct tcttattttt atggcgcgcc gttctgaatc cttagctaat ggttcaacag 3360 gtaactatga cgaagatagc accctggata agtctgtaat ggattctaag gcatttaatg 3420 aagacgtgta tataaaatgt gctaatgaaa aagaaaatgc gttaaaagag cctaaaatga 3480 gttcaaatgg ttttgaaatt gattggtagt ttaatttaat atattttttc tattggctat 3540 ctcgatacct atagaatctt ctgttcactt ttgtttttga aatataaaaa ggggcttttt 3600 agcccctttt ttttaaaact ccggaggagt ttcttcattc ttgatactat acgtaactat 3660 tttcgatttg acttcattgt caattaagct agtaaaatca atggttaaaa aacaaaaaac 3720 ttgcattttt ctacctagta atttataatt ttaagtgtcg agtttaaaag tataatttac 3780 caggaaagga gcaagttttt taataaggaa aaatttttcc ttttaaaatt ctatttcgtt 3840 atatgactaa ttataatcaa aaaaatgaaa ataaacaaga ggtaaaaact gctttagaga 3900 aatgtactga taaaaaaaga aaaaatccta gatttacgtc atacatagca cctttaacta 3960 ctaagaaaaa tattgaaagg acttccactt gtggagatta tttgtttatg ttgagtgatg 4020 cagacttaga acattttaaa ttacataaag gtaatttttg cggtaataga ttttgtccaa 4080 tgtgtagttg gcgacttgct tgtaaggata gtttagaaat atctattctt atggagcatt 4140 taagaaaaga agaaaataaa gagtttatat ttttaactct tacaactcca aatgtaaaaa 4200 gttatgatct taattattct attaaacaat ataataaatc ttttaaaaaa ttaatggagc 4260 gtaaggaagt taaggatata actaaaggtt atataagaaa attagaagta acttaccaaa 4320 aggaaaaata cataacaaag gatttatgga aaataaaaaa agattattat caaaaaaaag 4380 gacttgaaat tggtgattta gaacctaatt ttgatactta taatcctcat tttcatgtag 4440 ttattgcagt taataaaagt tattttacag ataaaaatta ttatataaat cgagaaagat 4500 ggttggaatt atggaagttt gctactaagg atgattctat aactcaagtt gatgttagaa 4560 aagcaaaaat taatgattat aaagaggttt acgaacttgc gaaatattca gctaaagaca 4620 ctgattattt aatatcgagg ccagtatttg aaatttttta taaagcatta aaaggcaagc 4680 aggtattagt ttttagtgga ttttttaaag atgcacacaa attgtacaag caaggaaaac 4740 ttgatgttta taaaaagaaa gatgaaatta aatatgtcta tatagtttat tataattggt 4800 gcaaaaaaca atatgaaaaa actagaataa gggaacttac ggaagatgaa aaagaagaat 4860 taaatcaaga tttaatagat gaaatagaaa tagattaaag tgtaactata ctttatatat 4920 atatgattaa aaaaataaaa aacaacagcc tattaggttg ttgtttttta ttttctttat 4980 taattttttt aatttttagt ttttagttct tttttaaaat aagtttcagc ctctttttca 5040 atatttttta aagaaggagt atttgcatga attgcctttt ttctaacaga cttaggaaat 5100 attttaacag tatcttcttg cgccggtgat tttggaactt cataacttac taatttataa 5160 ttattatttt cttttttaat tgtaacagtt gcaaaagaag ctgaacctgt tccttcaact 5220 agtttatcat cttcaatata atattcttga cctatatagt ataaatatat ttttattata 5280 tttttacttt tttctgaatc tattatttta taatcataaa aagttttacc accaaaagaa 5340 ggttgtactc cttctggtcc aacatatttt tttactatat tatctaaata atttttggga 5400 actggtgttg taatttgatt aatcgaacaa ccagttatac ttaaaggaat tataactata 5460 aaaatatata ggattatctt tttaaatttc attattggcc tcctttttat taaatttatg 5520 ttaccataaa aaggacataa cgggaatatg tagaatattt ttaatgtaga caaaatttta 5580 cataaatata aagaaaggaa gtgtttgttt aaattttata gcaaactatc aaaaattagg 5640 gggataaaaa tttatgaaaa aaaggttttc gatgttattt ttatgtttaa ctttaatagt 5700 ttgtggttta tttacaaatt cggccggcct acctcctcgt ataaataaga tgtttttgtt 5760 ttgcttgata ctactttttc ttcacaggaa aatatacttc agtaacaaga tctttaggaa 5820 tggtgacttg gtgggggtca gttacatata cttcatatgg tgggtttgta agtttatatc 5880 cttcattttc tacccattcc ctcaacttag catatacaga gatgttaatt ctgaatatga 5940 gccccttaaa acagacttcg cacaaaggac tccaggcaag tatcttgttc cctttacaat 6000 ctcctttatc ggaatggcaa gttctgtatc attgccagaa ggattgtatt cagcgctgtg 6060 ataaatagtt attggcttac caagaaagtc aattacaaaa atatatataa agaaagcaaa 6120 gctacatata ttaaagcatt taaggtaaaa ctaaaaatat tataaaaatg aaattatttt 6180 ttctcatagc taaagttaca taatacgagg aggatttata atgaaaaaag taataggaat 6240 tataagtatt gtactatttg tactcgtagc acttcaatcc tgtgctgcag gagtaggaaa 6300 tgcattaagt aataacaaag aagctagtgg atctgctgga ttatttttat ctgtatgtat 6360 gcttattgct ggaataatag caataatatc aaaatatagt aaaggtatga ctataacagc 6420 tatagtattt tatttgttag cttttgttgt agggattgct aatgttgggc atttttcaga 6480 tttgcaaatt tggtcaatca ttaacttgat atttgctgga ctattgatat ttcatttgct 6540 taaaaataag caattatata atagcagtgg gaaaaagtag aatcatatat tgtaattatt 6600 tttaattatg ttggcaaaat tgaaattgtc actgaaacac ctctaaatgt tttaaataca 6660 tatgtttaat tattgtgaca gattctaata gtagaaagta gaaatttgct atgttataat 6720 gacatagagg tgaatgtaat atgaaagaag ttgtaatagc tagtgcagta agaacagcga 6780 ttggatctta tggaaagtct cttaaggatg taccagcagt agatttagga gctacagcta 6840 taaaggaagc agttaaaaaa gcaggaataa aaccagagga tgttaatgaa gtcattttag 6900 gaaatgttct tcaagcaggt ttaggacaga atccagcaag acaggcatct tttaaagcag 6960 gattaccagt tgaaattcca gctatgacta ttaataaggt ttgtggttca ggacttagaa 7020 cagttagctt agcagcacaa attataaaag caggagatgc tgacgtaata atagcaggtg 7080 gtatggaaaa tatgtctaga gctccttact tagcgaataa cgctagatgg ggatatagaa 7140 tgggaaacgc taaatttgtt gatgaaatga tcactgacgg attgtgggat gcatttaatg 7200 attaccacat gggaataaca gcagaaaaca tagctgagag atggaacatt tcaagagaag 7260 aacaagatga gtttgctctt gcatcacaaa aaaaagctga agaagctata aaatcaggtc 7320 aatttaaaga tgaaatagtt cctgtagtaa ttaaaggcag aaagggagaa actgtagttg 7380 atacagatga gcaccctaga tttggatcaa ctatagaagg acttgcaaaa ttaaaacctg 7440 ccttcaaaaa agatggaaca gttacagctg gtaatgcatc aggattaaat gactgtgcag 7500 cagtacttgt aatcatgagt gcagaaaaag ctaaagagct tggagtaaaa ccacttgcta 7560 agatagtttc ttatggttca gcaggagttg acccagcaat aatgggatat ggacctttct 7620 atgcaacaaa agcagctatt gaaaaagcag gttggacagt tgatgaatta gatttaatag 7680 aatcaaatga agcttttgca gctcaaagtt tagcagtagc aaaagattta aaatttgata 7740 tgaataaagt aaatgtaaat ggaggagcta ttgcccttgg tcatccaatt ggagcatcag 7800 gtgcaagaat actcgttact cttgtacacg caatgcaaaa aagagatgca aaaaaaggct 7860 tagcaacttt atgtataggt ggcggacaag gaacagcaat attgctagaa aagtgctagg 7920 aattcaggag gtatagcata tgacacaaag aatagcatac gtaacaggtg gtatgggtgg 7980 tataggaact gcaatatgtc aaagattagc aaaagatgga tttagagttg tagctggatg 8040 cggaccaaat agtcctagaa gagaaaagtg gttagaacaa caaaaagcac ttggatttga 8100 tttcatagct tctgaaggta acgtagcaga ttgggactca actaaaactg cttttgataa 8160 agttaaatct gaagttggtg aagttgatgt attaataaat aatgcaggta ttactagaga 8220 tgtagtattt agaaagatga caagagctga ctgggatgca gtaatagata ctaatcttac 8280 tagtcttttc aatgtaacta agcaggtaat tgatggtatg gcagatagag gttggggtag 8340 aatagtaaat attagttcag ttaatggaca aaaaggtcag tttggacaga caaattattc 8400 tacagctaaa gcaggtcttc atggttttac aatggcttta gcacaggaag ttgctacaaa 8460 aggtgttaca gttaacactg ttagtccagg atatattgct actgacatgg taaaggctat 8520 aagacaagat gttcttgata aaattgttgc tacaatacca gtaaagagat taggacttcc 8580 tgaagagata gcatctattt gtgcatggtt atcaagtgaa gaatcaggat tctcaactgg 8640 tgctgatttt tcattaaacg gtggtttaca catgggataa taccgttcgt ataatgtatg 8700 ctatacgaag ttatccttag aagcaaactt aagagtgtgt tgatagtgca gtatcttaaa 8760 attttgtgta taataggaat tgaagttaaa ttagatgcta aaaatttgta attaagaagg 8820 agggattcgt catgttggta ttccaaatgc gtaatgtaga taaaacatct actgttttga 8880 aacagactaa aaacagtgat tacgcagata aataaatacg ttagattaat tcctaccagt 8940 gactaatctt atgacttttt aaacagataa ctaaaattac aaacaaatcg tttaacttct 9000 gtatttattt acagatgtaa tcacttcagg agtaattaca tgaacaaaaa tataaaatat 9060 tctcaaaact ttttaacgag tgaaaaagta ctcaaccaaa taataaaaca attgaattta 9120 aaagaaaccg ataccgttta cgaaattgga acaggtaaag ggcatttaac gacgaaactg 9180 gctaaaataa gtaaacaggt aacgtctatt gaattagaca gtcatctatt caacttatcg 9240 tcagaaaaat taaaactgaa cattcgtgtc actttaattc accaagatat tctacagttt 9300 caattcccta acaaacagag gtataaaatt gttgggagta ttccttacca tttaagcaca 9360 caaattatta aaaaagtggt ttttgaaagc catgcgtctg acatctatct gattgttgaa 9420 gaaggattct acaagcgtac cttggatatt caccgaacac tagggttgct cttgcacact 9480 caagtctcga ttcagcaatt gcttaagctg ccagcggaat gctttcatcc taaaccaaaa 9540 gtaaacagtg tcttaataaa acttacccgc cataccacag atgttccaga taaatattgg 9600 aagctatata cgtactttgt ttcaaaatgg gtcaatcgag aatatcgtca actgtttact 9660 aaaaatcagt ttcatcaagc aatgaaacac gccaaagtaa acaatttaag taccattact 9720 tatgagcaag tattgtctat ttttaatagt tatctattat ttaacgggag gaaataattc 9780 tatgagtcgc ttttttaaat ttggaaagtt acacgttact aaagggaatg gagataaatt 9840 attagatata ctactgacag cttccaagaa gctaaagagg tcataacttc gtataatgta 9900 tgctatacga acggtaagta ttgatagaaa aaaacactag acagtgctaa taacaatgtc 9960 tagtgctttt tatcttgctc aattttttca ttgagttcat ttaagtaagt ccacctgtcc 10020 atcttttcgt ctagctcttt ttccagtgaa ttcttttcgg ataagagatc ttcaagaagt 10080 gcataatcag atgaagcagc ttccatttct attttctttt cagatataga tttttctaga 10140 tgttcaatta cctcatctat tttgtcaaac tccatttgtt ctgcataggt aaattttaga 10200 ggcttttctt tttgcaactt atagttgttt ttagctgtat ttttcttaga gcttattttt 10260 tcctctgata tttttgcagt tttgtgaaaa taggaatagt ttcctgtata ttgagtgatt 10320 ttaccgtttc cttcaaaaga aaatatttta tcaactgttt tgtcaaggaa gtacctgtca 10380 tgagatacag ctataacagc tccttcaaaa tcgttaatat aatcttctag gattgtaagt 10440 gtttctatat ccagatcatt tgttggttcg tccagcaaaa gtacattagg gtaattcatc 10500 agtattttta gaagatataa tcttcttcgt tctcctcctg aaagttttcc aaggggagtc 10560 cattgaactg aaggttcaaa taaaaaattt tcaagtacag cagaagcact tattttttca 10620 cccgatgaag ttgacgcata ttctgatgtc ccacgtatgt attcaattac cctttcgttc 10680 atatccatat cagaaattcc ctgagaatag tatcctatct ttactgtttc acctatatct 10740 atagtgccgc tgtccggcag aattttttga actaaaatat tcataagagt ggatttacca 10800 cttccattag gtccaataat acctattctg tcattattta gtatgttata agtgaaattt 10860 ttaattaatg tcttttcacc aaaacttttg cttatgttat ccaggtttat gactttttgt 10920 tt 10922 <210> SEQ ID NO 122 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN01 <400> SEQUENCE: 122 atttacaaat tcggccggcc tacctcctcg tataaataag atg 43 <210> SEQ ID NO 123 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN02 <400> SEQUENCE: 123 ctagctatta caacttcttt catattacat tcacctctat gtc 43 <210> SEQ ID NO 124 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN03 <400> SEQUENCE: 124 gacatagagg tgaatgtaat atgaaagaag ttgtaatagc tag 43 <210> SEQ ID NO 125 <211> LENGTH: 49 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN04mod <400> SEQUENCE: 125 gtatagcata cattatacga acggtattat cccatgtgta aaccaccgt 49 <210> SEQ ID NO 126 <211> LENGTH: 48 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN05mod <400> SEQUENCE: 126 ttcgtataat gtatgctata cgaagttatc cttagaagca aacttaag 48 <210> SEQ ID NO 127 <211> LENGTH: 46 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN06 <400> SEQUENCE: 127 gtctagtgtt tttttctatc aatactctag ataccgttcg tatagc 46 <210> SEQ ID NO 128 <211> LENGTH: 46 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN07 <400> SEQUENCE: 128 tgtatgctat acgaacggta agtattgata gaaaaaaaca ctagac 46 <210> SEQ ID NO 129 <211> LENGTH: 40 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN08 <400> SEQUENCE: 129 caaaaaggag tttaaacaaa aagtcataaa cctggataac 40 <210> SEQ ID NO 130 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Og31f <400> SEQUENCE: 130 ccgtttctca caacaacaat accag 25 <210> SEQ ID NO 131 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Og32r <400> SEQUENCE: 131 aaaccacctt gacgatgaaa ccata 25 <210> SEQ ID NO 132 <211> LENGTH: 7951 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pMTL8315-Pfdx-thlA-phaB-bld, plasmid <400> SEQUENCE: 132 cctgcaggat aaaaaaattg tagataaatt ttataaaata gttttatcta caattttttt 60 atcaggaaac agctatgacc gcggccgctc actatctgcg gaacctgcct ccttatctga 120 taaaaaatat tcgctgcatc tttgacttgt tattttcttt caaatgccta aaattatctt 180 ttaaaattat aacaaatgtg ataaaataca ggggatgaaa acattatcta aaaattaagg 240 aggtgttaca tatgaaagaa gttgtaatag ctagtgcagt aagaacagcg attggatctt 300 atggaaagtc tcttaaggat gtaccagcag tagatttagg agctacagct ataaaggaag 360 cagttaaaaa agcaggaata aaaccagagg atgttaatga agtcatttta ggaaatgttc 420 ttcaagcagg tttaggacag aatccagcaa gacaggcatc ttttaaagca ggattaccag 480 ttgaaattcc agctatgact attaataagg tttgtggttc aggacttaga acagttagct 540 tagcagcaca aattataaaa gcaggagatg ctgacgtaat aatagcaggt ggtatggaaa 600 atatgtctag agctccttac ttagcgaata acgctagatg gggatataga atgggaaacg 660 ctaaatttgt tgatgaaatg atcactgacg gattgtggga tgcatttaat gattaccaca 720 tgggaataac agcagaaaac atagctgaga gatggaacat ttcaagagaa gaacaagatg 780 agtttgctct tgcatcacaa aaaaaagctg aagaagctat aaaatcaggt caatttaaag 840 atgaaatagt tcctgtagta attaaaggca gaaagggaga aactgtagtt gatacagatg 900 agcaccctag atttggatca actatagaag gacttgcaaa attaaaacct gccttcaaaa 960 aagatggaac agttacagct ggtaatgcat caggattaaa tgactgtgca gcagtacttg 1020 taatcatgag tgcagaaaaa gctaaagagc ttggagtaaa accacttgct aagatagttt 1080 cttatggttc agcaggagtt gacccagcaa taatgggata tggacctttc tatgcaacaa 1140 aagcagctat tgaaaaagca ggttggacag ttgatgaatt agatttaata gaatcaaatg 1200 aagcttttgc agctcaaagt ttagcagtag caaaagattt aaaatttgat atgaataaag 1260 taaatgtaaa tggaggagct attgcccttg gtcatccaat tggagcatca ggtgcaagaa 1320 tactcgttac tcttgtacac gcaatgcaaa aaagagatgc aaaaaaaggc ttagcaactt 1380 tatgtatagg tggcggacaa ggaacagcaa tattgctaga aaagtgctag gaattcagga 1440 ggtatagcat atgacacaaa gaatagcata cgtaacaggt ggtatgggtg gtataggaac 1500 tgcaatatgt caaagattag caaaagatgg atttagagtt gtagctggat gcggaccaaa 1560 tagtcctaga agagaaaagt ggttagaaca acaaaaagca cttggatttg atttcatagc 1620 ttctgaaggt aacgtagcag attgggactc aactaaaact gcttttgata aagttaaatc 1680 tgaagttggt gaagttgatg tattaataaa taatgcaggt attactagag atgtagtatt 1740 tagaaagatg acaagagctg actgggatgc agtaatagat actaatctta ctagtctttt 1800 caatgtaact aagcaggtaa ttgatggtat ggcagataga ggttggggta gaatagtaaa 1860 tattagttca gttaatggac aaaaaggtca gtttggacag acaaattatt ctacagctaa 1920 agcaggtctt catggtttta caatggcttt agcacaggaa gttgctacaa aaggtgttac 1980 agttaacact gttagtccag gatatattgc tactgacatg gtaaaggcta taagacaaga 2040 tgttcttgat aaaattgttg ctacaatacc agtaaagaga ttaggacttc ctgaagagat 2100 agcatctatt tgtgcatggt tatcaagtga agaatcagga ttctcaactg gtgctgattt 2160 ttcattaaac ggtggtttac acatgggata agaaggagat atacatatga taaaagatac 2220 acttgttagt attacaaaag atttaaaact taaaactaat gttgaaaatg caaatcttaa 2280 aaattataaa gatgatagtt cttgttttgg agtatttgaa aatgttgaaa atgcaataag 2340 taatgcagta catgctcaaa aaattttatc tcttcattat acaaaagaac agagagaaaa 2400 aattataact gaaattagaa aagcagcttt agaaaataaa gaaatattag ctacaatgat 2460 tcttgaagaa actcacatgg gaagatatga agataaaata cttaaacatg aacttgtagc 2520 aaaatataca cctggaactg aagatttaac tacaactgct tggtcaggtg ataatggact 2580 tacagtagtt gaaatgagtc cttatggagt tataggagca attacacctt ctactaatcc 2640 aacagaaact gtaatatgta attcaattgg tatgattgca gctggaaata ctgtagtttt 2700 taatggtcat cctggagcta aaaaatgtgt agcatttgct gttgaaatga ttaataaagc 2760 tataattagt tgtggaggtc ctgaaaatct tgttacaact ataaaaaatc caacaatgga 2820 ttctcttgat gcaataatta aacatccttc aattaaactt ctttgtggta caggaggtcc 2880 aggaatggta aaaactcttc ttaattctgg taaaaaagct ataggagcag gtgctggaaa 2940 tcctccagta attgttgatg atacagcaga tatagaaaaa gctggtaaat caattattga 3000 aggatgtagt tttgataata atttaccatg tatagcagaa aaagaagtat ttgtttttga 3060 aaatgttgct gatgatttaa ttagtaatat gcttaaaaat aatgcagtaa taattaatga 3120 agatcaagtt tctaaactta tagatttagt attacagaaa aataatgaaa cacaggaata 3180 ttctattaat aaaaaatggg taggaaaaga tgcaaaatta tttcttgatg aaatagatgt 3240 agaatcacct tcaagtgtta aatgtataat ttgtgaagtt tctgcttcac atccatttgt 3300 aatgactgaa ttaatgatgc ctatacttcc aattgtaaga gttaaagata tagatgaagc 3360 aatagaatat gcaaaaattg ctgaacagaa tagaaaacat agtgcttata tttattctaa 3420 aaatatagat aatttaaata gatttgaaag agaaatagat acaactattt ttgttaaaaa 3480 tgcaaaatca tttgctggtg taggatatga agcagaaggt tttacaactt ttacaatagc 3540 tggaagtact ggtgaaggta ttacaagtgc aagaaatttt acaagacaga gaagatgtgt 3600 tttagcaggt taatctagag tcgacgtcac gcgtccatgg agatctcgag gcctgcagac 3660 atgcaagctt ggcactggcc gtcgttttac aacgtcgtga ctgggaaaac cctggcgtta 3720 cccaacttaa tcgccttgca gcacatcccc ctttcgccag ctggcgtaat agcgaagagg 3780 cccgcaccga tcgcccttcc caacagttgc gcagcctgaa tggcgaatgg cgctagcata 3840 aaaataagaa gcctgcattt gcaggcttct tatttttatg gcgcgccgcc attatttttt 3900 tgaacaattg acaattcatt tcttattttt tattaagtga tagtcaaaag gcataacagt 3960 gctgaataga aagaaattta cagaaaagaa aattatagaa tttagtatga ttaattatac 4020 tcatttatga atgtttaatt gaatacaaaa aaaaatactt gttatgtatt caattacggg 4080 ttaaaatata gacaagttga aaaatttaat aaaaaaataa gtcctcagct cttatatatt 4140 aagctaccaa cttagtatat aagccaaaac ttaaatgtgc taccaacaca tcaagccgtt 4200 agagaactct atctatagca atatttcaaa tgtaccgaca tacaagagaa acattaacta 4260 tatatattca atttatgaga ttatcttaac agatataaat gtaaattgca ataagtaaga 4320 tttagaagtt tatagccttt gtgtattgga agcagtacgc aaaggctttt ttatttgata 4380 aaaattagaa gtatatttat tttttcataa ttaatttatg aaaatgaaag ggggtgagca 4440 aagtgacaga ggaaagcagt atcttatcaa ataacaaggt attagcaata tcattattga 4500 ctttagcagt aaacattatg acttttatag tgcttgtagc taagtagtac gaaaggggga 4560 gctttaaaaa gctccttgga atacatagaa ttcataaatt aatttatgaa aagaagggcg 4620 tatatgaaaa cttgtaaaaa ttgcaaagag tttattaaag atactgaaat atgcaaaata 4680 cattcgttga tgattcatga taaaacagta gcaacctatt gcagtaaata caatgagtca 4740 agatgtttac ataaagggaa agtccaatgt attaattgtt caaagatgaa ccgatatgga 4800 tggtgtgcca taaaaatgag atgttttaca gaggaagaac agaaaaaaga acgtacatgc 4860 attaaatatt atgcaaggag ctttaaaaaa gctcatgtaa agaagagtaa aaagaaaaaa 4920 taatttattt attaatttaa tattgagagt gccgacacag tatgcactaa aaaatatatc 4980 tgtggtgtag tgagccgata caaaaggata gtcactcgca ttttcataat acatcttatg 5040 ttatgattat gtgtcggtgg gacttcacga cgaaaaccca caataaaaaa agagttcggg 5100 gtagggttaa gcatagttga ggcaactaaa caatcaagct aggatatgca gtagcagacc 5160 gtaaggtcgt tgtttaggtg tgttgtaata catacgctat taagatgtaa aaatacggat 5220 accaatgaag ggaaaagtat aatttttgga tgtagtttgt ttgttcatct atgggcaaac 5280 tacgtccaaa gccgtttcca aatctgctaa aaagtatatc ctttctaaaa tcaaagtcaa 5340 gtatgaaatc ataaataaag tttaattttg aagttattat gatattatgt ttttctatta 5400 aaataaatta agtatataga atagtttaat aatagtatat acttaatgtg ataagtgtct 5460 gacagtgtca cagaaaggat gattgttatg gattataagc ggccggccag tgggcaagtt 5520 gaaaaattca caaaaatgtg gtataatatc tttgttcatt agagcgataa acttgaattt 5580 gagagggaac ttagatggta tttgaaaaaa ttgataaaaa tagttggaac agaaaagagt 5640 attttgacca ctactttgca agtgtacctt gtacctacag catgaccgtt aaagtggata 5700 tcacacaaat aaaggaaaag ggaatgaaac tatatcctgc aatgctttat tatattgcaa 5760 tgattgtaaa ccgccattca gagtttagga cggcaatcaa tcaagatggt gaattgggga 5820 tatatgatga gatgatacca agctatacaa tatttcacaa tgatactgaa acattttcca 5880 gcctttggac tgagtgtaag tctgacttta aatcattttt agcagattat gaaagtgata 5940 cgcaacggta tggaaacaat catagaatgg aaggaaagcc aaatgctccg gaaaacattt 6000 ttaatgtatc tatgataccg tggtcaacct tcgatggctt taatctgaat ttgcagaaag 6060 gatatgatta tttgattcct atttttacta tggggaaata ttataaagaa gataacaaaa 6120 ttatacttcc tttggcaatt caagttcatc acgcagtatg tgacggattt cacatttgcc 6180 gttttgtaaa cgaattgcag gaattgataa atagttaact tcaggtttgt ctgtaactaa 6240 aaacaagtat ttaagcaaaa acatcgtaga aatacggtgt tttttgttac cctaagttta 6300 aactcctttt tgataatctc atgaccaaaa tcccttaacg tgagttttcg ttccactgag 6360 cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa 6420 tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag 6480 agctaccaac tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg 6540 ttcttctagt gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat 6600 acctcgctct gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta 6660 ccgggttgga ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg 6720 gttcgtgcac acagcccagc ttggagcgaa cgacctacac cgaactgaga tacctacagc 6780 gtgagctatg agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa 6840 gcggcagggt cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc 6900 tttatagtcc tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt 6960 caggggggcg gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct 7020 tttgctggcc ttttgctcac atgttctttc ctgcgttatc ccctgattct gtggataacc 7080 gtattaccgc ctttgagtga gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg 7140 agtcagtgag cgaggaagcg gaagagcgcc caatacgcag ggccccctgc ttcggggtca 7200 ttatagcgat tttttcggta tatccatcct ttttcgcacg atatacagga ttttgccaaa 7260 gggttcgtgt agactttcct tggtgtatcc aacggcgtca gccgggcagg ataggtgaag 7320 taggcccacc cgcgagcggg tgttccttct tcactgtccc ttattcgcac ctggcggtgc 7380 tcaacgggaa tcctgctctg cgaggctggc cggctaccgc cggcgtaaca gatgagggca 7440 agcggatggc tgatgaaacc aagccaacca ggaagggcag cccacctatc aaggtgtact 7500 gccttccaga cgaacgaaga gcgattgagg aaaaggcggc ggcggccggc atgagcctgt 7560 cggcctacct gctggccgtc ggccagggct acaaaatcac gggcgtcgtg gactatgagc 7620 acgtccgcga gctggcccgc atcaatggcg acctgggccg cctgggcggc ctgctgaaac 7680 tctggctcac cgacgacccg cgcacggcgc ggttcggtga tgccacgatc ctcgccctgc 7740 tggcgaagat cgaagagaag caggacgagc ttggcaaggt catgatgggc gtggtccgcc 7800 cgagggcaga gccatgactt ttttagccgc taaaacggcc ggggggtgcg cgtgattgcc 7860 aagcacgtcc ccatgcgctc catcaagaag agcgacttcg cggagctggt gaagtacatc 7920 accgacgagc aaggcaagac cgatcgggcc c 7951 <210> SEQ ID NO 133 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: bld-phaB-F1, forward <400> SEQUENCE: 133 acatgggata agaaggagat atacatatga taaaag 36 <210> SEQ ID NO 134 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: bld-pMTL-R1, forward <400> SEQUENCE: 134 cgtcgactct agattaacct gctaaaacac atcttc 36 <210> SEQ ID NO 135 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pMTL-bld-F1, forward <400> SEQUENCE: 135 gtgttttagc aggttaatct agagtcgacg tcacgc 36 <210> SEQ ID NO 136 <211> LENGTH: 1179 <212> TYPE: DNA <213> ORGANISM: Clostridium acetobutylicum <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: thlA <400> SEQUENCE: 136 atgaaagaag ttgtaatagc tagtgcagta agaacagcga ttggatctta tggaaagtct 60 cttaaggatg taccagcagt agatttagga gctacagcta taaaggaagc agttaaaaaa 120 gcaggaataa aaccagagga tgttaatgaa gtcattttag gaaatgttct tcaagcaggt 180 ttaggacaga atccagcaag acaggcatct tttaaagcag gattaccagt tgaaattcca 240 gctatgacta ttaataaggt ttgtggttca ggacttagaa cagttagctt agcagcacaa 300 attataaaag caggagatgc tgacgtaata atagcaggtg gtatggaaaa tatgtctaga 360 gctccttact tagcgaataa cgctagatgg ggatatagaa tgggaaacgc taaatttgtt 420 gatgaaatga tcactgacgg attgtgggat gcatttaatg attaccacat gggaataaca 480 gcagaaaaca tagctgagag atggaacatt tcaagagaag aacaagatga gtttgctctt 540 gcatcacaaa aaaaagctga agaagctata aaatcaggtc aatttaaaga tgaaatagtt 600 cctgtagtaa ttaaaggcag aaagggagaa actgtagttg atacagatga gcaccctaga 660 tttggatcaa ctatagaagg acttgcaaaa ttaaaacctg ccttcaaaaa agatggaaca 720 gttacagctg gtaatgcatc aggattaaat gactgtgcag cagtacttgt aatcatgagt 780 gcagaaaaag ctaaagagct tggagtaaaa ccacttgcta agatagtttc ttatggttca 840 gcaggagttg acccagcaat aatgggatat ggacctttct atgcaacaaa agcagctatt 900 gaaaaagcag gttggacagt tgatgaatta gatttaatag aatcaaatga agcttttgca 960 gctcaaagtt tagcagtagc aaaagattta aaatttgata tgaataaagt aaatgtaaat 1020 ggaggagcta ttgcccttgg tcatccaatt ggagcatcag gtgcaagaat actcgttact 1080 cttgtacacg caatgcaaaa aagagatgca aaaaaaggct tagcaacttt atgtataggt 1140 ggcggacaag gaacagcaat attgctagaa aagtgctag 1179 <210> SEQ ID NO 137 <211> LENGTH: 849 <212> TYPE: DNA <213> ORGANISM: Clostridium kluyveri <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: hbd1 <400> SEQUENCE: 137 atgagtatta aaagtgtagc ggttttaggt agtggaacta tgtctcgtgg aattgtgcag 60 gcttttgcag aagcaggtat agatgtaatt atccgtggaa gaactgaagg tagtattgga 120 aaaggtctag cagcagtaaa gaaagcttat gataaaaaag tatcaaaggg gaaaatttcc 180 caggaagatg ctgataaaat agttggaaga gtaagtacaa caactgaact tgaaaaattg 240 gctgattgtg atcttataat agaagcagca tcagaggata tgaatataaa gaaagactat 300 tttggaaaat tagaagaaat atgcaagcct gaaacaattt ttgctactaa tacttcttca 360 ttatctataa ctgaagtagc aacagctaca aagagaccag ataaattcat aggaatgcat 420 ttctttaatc cagcaaatgt tatgaaatta gttgaaatca taagaggtat gaatacttca 480 caagaaactt ttgatattat aaaagaagct tccattaaaa taggaaaaac tcctgtagaa 540 gttgcagaag ctccaggatt tgttgtaaac aagatattag taccaatgat caatgaagca 600 gtaggaattt tggcagaagg aatagcttca gcagaagata tcgatacagc tatgaaatta 660 ggcgctaatc acccaatggg tcctttagca ttaggagatc ttattggact tgatgtagtt 720 cttgcagtta tggatgtact ttatagtgaa actggagatt caaaatatag agctcataca 780 ttacttagaa aatatgtaag agcaggatgg cttggaagaa aatcaggaaa aggattcttc 840 gcttattaa 849 <210> SEQ ID NO 138 <211> LENGTH: 176 <212> TYPE: DNA <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: ferredoxin promoter <400> SEQUENCE: 138 ggccgcgctc actatctgcg gaacctgcct ccttatctga taaaaaatat tcgctgcatc 60 tttgacttgt tattttcttt caaatgccta aaattatctt ttaaaattat aacaaatgtg 120 ataaaataca ggggatgaaa acattatcta aaaattaagg aggtgttaca gaattc 176 <210> SEQ ID NO 139 <211> LENGTH: 474 <212> TYPE: DNA <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pyruvate-ferredoxin oxidoreductase promoter <400> SEQUENCE: 139 aaaatagttg ataataatgc agagttataa acaaaggtga aaagcattac ttgtattctt 60 ttttatatat tattataaat taaaatgaag ctgtattaga aaaaatacac acctgtaata 120 taaaatttta aattaatttt taattttttc aaaatgtatt ttacatgttt agaattttga 180 tgtatattaa aatagtagaa tacataagat acttaattta attaaagata gttaagtact 240 tttcaatgtg cttttttaga tgtttaatac aaatctttaa ttgtaaaaga aatgctgtac 300 tatttactgt actagtgacg ggattaaact gtattaatta taaataaaaa ataagtacag 360 ttgtttaaaa ttatattttg tattaaatct aatagtacga tgtaagttat tttatactat 420 tgctagttta ataaaaagat ttaattatat gcttgaaaag gagaggaatt cata 474 <210> SEQ ID NO 140 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: ribosome binding site rbs2 <400> SEQUENCE: 140 aaatagaaag gaggtgttac at 22 <210> SEQ ID NO 141 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Pfdx-F1, forward <400> SEQUENCE: 141 aaaggtctcc ggccgcgctc actatctgcg gaacc 35 <210> SEQ ID NO 142 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Pfdx-R1, reverse <400> SEQUENCE: 142 tttggtctcg aattctgtaa cacctcctta atttttag 38 <210> SEQ ID NO 143 <211> LENGTH: 40 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Ppfor-F1, forward <400> SEQUENCE: 143 aaaggtctcc ggccgcaaaa tagttgataa taatgcagag 40 <210> SEQ ID NO 144 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Ppfor-R1, reverse <400> SEQUENCE: 144 tttggtctcg aattcctctc cttttcaagc atata 35 <210> SEQ ID NO 145 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: hbd1-F1, forward <400> SEQUENCE: 145 aaaggtctcg aattcaaaga tctatgtcta ttaaatcagt tgcag 45 <210> SEQ ID NO 146 <211> LENGTH: 47 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: hbd1-R1, reverse <400> SEQUENCE: 146 tttggtctcc ctcctttcta tttctaatat gcgaaaaatc ctttacc 47 <210> SEQ ID NO 147 <211> LENGTH: 49 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: thlA-F1, forward <400> SEQUENCE: 147 aaaggtctca ggaggtgtta catatgaaag aagttgtaat agctagtgc 49 <210> SEQ ID NO 148 <211> LENGTH: 48 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: thlA-R1, reverse <400> SEQUENCE: 148 tttggtctcc tcgagtatgg atccctagca cttttctagc aatattgc 48 <210> SEQ ID NO 149 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Ppfor-F2, forward <400> SEQUENCE: 149 aaacagctat gaccgcggcc gcaaaatagt 30 <210> SEQ ID NO 150 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Ppfor-R2, reverse <400> SEQUENCE: 150 ttactcattg gattcctctc cttt 24 <210> SEQ ID NO 151 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Ptb-Buk-F2, forward <400> SEQUENCE: 151 ggaatccaat gagtaaaaac tttgatgag 29 <210> SEQ ID NO 152 <211> LENGTH: 37 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Ptb-Buk-F2, reverse <400> SEQUENCE: 152 caggcctcga gatctcctag taaaccttag cttgttc 37 <210> SEQ ID NO 153 <211> LENGTH: 7884 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pMTL82256-ptb-buk, plasmid <400> SEQUENCE: 153 gagatctcga ggcctgcaga catgcaagct tggcactggc cgtcgtttta caacgtcgtg 60 actgggaaaa ccctggcgtt acccaactta atcgccttgc agcacatccc cctttcgcca 120 gctggcgtaa tagcgaagag gcccgcaccg atcgcccttc ccaacagttg cgcagcctga 180 atggcgaatg gcgctagcat aaaaataaga agcctgcatt tgcaggcttc ttatttttat 240 ggcgcgccgt tctgaatcct tagctaatgg ttcaacaggt aactatgacg aagatagcac 300 cctggataag tctgtaatgg attctaaggc atttaatgaa gacgtgtata taaaatgtgc 360 taatgaaaaa gaaaatgcgt taaaagagcc taaaatgagt tcaaatggtt ttgaaattga 420 ttggtagttt aatttaatat attttttcta ttggctatct cgatacctat agaatcttct 480 gttcactttt gtttttgaaa tataaaaagg ggctttttag cccctttttt ttaaaactcc 540 ggaggagttt cttcattctt gatactatac gtaactattt tcgatttgac ttcattgtca 600 attaagctag taaaatcaat ggttaaaaaa caaaaaactt gcatttttct acctagtaat 660 ttataatttt aagtgtcgag tttaaaagta taatttacca ggaaaggagc aagtttttta 720 ataaggaaaa atttttcctt ttaaaattct atttcgttat atgactaatt ataatcaaaa 780 aaatgaaaat aaacaagagg taaaaactgc tttagagaaa tgtactgata aaaaaagaaa 840 aaatcctaga tttacgtcat acatagcacc tttaactact aagaaaaata ttgaaaggac 900 ttccacttgt ggagattatt tgtttatgtt gagtgatgca gacttagaac attttaaatt 960 acataaaggt aatttttgcg gtaatagatt ttgtccaatg tgtagttggc gacttgcttg 1020 taaggatagt ttagaaatat ctattcttat ggagcattta agaaaagaag aaaataaaga 1080 gtttatattt ttaactctta caactccaaa tgtaaaaagt tatgatctta attattctat 1140 taaacaatat aataaatctt ttaaaaaatt aatggagcgt aaggaagtta aggatataac 1200 taaaggttat ataagaaaat tagaagtaac ttaccaaaag gaaaaataca taacaaagga 1260 tttatggaaa ataaaaaaag attattatca aaaaaaagga cttgaaattg gtgatttaga 1320 acctaatttt gatacttata atcctcattt tcatgtagtt attgcagtta ataaaagtta 1380 ttttacagat aaaaattatt atataaatcg agaaagatgg ttggaattat ggaagtttgc 1440 tactaaggat gattctataa ctcaagttga tgttagaaaa gcaaaaatta atgattataa 1500 agaggtttac gaacttgcga aatattcagc taaagacact gattatttaa tatcgaggcc 1560 agtatttgaa attttttata aagcattaaa aggcaagcag gtattagttt ttagtggatt 1620 ttttaaagat gcacacaaat tgtacaagca aggaaaactt gatgtttata aaaagaaaga 1680 tgaaattaaa tatgtctata tagtttatta taattggtgc aaaaaacaat atgaaaaaac 1740 tagaataagg gaacttacgg aagatgaaaa agaagaatta aatcaagatt taatagatga 1800 aatagaaata gattaaagtg taactatact ttatatatat atgattaaaa aaataaaaaa 1860 caacagccta ttaggttgtt gttttttatt ttctttatta atttttttaa tttttagttt 1920 ttagttcttt tttaaaataa gtttcagcct ctttttcaat attttttaaa gaaggagtat 1980 ttgcatgaat tgcctttttt ctaacagact taggaaatat tttaacagta tcttcttgcg 2040 ccggtgattt tggaacttca taacttacta atttataatt attattttct tttttaattg 2100 taacagttgc aaaagaagct gaacctgttc cttcaactag tttatcatct tcaatataat 2160 attcttgacc tatatagtat aaatatattt ttattatatt tttacttttt tctgaatcta 2220 ttattttata atcataaaaa gttttaccac caaaagaagg ttgtactcct tctggtccaa 2280 catatttttt tactatatta tctaaataat ttttgggaac tggtgttgta atttgattaa 2340 tcgaacaacc agttatactt aaaggaatta taactataaa aatatatagg attatctttt 2400 taaatttcat tattggcctc ctttttatta aatttatgtt accataaaaa ggacataacg 2460 ggaatatgta gaatattttt aatgtagaca aaattttaca taaatataaa gaaaggaagt 2520 gtttgtttaa attttatagc aaactatcaa aaattagggg gataaaaatt tatgaaaaaa 2580 aggttttcga tgttattttt atgtttaact ttaatagttt gtggtttatt tacaaattcg 2640 gccggccgaa gcaaacttaa gagtgtgttg atagtgcagt atcttaaaat tttgtataat 2700 aggaattgaa gttaaattag atgctaaaaa tttgtaatta agaaggagtg attacatgaa 2760 caaaaatata aaatattctc aaaacttttt aacgagtgaa aaagtactca accaaataat 2820 aaaacaattg aatttaaaag aaaccgatac cgtttacgaa attggaacag gtaaagggca 2880 tttaacgacg aaactggcta aaataagtaa acaggtaacg tctattgaat tagacagtca 2940 tctattcaac ttatcgtcag aaaaattaaa actgaatact cgtgtcactt taattcacca 3000 agatattcta cagtttcaat tccctaacaa acagaggtat aaaattgttg ggagtattcc 3060 ttaccattta agcacacaaa ttattaaaaa agtggttttt gaaagccatg cgtctgacat 3120 ctatctgatt gttgaagaag gattctacaa gcgtaccttg gatattcacc gaacactagg 3180 gttgctcttg cacactcaag tctcgattca gcaattgctt aagctgccag cggaatgctt 3240 tcatcctaaa ccaaaagtaa acagtgtctt aataaaactt acccgccata ccacagatgt 3300 tccagataaa tattggaagc tatatacgta ctttgtttca aaatgggtca atcgagaata 3360 tcgtcaactg tttactaaaa atcagtttca tcaagcaatg aaacacgcca aagtaaacaa 3420 tttaagtacc gttacttatg agcaagtatt gtctattttt aatagttatc tattatttaa 3480 cgggaggaaa taattctatg agtcgctttt gtaaatttgg aaagttacac gttactaaag 3540 ggaatgtgtt taaactcctt tttgataatc tcatgaccaa aatcccttaa cgtgagtttt 3600 cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatccttttt 3660 ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt 3720 tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc agagcgcaga 3780 taccaaatac tgttcttcta gtgtagccgt agttaggcca ccacttcaag aactctgtag 3840 caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc agtggcgata 3900 agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg 3960 gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga 4020 gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca 4080 ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa 4140 acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag cgtcgatttt 4200 tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg gcctttttac 4260 ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta tcccctgatt 4320 ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc agccgaacga 4380 ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cccaatacgc agggccccct 4440 gcttcggggt cattatagcg attttttcgg tatatccatc ctttttcgca cgatatacag 4500 gattttgcca aagggttcgt gtagactttc cttggtgtat ccaacggcgt cagccgggca 4560 ggataggtga agtaggccca cccgcgagcg ggtgttcctt cttcactgtc ccttattcgc 4620 acctggcggt gctcaacggg aatcctgctc tgcgaggctg gccggctacc gccggcgtaa 4680 cagatgaggg caagcggatg gctgatgaaa ccaagccaac caggaagggc agcccaccta 4740 tcaaggtgta ctgccttcca gacgaacgaa gagcgattga ggaaaaggcg gcggcggccg 4800 gcatgagcct gtcggcctac ctgctggccg tcggccaggg ctacaaaatc acgggcgtcg 4860 tggactatga gcacgtccgc gagctggccc gcatcaatgg cgacctgggc cgcctgggcg 4920 gcctgctgaa actctggctc accgacgacc cgcgcacggc gcggttcggt gatgccacga 4980 tcctcgccct gctggcgaag atcgaagaga agcaggacga gcttggcaag gtcatgatgg 5040 gcgtggtccg cccgagggca gagccatgac ttttttagcc gctaaaacgg ccggggggtg 5100 cgcgtgattg ccaagcacgt ccccatgcgc tccatcaaga agagcgactt cgcggagctg 5160 gtgaagtaca tcaccgacga gcaaggcaag accgatcggg ccccctgcag gataaaaaaa 5220 ttgtagataa attttataaa atagttttat ctacaatttt tttatcagga aacagctatg 5280 accgcggccg caaaatagtt gataataatg cagagttata aacaaaggtg aaaagcatta 5340 cttgtattct tttttatata ttattataaa ttaaaatgaa gctgtattag aaaaaataca 5400 cacctgtaat ataaaatttt aaattaattt ttaatttttt caaaatgtat tttacatgtt 5460 tagaattttg atgtatatta aaatagtaga atacataaga tacttaattt aattaaagat 5520 agttaagtac ttttcaatgt gcttttttag atgtttaata caaatcttta attgtaaaag 5580 aaatgctgta ctatttactg tactagtgac gggattaaac tgtattaatt ataaataaaa 5640 aataagtaca gttgtttaaa attatatttt gtattaaatc taatagtacg atgtaagtta 5700 ttttatacta ttgctagttt aataaaaaga tttaattata tgcttgaaaa ggagaggaat 5760 ccaatgagta aaaactttga tgagttatta tcaagattaa aggaagttcc aacaaaaaaa 5820 gtggctgtag ccgtagcaca agatgaacca gtattagagg ctataaaaga agctacagaa 5880 aataacatcg cacaagcaat attggttggt gataaacaac aaatccatga aatcgcaaag 5940 aaaataaact tggacttatc tgattatgaa ataatggata ttaaagatcc aaagaaagca 6000 acattagaag cagtaaaatt agtttctagt ggtcatgcag atatgttaat gaaaggtcta 6060 gttgatactg caacattcct aagaagcgta ttaaacaaag aggttggtct tagaacagga 6120 aaattaatgt cccatgtagc tgtgtttgat gtggaaggtt gggatagact gttattttta 6180 actgatgcag catttaatac atatccagaa tttaaggata aagttggaat gataaataat 6240 gcagttgtag ttgctcatgc atgtggaata gatgttccaa gagtagcacc tatatgccca 6300 gttgaagttg taaatacaag tatgcaatca acagttgatg cagcattgtt agctaaaatg 6360 agtgacaggg ggcaaattaa aggatgcgta attgatggac cttttgcctt agataatgca 6420 atatcagaag aagcagctca tcataaaggt gttacaggat cagtagcagg taaagctgat 6480 atattattat taccaaatat agaagcagca aatgtaatgt ataaaacatt aacatatttc 6540 tctaaatcaa gaaatggtgg acttttagta ggtacatcag caccagtaat tttaacttca 6600 agagcagatt cattcgaaac taaagttaat tcaattgctc ttgcagcatt agttgcagca 6660 agaaataagt aataaatcaa tccataataa ttaatgcata attaatggag agatttatat 6720 ggaatttgca atgcactatt agattctata ataatttctt ctgaaaatta tgcattatga 6780 ctgtatagaa tgcattaaat ttaaggggga ttcagaatgt catataagct attaataatc 6840 aatccaggtt caacatcaac aaagattggt gtttacgaag gagaaaagga actatttgaa 6900 gaaactttga gacacacaaa tgaagaaata aagagatatg atacaatata tgatcaattt 6960 gaatttagaa aagaagttat attaaatgtt cttaaagaaa agaattttga tataaagact 7020 ctaagtgcta ttgttggtag aggtggaatg cttagaccag ttgaaggtgg aacatatgca 7080 gtaaatgatg caatggttga agatttaaaa gttggagttc aaggacctca tgcttctaac 7140 cttggcggaa taattgccaa gtcaattgga gatgaattaa atattccatc atttatagta 7200 gatccagttg ttacagatga gttagcagat gtagcaagac tatctggagt accagaacta 7260 ccaagaaaaa gtaaattcca tgctttaaat caaaaagcgg tagctaaaag atatggaaaa 7320 gaaagtggac aaggatatga aaacctaaat cttgtagttg tacatatggg tggaggcgtt 7380 tcagttggtg ctcacaatca tgggaaagtt gtcgatgtaa ataatgcatt agatggagat 7440 ggcccattct caccagaaag agctggatca gttccaattg gtgatttagt taaaatgtgt 7500 tttagtggaa aatatagtga agcagaagta tatggcaagg ctgtaggaaa aggtggattt 7560 gttggttatc taaacacaaa tgatgtaaaa ggtgttattg ataagatgga agaaggagat 7620 aaagaatgtg aatcaatata caaagcattt gtttatcaaa tttcaaaagc aatcggagaa 7680 atgtcagttg tattagaagg taaagttgat caaattattt ttaccggagg aattgcatac 7740 tcaccaacac ttgttccaga ccttaaagca aaagttgaat ggatagcccc agttacagtt 7800 tatcctggag aagatgaatt acttgctcta gctcaaggtg ctataagagt acttgatgga 7860 gaagaacaag ctaaggttta ctag 7884 <210> SEQ ID NO 154 <211> LENGTH: 436 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: thioesterase 1 <400> SEQUENCE: 154 Met Asn Asn Asp Asn Cys Thr Ile Lys Ile Thr Pro Glu Val Ser Arg 1 5 10 15 Val Asp Glu Pro Val Asp Ile Lys Ile Asn Gly Leu Pro Lys Asn Glu 20 25 30 Lys Val Ile Ile Arg Ala Val Ser Ser Asp Tyr Tyr Cys Ile Asn Ala 35 40 45 Ser Ile Leu Glu Ile Gly Asp Asn Thr Leu Trp Glu Ser Tyr Ala Val 50 55 60 Phe Glu Thr Asp Glu Cys Gly Asn Ile Asn Phe Glu Asn Ala Val Pro 65 70 75 80 Val Asp Gly Thr Tyr Ser Asn Cys Asp Lys Met Gly Leu Phe Tyr Ser 85 90 95 Met Arg Pro Lys Gln Ile Arg Lys Ser Lys Leu Ile Gln Lys Leu Ser 100 105 110 Ser Ile Asn Glu Asn Arg Lys Tyr Lys Ile Thr Phe Thr Val Glu Lys 115 120 125 Asn Gly Lys Ile Ile Gly Ser Lys Glu His Thr Arg Val Tyr Cys Asp 130 135 140 Asp Thr Ile Lys Ser Ile Asp Val Val Glu Lys Asn Leu Leu Ala Arg 145 150 155 160 Tyr Phe Thr Ser Lys Asp Asn Ile Lys His Pro Ala Ile Ile Val Leu 165 170 175 Ser Gly Ser Asp Gly Arg Ile Glu Lys Ala Gln Ala Ile Ala Glu Leu 180 185 190 Phe Ala Met Arg Gly Tyr Ser Ala Leu Ala Val Cys Tyr Phe Gly Leu 195 200 205 Glu Gly Thr Pro Glu Asp Leu Asn Met Ile Pro Leu Glu Tyr Val Glu 210 215 220 Asn Ala Val Lys Trp Leu Lys Arg Gln Asp Thr Val Asp Glu Asn Lys 225 230 235 240 Ile Ala Ile Tyr Gly Arg Ser Lys Gly Gly Glu Leu Val Leu Leu Ala 245 250 255 Ala Ser Met Phe Lys Asp Ile Ala Cys Val Ile Ala Asn Thr Pro Ser 260 265 270 Cys Tyr Val Tyr Glu Gly Ile Lys Ser Asn Lys Leu Pro Ser His His 275 280 285 Ser Ser Trp Met Tyr Arg Gly Arg Glu Ile Pro Tyr Leu Lys Phe Asn 290 295 300 Phe His Ile Ile Leu Arg Leu Ile Ile Lys Met Met Lys Lys Glu Lys 305 310 315 320 Gly Ala Leu Ala Trp Met Tyr Lys Lys Leu Ile Glu Glu Gly Asp Arg 325 330 335 Asp Lys Ala Thr Ile Ala Leu Asp Lys Ile Asn Gly Ser Val Leu Met 340 345 350 Ile Ser Ser Ala Ala Asp Glu Ile Trp Pro Ser Lys Met His Ser Glu 355 360 365 Thr Val Cys Ser Ile Phe Glu Lys Ser His Phe Lys His Glu Tyr Lys 370 375 380 His Ile Thr Phe Ala Lys Ser Gly His Ile Leu Thr Val Pro Phe Gln 385 390 395 400 Ser Ile Tyr Pro Ser Glu Lys Tyr Pro Tyr Asp Val Glu Ser Trp Ala 405 410 415 Lys Ala Asn Met Asp Ser Trp Asn Glu Thr Ile Lys Phe Leu Glu Lys 420 425 430 Trp Ala Ser Lys 435 <210> SEQ ID NO 155 <211> LENGTH: 60 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: thioesterase 2 <400> SEQUENCE: 155 Met Tyr Ile Asn Glu Thr Lys Val Val Val Arg Tyr Ala Glu Thr Asp 1 5 10 15 Lys Met Gly Ile Val His His Ser Asn Tyr Tyr Ile Tyr Phe Glu Glu 20 25 30 Ala Arg Thr Gln Phe Ile Lys Lys Thr Gly Ile Ser Tyr Ser Gln Met 35 40 45 Glu Lys Asp Gly Ile Met Phe Pro Leu Val Glu Ser 50 55 60 <210> SEQ ID NO 156 <211> LENGTH: 128 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: thioesterase 3 <400> SEQUENCE: 156 Met Asp Phe Ser Lys Leu Phe Lys Val Gly Ser Thr Tyr Val Ser Glu 1 5 10 15 Tyr Ile Val Lys Pro Glu Asp Thr Ala Asn Phe Ile Gly Asn Asn Gly 20 25 30 Val Val Met Leu Ser Thr Pro Ala Met Ile Lys Tyr Met Glu Tyr Thr 35 40 45 Thr Leu His Ile Val Asp Asn Val Ile Pro Lys Asn Tyr Arg Pro Val 50 55 60 Gly Thr Lys Ile Asp Val Glu His Ile Lys Pro Ile Pro Ala Asn Met 65 70 75 80 Lys Val Val Val Lys Val Thr Leu Ile Ser Ile Glu Gly Lys Lys Leu 85 90 95 Arg Tyr Asn Val Glu Ala Phe Asn Glu Lys Asn Cys Lys Val Gly Phe 100 105 110 Gly Ile Tyr Glu Gln Gln Ile Val Asn Leu Glu Gln Phe Leu Asn Arg 115 120 125 <210> SEQ ID NO 157 <211> LENGTH: 436 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: thioesterase 1 <400> SEQUENCE: 157 Met Asn Asn Asp Asn Cys Thr Ile Lys Ile Thr Pro Glu Val Ser Arg 1 5 10 15 Val Asp Glu Pro Val Asp Ile Lys Ile Asn Gly Leu Pro Lys Asn Glu 20 25 30 Lys Val Ile Ile Arg Ala Val Ser Ser Asp Tyr Tyr Cys Ile Asn Ala 35 40 45 Ser Ile Leu Glu Ile Gly Asp Asn Thr Leu Trp Glu Ser Tyr Ala Val 50 55 60 Phe Glu Thr Asp Glu Cys Gly Asn Ile Asn Phe Glu Asn Ala Val Pro 65 70 75 80 Val Asp Gly Thr Tyr Ser Asn Cys Asp Lys Met Gly Leu Phe Tyr Ser 85 90 95 Met Arg Pro Lys Gln Ile Arg Lys Ser Lys Leu Ile Gln Lys Leu Ser 100 105 110 Ser Ile Asn Glu Asn Arg Lys Tyr Lys Ile Thr Phe Thr Val Glu Lys 115 120 125 Asn Gly Lys Ile Ile Gly Ser Lys Glu His Thr Arg Val Tyr Cys Asp 130 135 140 Asp Thr Ile Lys Ser Ile Asp Val Val Glu Lys Asn Leu Leu Ala Arg 145 150 155 160 Tyr Phe Thr Ser Lys Asp Asn Ile Lys His Pro Ala Ile Ile Val Leu 165 170 175 Ser Gly Ser Asp Gly Arg Ile Glu Lys Ala Gln Ala Ile Ala Glu Leu 180 185 190 Phe Ala Met Arg Gly Tyr Ser Ala Leu Ala Val Cys Tyr Phe Gly Leu 195 200 205 Glu Gly Thr Pro Glu Asp Leu Asn Met Ile Pro Leu Glu Tyr Val Glu 210 215 220 Asn Ala Val Lys Trp Leu Lys Arg Gln Asp Thr Val Asp Glu Asn Lys 225 230 235 240 Ile Ala Ile Tyr Gly Arg Ser Lys Gly Gly Glu Leu Val Leu Leu Ala 245 250 255 Ala Ser Met Phe Lys Asp Ile Ala Cys Val Ile Ala Asn Thr Pro Ser 260 265 270 Cys Tyr Val Tyr Glu Gly Ile Lys Ser Asn Lys Leu Pro Ser His His 275 280 285 Ser Ser Trp Met Tyr Arg Gly Arg Glu Ile Pro Tyr Leu Lys Phe Asn 290 295 300 Phe His Ile Ile Leu Arg Leu Ile Ile Lys Met Met Lys Lys Glu Lys 305 310 315 320 Gly Ala Leu Ala Trp Met Tyr Lys Lys Leu Ile Glu Glu Gly Asp Arg 325 330 335 Asp Lys Ala Thr Ile Ala Leu Asp Lys Ile Asn Gly Ser Val Leu Met 340 345 350 Ile Ser Ser Ala Ala Asp Glu Ile Trp Pro Ser Lys Met His Ser Glu 355 360 365 Thr Val Cys Ser Ile Phe Glu Lys Ser His Phe Lys His Glu Tyr Lys 370 375 380 His Ile Thr Phe Ala Lys Ser Gly His Ile Leu Thr Val Pro Phe Gln 385 390 395 400 Ser Ile Tyr Pro Ser Glu Lys Tyr Pro Tyr Asp Val Glu Ser Trp Ala 405 410 415 Lys Ala Asn Met Asp Ser Trp Asn Glu Thr Ile Lys Phe Leu Glu Lys 420 425 430 Trp Ala Ser Lys 435 <210> SEQ ID NO 158 <211> LENGTH: 137 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: thioesterase 2 <400> SEQUENCE: 158 Met Tyr Ile Asn Glu Thr Lys Val Val Val Arg Tyr Ala Glu Thr Asp 1 5 10 15 Lys Met Gly Ile Val His His Ser Asn Tyr Tyr Ile Tyr Phe Glu Glu 20 25 30 Ala Arg Thr Gln Phe Ile Lys Lys Thr Gly Ile Ser Tyr Ser Gln Met 35 40 45 Glu Lys Asp Gly Ile Met Phe Pro Leu Val Glu Ser Asn Cys Arg Tyr 50 55 60 Leu Gln Gly Ala Lys Tyr Glu Asp Glu Leu Leu Ile Lys Thr Trp Ile 65 70 75 80 Lys Glu Leu Thr Pro Val Lys Ala Glu Phe Asn Tyr Ser Val Ile Arg 85 90 95 Glu Asn Asp Gln Lys Glu Ile Ala Lys Gly Ser Thr Leu His Ala Phe 100 105 110 Val Asn Asn Asn Phe Lys Ile Ile Asn Leu Lys Lys Asn His Thr Glu 115 120 125 Leu Phe Lys Lys Leu Gln Ser Leu Ile 130 135 <210> SEQ ID NO 159 <211> LENGTH: 128 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: thioesterase 3 <400> SEQUENCE: 159 Met Asp Phe Ser Lys Leu Phe Lys Val Gly Ser Thr Tyr Val Ser Glu 1 5 10 15 Tyr Ile Val Lys Pro Glu Asp Thr Ala Asn Phe Ile Gly Asn Asn Gly 20 25 30 Val Val Met Leu Ser Thr Pro Ala Met Ile Lys Tyr Met Glu Tyr Thr 35 40 45 Thr Leu His Ile Val Asp Asn Val Ile Pro Lys Asn Tyr Arg Pro Val 50 55 60 Gly Thr Lys Ile Asp Val Glu His Ile Lys Pro Ile Pro Ala Asn Met 65 70 75 80 Lys Val Val Val Lys Val Thr Leu Ile Ser Ile Glu Gly Lys Lys Leu 85 90 95 Arg Tyr Asn Val Glu Ala Phe Asn Glu Lys Asn Cys Lys Val Gly Phe 100 105 110 Gly Ile Tyr Glu Gln Gln Ile Val Asn Leu Glu Gln Phe Leu Asn Arg 115 120 125 <210> SEQ ID NO 160 <211> LENGTH: 11184 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pMTL8225-pta-ack::ptb-buk, plasmid <400> SEQUENCE: 160 aaactccttt ttgataatct catgaccaaa atcccttaac gtgagttttc gttccactga 60 gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag atcctttttt tctgcgcgta 120 atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa 180 gagctaccaa ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact 240 gttcttctag tgtagccgta gttaggccac cacttcaaga actctgtagc accgcctaca 300 tacctcgctc tgctaatcct gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt 360 accgggttgg actcaagacg atagttaccg gataaggcgc agcggtcggg ctgaacgggg 420 ggttcgtgca cacagcccag cttggagcga acgacctaca ccgaactgag atacctacag 480 cgtgagctat gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta 540 agcggcaggg tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggtat 600 ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg 660 tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc 720 ttttgctggc cttttgctca catgttcttt cctgcgttat cccctgattc tgtggataac 780 cgtattaccg cctttgagtg agctgatacc gctcgccgca gccgaacgac cgagcgcagc 840 gagtcagtga gcgaggaagc ggaagagcgc ccaatacgca gggccccctg cttcggggtc 900 attatagcga ttttttcggt atatccatcc tttttcgcac gatatacagg attttgccaa 960 agggttcgtg tagactttcc ttggtgtatc caacggcgtc agccgggcag gataggtgaa 1020 gtaggcccac ccgcgagcgg gtgttccttc ttcactgtcc cttattcgca cctggcggtg 1080 ctcaacggga atcctgctct gcgaggctgg ccggctaccg ccggcgtaac agatgagggc 1140 aagcggatgg ctgatgaaac caagccaacc aggaagggca gcccacctat caaggtgtac 1200 tgccttccag acgaacgaag agcgattgag gaaaaggcgg cggcggccgg catgagcctg 1260 tcggcctacc tgctggccgt cggccagggc tacaaaatca cgggcgtcgt ggactatgag 1320 cacgtccgcg agctggcccg catcaatggc gacctgggcc gcctgggcgg cctgctgaaa 1380 ctctggctca ccgacgaccc gcgcacggcg cggttcggtg atgccacgat cctcgccctg 1440 ctggcgaaga tcgaagagaa gcaggacgag cttggcaagg tcatgatggg cgtggtccgc 1500 ccgagggcag agccatgact tttttagccg ctaaaacggc cggggggtgc gcgtgattgc 1560 caagcacgtc cccatgcgct ccatcaagaa gagcgacttc gcggagctgg tgaagtacat 1620 caccgacgag caaggcaaga ccgatcgggc cccctgcagg ataaaaaaat tgtagataaa 1680 ttttataaaa tagttttatc tacaattttt ttatcaggaa acagctatga ccgcggccgc 1740 ggcgccaagc ttagaaaaat ataaataaga agtagcttta agagaattaa attattaaga 1800 aaagcaaagg tgtttaaaaa ataaattttt aaacaccttt gcttttctta aattataaat 1860 aagataaaaa agaatcctga ataaaataaa aaggggtgtc tcaaaatttt attttgagac 1920 gacccctttt tattctatat gtcgatgcta tagctgagat cgtggaattc ttgttagcta 1980 ccagattcac atttaagttg tttctctaaa ccacagatta tcaattcaag tccaaaaaga 2040 aatgctggtt ctgcgccttg atgatcaaat aactctattg cttgtcttaa caatggaggc 2100 attgaatctg ttgttggtgt ttctctttcc tcttttgcaa cttgatgttc ttgatcctcc 2160 aatacgcaac ctaaagtaaa atgtcctaca gcacttagtg cgtataaggc attttctaaa 2220 ctaaaaccct gttgacataa gaatgctaat tgattttcta atgtttcata ttgtttttca 2280 gttggtctag ttcctaaatg tactttagcc ccatctctat gtgataatag agcacaacga 2340 aaagatttag cgttattcct aagaaaatct tgccatgatt caccttctaa aggacaaaag 2400 tgagtgtgat gtctatctaa catttcaata gctaaggcgt caagtaaagc tctcttattc 2460 ttcacatgcc aatacaacgt aggttgttct actccaagtt tctgagctaa ctttcttgta 2520 gttagtcctt ctattccaac ttcatttagt aattccaatg cactattgat aactttactt 2580 ttatcaagtc tagacatcat ttaatatcct cctcttcaat atatttaagt cgactgatcg 2640 gatcctgatc ggagctccca tggcggccgg tcgatatcga tgtgtagtag cctgtgaaat 2700 aagtaaggaa aaaaaagaag taagtgttat atatgatgat tattttgtag atgtagatag 2760 gataatagaa tccatagaaa atataggtta tacagttata taaaaattac tttaaaatct 2820 atcattgata gggtaaaata taaatcgtat aaagttgtgt aatttttaag gaggtgtgtt 2880 acagacgtcc gcgagagacc ttaaatatat tgaagaggag gaaatacata tggtttcaag 2940 atatgttcca gatatgggag atttaatatg ggttgatttt gatccaacaa aaggatcaga 3000 acaagcagga catagaccag cagttgtttt atcaccattt atgtataata ataaaacagg 3060 aatgtgttta tgtgttccat gtacaacaca atcaaaagga tatccatttg aagttgtttt 3120 atcaggacaa gaaagagatg gagttgcatt agcagatcaa gttaaatcaa tagcatggag 3180 agcaagagga gcaacaaaaa aaggaacagt tgcaccagaa gaattacaat taataaaagc 3240 aaaaataaat gttttaatag gataatgtta ttaagctagc ataaaaataa gaagcctgca 3300 tttgcaggct tcttattttt atggcgcgcc gttctgaatc cttagctaat ggttcaacag 3360 gtaactatga cgaagatagc accctggata agtctgtaat ggattctaag gcatttaatg 3420 aagacgtgta tataaaatgt gctaatgaaa aagaaaatgc gttaaaagag cctaaaatga 3480 gttcaaatgg ttttgaaatt gattggtagt ttaatttaat atattttttc tattggctat 3540 ctcgatacct atagaatctt ctgttcactt ttgtttttga aatataaaaa ggggcttttt 3600 agcccctttt ttttaaaact ccggaggagt ttcttcattc ttgatactat acgtaactat 3660 tttcgatttg acttcattgt caattaagct agtaaaatca atggttaaaa aacaaaaaac 3720 ttgcattttt ctacctagta atttataatt ttaagtgtcg agtttaaaag tataatttac 3780 caggaaagga gcaagttttt taataaggaa aaatttttcc ttttaaaatt ctatttcgtt 3840 atatgactaa ttataatcaa aaaaatgaaa ataaacaaga ggtaaaaact gctttagaga 3900 aatgtactga taaaaaaaga aaaaatccta gatttacgtc atacatagca cctttaacta 3960 ctaagaaaaa tattgaaagg acttccactt gtggagatta tttgtttatg ttgagtgatg 4020 cagacttaga acattttaaa ttacataaag gtaatttttg cggtaataga ttttgtccaa 4080 tgtgtagttg gcgacttgct tgtaaggata gtttagaaat atctattctt atggagcatt 4140 taagaaaaga agaaaataaa gagtttatat ttttaactct tacaactcca aatgtaaaaa 4200 gttatgatct taattattct attaaacaat ataataaatc ttttaaaaaa ttaatggagc 4260 gtaaggaagt taaggatata actaaaggtt atataagaaa attagaagta acttaccaaa 4320 aggaaaaata cataacaaag gatttatgga aaataaaaaa agattattat caaaaaaaag 4380 gacttgaaat tggtgattta gaacctaatt ttgatactta taatcctcat tttcatgtag 4440 ttattgcagt taataaaagt tattttacag ataaaaatta ttatataaat cgagaaagat 4500 ggttggaatt atggaagttt gctactaagg atgattctat aactcaagtt gatgttagaa 4560 aagcaaaaat taatgattat aaagaggttt acgaacttgc gaaatattca gctaaagaca 4620 ctgattattt aatatcgagg ccagtatttg aaatttttta taaagcatta aaaggcaagc 4680 aggtattagt ttttagtgga ttttttaaag atgcacacaa attgtacaag caaggaaaac 4740 ttgatgttta taaaaagaaa gatgaaatta aatatgtcta tatagtttat tataattggt 4800 gcaaaaaaca atatgaaaaa actagaataa gggaacttac ggaagatgaa aaagaagaat 4860 taaatcaaga tttaatagat gaaatagaaa tagattaaag tgtaactata ctttatatat 4920 atatgattaa aaaaataaaa aacaacagcc tattaggttg ttgtttttta ttttctttat 4980 taattttttt aatttttagt ttttagttct tttttaaaat aagtttcagc ctctttttca 5040 atatttttta aagaaggagt atttgcatga attgcctttt ttctaacaga cttaggaaat 5100 attttaacag tatcttcttg cgccggtgat tttggaactt cataacttac taatttataa 5160 ttattatttt cttttttaat tgtaacagtt gcaaaagaag ctgaacctgt tccttcaact 5220 agtttatcat cttcaatata atattcttga cctatatagt ataaatatat ttttattata 5280 tttttacttt tttctgaatc tattatttta taatcataaa aagttttacc accaaaagaa 5340 ggttgtactc cttctggtcc aacatatttt tttactatat tatctaaata atttttggga 5400 actggtgttg taatttgatt aatcgaacaa ccagttatac ttaaaggaat tataactata 5460 aaaatatata ggattatctt tttaaatttc attattggcc tcctttttat taaatttatg 5520 ttaccataaa aaggacataa cgggaatatg tagaatattt ttaatgtaga caaaatttta 5580 cataaatata aagaaaggaa gtgtttgttt aaattttata gcaaactatc aaaaattagg 5640 gggataaaaa tttatgaaaa aaaggttttc gatgttattt ttatgtttaa ctttaatagt 5700 ttgtggttta tttacaaatt cggccggcca aagattgctc tatgtttaag ctattatatg 5760 aacttccaat tctttttatt gatatgggag taatattgct ttttattctt attaggtttt 5820 ttaaatattc tatacctaaa atattgtttg gagattgaag tatttcatct atattgtact 5880 ttgtaagaga acttttagta tttaatagaa aattatttaa agcactattt cgtgcagaag 5940 gataggacat accctgtgac attttttcct ttaaaaataa tttaaattgg gtaggctctt 6000 ctgcaagaat ttttgcaata gatttcagca agtttatatt actatattcg cttccaaaac 6060 aaagattttt tactacaccc aagttttcta agagacttac agcaccatag gcaaaaaatt 6120 cagcagaaga tagactgtag ataacaggaa gttcaaatac caggtctact ccatttagaa 6180 gtgccatttt ggttttagtc catttgtcaa ctatagatgg tgaacctctt tgcacgaagt 6240 taccactcat aactgctatt acagcatcac attttgtagc agaacgagca ctttcaatat 6300 gatatttatg tccattgtga aagggattat attcaactat tattccagtt acgttcatag 6360 aaattttcct ttctaaaata ttttattcca tgtcaagaac tctgtttatt tcattaaaga 6420 actataagta caaagtataa ggcatttgaa aaaataggct agtatattga ttgattattt 6480 attttaaaat gcctaagtga aatatataca tattataaca ataaaataag tattagtgta 6540 ggatttttaa atagagtatc tattttcaga ttaaattttt gattatttga tttacattat 6600 ataatattga gtaaagtatt gactagcaaa attttttgat actttaattt gtgaaatttc 6660 ttatcaaaag ttatattttt gaataatttt tattgaaaaa tacaactaaa aaggattata 6720 gtataagtgt gtgtaatttt gtgttaaatt taaagggagg aaatgaacat gaaattgatg 6780 agtaaaaact ttgatgagtt attatcaaga ttaaaggaag ttccaacaaa aaaagtggct 6840 gtagccgtag cacaagatga accagtatta gaggctataa aagaagctac agaaaataac 6900 atcgcacaag caatattggt tggtgataaa caacaaatcc atgaaatcgc aaagaaaata 6960 aacttggact tatctgatta tgaaataatg gatattaaag atccaaagaa agcaacatta 7020 gaagcagtaa aattagtttc tagtggtcat gcagatatgt taatgaaagg tctagttgat 7080 actgcaacat tcctaagaag cgtattaaac aaagaggttg gtcttagaac aggaaaatta 7140 atgtcccatg tagctgtgtt tgatgtggaa ggttgggata gactgttatt tttaactgat 7200 gcagcattta atacatatcc agaatttaag gataaagttg gaatgataaa taatgcagtt 7260 gtagttgctc atgcatgtgg aatagatgtt ccaagagtag cacctatatg cccagttgaa 7320 gttgtaaata caagtatgca atcaacagtt gatgcagcat tgttagctaa aatgagtgac 7380 agggggcaaa ttaaaggatg cgtaattgat ggaccttttg ccttagataa tgcaatatca 7440 gaagaagcag ctcatcataa aggtgttaca ggatcagtag caggtaaagc tgatatatta 7500 ttattaccaa atatagaagc agcaaatgta atgtataaaa cattaacata tttctctaaa 7560 tcaagaaatg gtggactttt agtaggtaca tcagcaccag taattttaac ttcaagagca 7620 gattcattcg aaactaaagt taattcaatt gctcttgcag cattagttgc agcaagaaat 7680 aagtaataaa tcaatccata ataattaatg cataattaat ggagagattt atatggaatt 7740 tgcaatgcac tattagattc tataataatt tcttctgaaa attatgcatt atgactgtat 7800 agaatgcatt aaatttaagg gggattcaga atgtcatata agctattaat aatcaatcca 7860 ggttcaacat caacaaagat tggtgtttac gaaggagaaa aggaactatt tgaagaaact 7920 ttgagacaca caaatgaaga aataaagaga tatgatacaa tatatgatca atttgaattt 7980 agaaaagaag ttatattaaa tgttcttaaa gaaaagaatt ttgatataaa gactctaagt 8040 gctattgttg gtagaggtgg aatgcttaga ccagttgaag gtggaacata tgcagtaaat 8100 gatgcaatgg ttgaagattt aaaagttgga gttcaaggac ctcatgcttc taaccttggc 8160 ggaataattg ccaagtcaat tggagatgaa ttaaatattc catcatttat agtagatcca 8220 gttgttacag atgagttagc agatgtagca agactatctg gagtaccaga actaccaaga 8280 aaaagtaaat tccatgcttt aaatcaaaaa gcggtagcta aaagatatgg aaaagaaagt 8340 ggacaaggat atgaaaacct aaatcttgta gttgtacata tgggtggagg cgtttcagtt 8400 ggtgctcaca atcatgggaa agttgtcgat gtaaataatg cattagatgg agatggccca 8460 ttctcaccag aaagagctgg atcagttcca attggtgatt tagttaaaat gtgttttagt 8520 ggaaaatata gtgaagcaga agtatatggc aaggctgtag gaaaaggtgg atttgttggt 8580 tatctaaaca caaatgatgt aaaaggtgtt attgataaga tggaagaagg agataaagaa 8640 tgtgaatcaa tatacaaagc atttgtttat caaatttcaa aagcaatcgg agaaatgtca 8700 gttgtattag aaggtaaagt tgatcaaatt atttttaccg gaggaattgc atactcacca 8760 acacttgttc cagaccttaa agcaaaagtt gaatggatag ccccagttac agtttatcct 8820 ggagaagatg aattacttgc tctagctcaa ggtgctataa gagtacttga tggagaagaa 8880 caagctaagg tttactagta ccgttcgtat aatgtatgct atacgaagtt atccttagaa 8940 gcaaacttaa gagtgtgttg atagtgcagt atcttaaaat tttgtgtata ataggaattg 9000 aagttaaatt agatgctaaa aatttgtaat taagaaggag ggattcgtca tgttggtatt 9060 ccaaatgcgt aatgtagata aaacatctac tgttttgaaa cagactaaaa acagtgatta 9120 cgcagataaa taaatacgtt agattaattc ctaccagtga ctaatcttat gactttttaa 9180 acagataact aaaattacaa acaaatcgtt taacttctgt atttatttac agatgtaatc 9240 acttcaggag taattacatg aacaaaaata taaaatattc tcaaaacttt ttaacgagtg 9300 aaaaagtact caaccaaata ataaaacaat tgaatttaaa agaaaccgat accgtttacg 9360 aaattggaac aggtaaaggg catttaacga cgaaactggc taaaataagt aaacaggtaa 9420 cgtctattga attagacagt catctattca acttatcgtc agaaaaatta aaactgaaca 9480 ttcgtgtcac tttaattcac caagatattc tacagtttca attccctaac aaacagaggt 9540 ataaaattgt tgggagtatt ccttaccatt taagcacaca aattattaaa aaagtggttt 9600 ttgaaagcca tgcgtctgac atctatctga ttgttgaaga aggattctac aagcgtacct 9660 tggatattca ccgaacacta gggttgctct tgcacactca agtctcgatt cagcaattgc 9720 ttaagctgcc agcggaatgc tttcatccta aaccaaaagt aaacagtgtc ttaataaaac 9780 ttacccgcca taccacagat gttccagata aatattggaa gctatatacg tactttgttt 9840 caaaatgggt caatcgagaa tatcgtcaac tgtttactaa aaatcagttt catcaagcaa 9900 tgaaacacgc caaagtaaac aatttaagta ccattactta tgagcaagta ttgtctattt 9960 ttaatagtta tctattattt aacgggagga aataattcta tgagtcgctt ttttaaattt 10020 ggaaagttac acgttactaa agggaatgga gataaattat tagatatact actgacagct 10080 tccaagaagc taaagaggtc ataacttcgt ataatgtatg ctatacgaac ggtagacttg 10140 acttttaatg ctcatctcta tataataggt tgtggctaat atatagaggt gagtgatatg 10200 aaattaaatg tatcagattt actaagtgaa gaagttgtta caaaggacat aaatgttaca 10260 gtagaagaaa agggattcta tgatggaagt gaatacataa agttattaga gcctctaaag 10320 tttagcggaa ctttaagtaa agaaggagat attcttctgt tggaaggaag aattaatact 10380 ttactagagc tcacttgttc acgatgtcta ggtaaattct cttatgctgt gaatgttgct 10440 attactgaaa aatttacaaa taataacaag gaaaataagg atgatgaagc catctttata 10500 gatagtaata tcattgatat tacggaaata atagaaaata acattatatt aattttacca 10560 attaagaggc tttgcagcga gaattgtaag gggttatgcc aacagtgcgg cactaactta 10620 aataattcta aatgtcagtg caaaagcgat gatattgatc cgagattggc aaagctaaaa 10680 gatatgtttt tcactgatta aggaggtgtt tactgtggga aatccagcca gcagaatatc 10740 aaaagcaaaa agagactcaa gaagagcaca gacttttaaa ttaggtttac caggtttagt 10800 tgagtgtcct cagtgccatg aaatgaaact tgcacataga gtttgtaaga attgtggata 10860 ttataagggt aaggaaatca tttcaactga aaataaataa aagaaagtca tttgactttc 10920 tttttttgtt catggggtct ataaaagtta gatcatatta agtaacaaaa ttaggtaaca 10980 aaggtccaga ttataggata ggatgtgaaa atatgataat tgctgtggat ggtatgggag 11040 gagattttgc accttgtgct gtagtggaag gtgtggtaga agcagttaaa aagcaaaacg 11100 taaatataat aataaccggc caaaaagagc aaattgaaaa tgaattagct aaatataatt 11160 atcctaagga caaaatagat attt 11184 <210> SEQ ID NO 161 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN22f <400> SEQUENCE: 161 tttacaaatt cggccggcca aagattgctc tatgtttaag ct 42 <210> SEQ ID NO 162 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN23r <400> SEQUENCE: 162 catcaaagtt tttactcatc aatttcatgt tcatttcctc cct 43 <210> SEQ ID NO 163 <211> LENGTH: 46 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN24f <400> SEQUENCE: 163 agggaggaaa tgaacatgaa attgatgagt aaaaactttg atgagt 46 <210> SEQ ID NO 164 <211> LENGTH: 50 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN25r <400> SEQUENCE: 164 gtatagcata cattatacga acggtactag taaaccttag cttgttcttc 50 <210> SEQ ID NO 165 <211> LENGTH: 50 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN26f <400> SEQUENCE: 165 gaagaacaag ctaaggttta ctagtaccgt tcgtataatg tatgctatac 50 <210> SEQ ID NO 166 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN27r <400> SEQUENCE: 166 agagatgagc attaaaagtc aagtctaccg ttcgtatagc ataca 45 <210> SEQ ID NO 167 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN28f <400> SEQUENCE: 167 tgtatgctat acgaacggta gacttgactt ttaatgctca tctct 45 <210> SEQ ID NO 168 <211> LENGTH: 47 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN29r <400> SEQUENCE: 168 catgagatta tcaaaaagga gtttaaatat ctattttgtc cttagga 47 <210> SEQ ID NO 169 <211> LENGTH: 47 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN30f <400> SEQUENCE: 169 tcctaaggac aaaatagata tttaaactcc tttttgataa tctcatg 47 <210> SEQ ID NO 170 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SN31r <400> SEQUENCE: 170 agcttaaaca tagagcaatc tttggccggc cgaatttgta aa 42 <210> SEQ ID NO 171 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Og29f <400> SEQUENCE: 171 agccacatcc agtagattga acttt 25 <210> SEQ ID NO 172 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Og30r <400> SEQUENCE: 172 aattcgccct acgattaaag tggaa 25 <210> SEQ ID NO 173 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Pfdx-F1, forward <400> SEQUENCE: 173 aaaggtctcc ggccgcgctc actatctgcg gaacc 35 <210> SEQ ID NO 174 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Pfdx-R1, reverse <400> SEQUENCE: 174 tttggtctcg aattctgtaa cacctcctta atttttag 38 <210> SEQ ID NO 175 <211> LENGTH: 52 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: aor1-F1, forward <400> SEQUENCE: 175 aaaggtctcg aattcaaaga tctatgtatg gttatgatgg taaagtatta ag 52 <210> SEQ ID NO 176 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: aor1-R1, reverse <400> SEQUENCE: 176 tttggtctcc tcgagtatgg atccctagaa cttacctata tattcatcta atcc 54 <210> SEQ ID NO 177 <211> LENGTH: 37 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pETDuet-pta-ack - ack-DuetI2-R1 <400> SEQUENCE: 177 gggtacctta tttattttca actatttctt ttgtatc 37 <210> SEQ ID NO 178 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pETDuet-pta-ack - DuetI2-ack-F1 <400> SEQUENCE: 178 ttgaaaataa ataaggtacc ctcgagtctg gtaaag 36 <210> SEQ ID NO 179 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pETDuet-pta-ack - DuetI2-pta-R1 <400> SEQUENCE: 179 ttttttccat atgtatatct ccttcttata cttaac 36 <210> SEQ ID NO 180 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pETDuet-pta-ack - pta-DuetI2-F1 <400> SEQUENCE: 180 aggagatata catatggaaa aaatttggag taaggc 36 <210> SEQ ID NO 181 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pETDuet-tesB - DuetI2-tesB-F1 <400> SEQUENCE: 181 gaaatcataa ttaaggtacc ctcgagtctg gtaaag 36 <210> SEQ ID NO 182 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pETDuet-tesB - DuetI2-tesB-R1 <400> SEQUENCE: 182 cctgactcat atgtatatct ccttcttata cttaac 36 <210> SEQ ID NO 183 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pETDuet-tesB - tesB-DuetI2-F1 <400> SEQUENCE: 183 aagaaggaga tatacatatg agtcaggcac ttaaaa 36 <210> SEQ ID NO 184 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pETDuet-tesB - testB-DuetI2-R1 <400> SEQUENCE: 184 agggtacctt aattatgatt tctcataaca ccttc 35 <210> SEQ ID NO 185 <211> LENGTH: 7606 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pDUET-pta-ack, plasmid <400> SEQUENCE: 185 ggggaattgt gagcggataa caattcccct ctagaaataa ttttgtttaa ctttaagaag 60 gagatatacc atgggcagca gccatcacca tcatcaccac agccaggatc cgaattcgag 120 ctcggcgcgc ctgcaggtcg acaagcttgc ggccgcataa tgcttaagtc gaacagaaag 180 taatcgtatt gtacacggcc gcataatcga aattaatacg actcactata ggggaattgt 240 gagcggataa caattcccca tcttagtata ttagttaagt ataagaagga gatatacata 300 tggaaaaaat ttggagtaag gcaaaggaag acaaaaaaaa gattgtctta gctgaaggag 360 aagaagaaag aactcttcaa gcttgtgaaa aaataattaa agagggtatt gcaaatttaa 420 tccttgtagg gaatgaaaag gtaataaaag aaaaagcgtc aaaattaggt gtaagtttaa 480 atggagcaga aatagtagat ccagagattt cagataaact aaaggcatat gcagatgctt 540 tttatgaatt gagaaagaag aagggaataa cgccagaaaa agcggataaa atagtaagag 600 atccaatata ctttgctaca atgatggtta aacttggaga tgcagatgga ttggtttcag 660 gtgcggttca tactacaggc gatcttttga gaccaggact tcaaatagta aagacagctc 720 caggtacatc agtagtttcc agtacattta taatggaagt accaaattgt gagtatggtg 780 acaatggtgt acttctattt gctgattgtg ctgtaaatcc atgcccagat agtgatcaat 840 tggcttcaat tgcaataagt acagcagaaa ctgcaaagaa cttatgtgga atggatccaa 900 aagtagcaat gctttcattt tctactaagg gaagtgcaaa acacgaatta gtagacaaag 960 ttagaaatgc tgtagagatt gcaaaaaaag ctaaaccaga tttaagttta gacggagaat 1020 tacaattaga tgcctctatc gtagaaaagg ttgcaagttt aaaggctcct ggaagtgaag 1080 tagcaggaaa agcaaatgta cttgtatttc cagatctcca agcaggaaat ataggctata 1140 aactcgttca aagatttgca aaagcagatg ctataggacc tgtatgccaa ggatttgcaa 1200 aacctataaa tgatttgtca agaggatgta attctgatga tatagtaaat gtagtagctg 1260 taacagcagt tcaagcacaa gctcaaaagt aataacaaaa agcataaatg attcattttt 1320 aggaggaata ttaaacatga aaatattagt agtaaactgt ggaagttcat ctttaaaata 1380 tcaacttatt gatatgcaag atgaaagtgt tgtagcaaag ggtcttgtag aaagaatagg 1440 aatggacggt tcaattttaa cacacaaagt taatggagaa aagtttgtta cagagcaacc 1500 aatggaagac cacaaagttg ctatacaatt agtattaaat gctcttgtag ataaaaaaca 1560 tggtgtaata aaagacatgt cagaaatatc cgctgtagga catagagttt tgcacggtgg 1620 aaagaaatat gcagcatcca ttcttattga cgaaaatgta atgaaagcaa tagaagaatg 1680 tatcccacta ggaccactac ataatccagc taatataatg ggaatagatg cttgtaaaaa 1740 attaatgcca aatactccaa tggtagcagt atttgataca gcatttcatc agacaatgcc 1800 agattatgct tatacttatg caatacctta tgatatatct gaaaagtatg atatcagaaa 1860 atatggtttt catggaactt ctcatagatt cgtttcaatt gaagcagcta aattattaaa 1920 gaaagatcca aaagatctta agttaataac ttgtcattta ggaaatggag ctagcatatg 1980 tgcagtaaac caaggaaaag cagtagatac aactatggga cttactcctc ttgcaggact 2040 tgtaatggga actagatgcg gtgatataga tccagctata gtaccatttg taatgaaaag 2100 aacaggcatg tctgtagatg aagtggatac cttaatgaat aaaaagtcag gaatacttgg 2160 agtatcagga gtaagcagtg attttagaga tgtagaagaa gctgcaaatt caggaaatga 2220 tagagcaaaa cttgcattaa atatgtatta tcacaaagtt aaatctttca taggagctta 2280 tgttgcagtt ttaaatggag cagatgctat aatatttacg gcaggacttg gagaaaattc 2340 agcaactagc agatctgcta tatgtaatgg attaagctat tttggaatta aaatagatga 2400 agaaaagaat aagaaaaggg gagaggcact agaaataagc acacctgatt caaagataaa 2460 agtattagta attcctacaa atgaagaact tatgatagct agggatacaa aagaaatagt 2520 tgaaaataaa taaggtaccc tcgagtctgg taaagaaacc gctgctgcga aatttgaacg 2580 ccagcacatg gactcgtcta ctagcgcagc ttaattaacc taggctgctg ccaccgctga 2640 gcaataacta gcataacccc ttggggcctc taaacgggtc ttgaggggtt ttttgctgaa 2700 aggaggaact atatccggat tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg 2760 gcgggtgtgg tggttacgcg cagcgtgacc gctacacttg ccagcgccct agcgcccgct 2820 cctttcgctt tcttcccttc ctttctcgcc acgttcgccg gctttccccg tcaagctcta 2880 aatcgggggc tccctttagg gttccgattt agtgctttac ggcacctcga ccccaaaaaa 2940 cttgattagg gtgatggttc acgtagtggg ccatcgccct gatagacggt ttttcgccct 3000 ttgacgttgg agtccacgtt ctttaatagt ggactcttgt tccaaactgg aacaacactc 3060 aaccctatct cggtctattc ttttgattta taagggattt tgccgatttc ggcctattgg 3120 ttaaaaaatg agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgttt 3180 acaatttctg gcggcacgat ggcatgagat tatcaaaaag gatcttcacc tagatccttt 3240 taaattaaaa atgaagtttt aaatcaatct aaagtatata tgagtaaact tggtctgaca 3300 gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt cgttcatcca 3360 tagttgcctg actccccgtc gtgtagataa ctacgatacg ggagggctta ccatctggcc 3420 ccagtgctgc aatgataccg cgagacccac gctcaccggc tccagattta tcagcaataa 3480 accagccagc cggaagggcc gagcgcagaa gtggtcctgc aactttatcc gcctccatcc 3540 agtctattaa ttgttgccgg gaagctagag taagtagttc gccagttaat agtttgcgca 3600 acgttgttgc cattgctaca ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat 3660 tcagctccgg ttcccaacga tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag 3720 cggttagctc cttcggtcct ccgatcgttg tcagaagtaa gttggccgca gtgttatcac 3780 tcatggttat ggcagcactg cataattctc ttactgtcat gccatccgta agatgctttt 3840 ctgtgactgg tgagtactca accaagtcat tctgagaata gtgtatgcgg cgaccgagtt 3900 gctcttgccc ggcgtcaata cgggataata ccgcgccaca tagcagaact ttaaaagtgc 3960 tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg ctgttgagat 4020 ccagttcgat gtaacccact cgtgcaccca actgatcttc agcatctttt actttcacca 4080 gcgtttctgg gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga ataagggcga 4140 cacggaaatg ttgaatactc atactcttcc tttttcaatc atgattgaag catttatcag 4200 ggttattgtc tcatgagcgg atacatattt gaatgtattt agaaaaataa acaaataggt 4260 catgaccaaa atcccttaac gtgagttttc gttccactga gcgtcagacc ccgtagaaaa 4320 gatcaaagga tcttcttgag atcctttttt tctgcgcgta atctgctgct tgcaaacaaa 4380 aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa gagctaccaa ctctttttcc 4440 gaaggtaact ggcttcagca gagcgcagat accaaatact gtccttctag tgtagccgta 4500 gttaggccac cacttcaaga actctgtagc accgcctaca tacctcgctc tgctaatcct 4560 gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt accgggttgg actcaagacg 4620 atagttaccg gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca cacagcccag 4680 cttggagcga acgacctaca ccgaactgag atacctacag cgtgagctat gagaaagcgc 4740 cacgcttccc gaagggagaa aggcggacag gtatccggta agcggcaggg tcggaacagg 4800 agagcgcacg agggagcttc cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt 4860 tcgccacctc tgacttgagc gtcgattttt gtgatgctcg tcaggggggc ggagcctatg 4920 gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc ttttgctggc cttttgctca 4980 catgttcttt cctgcgttat cccctgattc tgtggataac cgtattaccg cctttgagtg 5040 agctgatacc gctcgccgca gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc 5100 ggaagagcgc ctgatgcggt attttctcct tacgcatctg tgcggtattt cacaccgcat 5160 atatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca gtatacactc 5220 cgctatcgct acgtgactgg gtcatggctg cgccccgaca cccgccaaca cccgctgacg 5280 cgccctgacg ggcttgtctg ctcccggcat ccgcttacag acaagctgtg accgtctccg 5340 ggagctgcat gtgtcagagg ttttcaccgt catcaccgaa acgcgcgagg cagctgcggt 5400 aaagctcatc agcgtggtcg tgaagcgatt cacagatgtc tgcctgttca tccgcgtcca 5460 gctcgttgag tttctccaga agcgttaatg tctggcttct gataaagcgg gccatgttaa 5520 gggcggtttt ttcctgtttg gtcactgatg cctccgtgta agggggattt ctgttcatgg 5580 gggtaatgat accgatgaaa cgagagagga tgctcacgat acgggttact gatgatgaac 5640 atgcccggtt actggaacgt tgtgagggta aacaactggc ggtatggatg cggcgggacc 5700 agagaaaaat cactcagggt caatgccagc gcttcgttaa tacagatgta ggtgttccac 5760 agggtagcca gcagcatcct gcgatgcaga tccggaacat aatggtgcag ggcgctgact 5820 tccgcgtttc cagactttac gaaacacgga aaccgaagac cattcatgtt gttgctcagg 5880 tcgcagacgt tttgcagcag cagtcgcttc acgttcgctc gcgtatcggt gattcattct 5940 gctaaccagt aaggcaaccc cgccagccta gccgggtcct caacgacagg agcacgatca 6000 tgctagtcat gccccgcgcc caccggaagg agctgactgg gttgaaggct ctcaagggca 6060 tcggtcgaga tcccggtgcc taatgagtga gctaacttac attaattgcg ttgcgctcac 6120 tgcccgcttt ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg 6180 cggggagagg cggtttgcgt attgggcgcc agggtggttt ttcttttcac cagtgagacg 6240 ggcaacagct gattgccctt caccgcctgg ccctgagaga gttgcagcaa gcggtccacg 6300 ctggtttgcc ccagcaggcg aaaatcctgt ttgatggtgg ttaacggcgg gatataacat 6360 gagctgtctt cggtatcgtc gtatcccact accgagatgt ccgcaccaac gcgcagcccg 6420 gactcggtaa tggcgcgcat tgcgcccagc gccatctgat cgttggcaac cagcatcgca 6480 gtgggaacga tgccctcatt cagcatttgc atggtttgtt gaaaaccgga catggcactc 6540 cagtcgcctt cccgttccgc tatcggctga atttgattgc gagtgagata tttatgccag 6600 ccagccagac gcagacgcgc cgagacagaa cttaatgggc ccgctaacag cgcgatttgc 6660 tggtgaccca atgcgaccag atgctccacg cccagtcgcg taccgtcttc atgggagaaa 6720 ataatactgt tgatgggtgt ctggtcagag acatcaagaa ataacgccgg aacattagtg 6780 caggcagctt ccacagcaat ggcatcctgg tcatccagcg gatagttaat gatcagccca 6840 ctgacgcgtt gcgcgagaag attgtgcacc gccgctttac aggcttcgac gccgcttcgt 6900 tctaccatcg acaccaccac gctggcaccc agttgatcgg cgcgagattt aatcgccgcg 6960 acaatttgcg acggcgcgtg cagggccaga ctggaggtgg caacgccaat cagcaacgac 7020 tgtttgcccg ccagttgttg tgccacgcgg ttgggaatgt aattcagctc cgccatcgcc 7080 gcttccactt tttcccgcgt tttcgcagaa acgtggctgg cctggttcac cacgcgggaa 7140 acggtctgat aagagacacc ggcatactct gcgacatcgt ataacgttac tggtttcaca 7200 ttcaccaccc tgaattgact ctcttccggg cgctatcatg ccataccgcg aaaggttttg 7260 cgccattcga tggtgtccgg gatctcgacg ctctccctta tgcgactcct gcattaggaa 7320 gcagcccagt agtaggttga ggccgttgag caccgccgcc gcaaggaatg gtgcatgcaa 7380 ggagatggcg cccaacagtc ccccggccac ggggcctgcc accataccca cgccgaaaca 7440 agcgctcatg agcccgaagt ggcgagcccg atcttcccca tcggtgatgt cggcgatata 7500 ggcgccagca accgcacctg tggcgccggt gatgccggcc acgatgcgtc cggcgtagag 7560 gatcgagatc gatctcgatc ccgcgaaatt aatacgactc actata 7606 <210> SEQ ID NO 186 <211> LENGTH: 7492 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pDUET-ptb-buk, plasmid <400> SEQUENCE: 186 ggggaattgt gagcggataa caattcccct ctagaaataa ttttgtttaa ctttaagaag 60 gagatatacc atgggcagca gccatcacca tcatcaccac agccaggatc cgaattcgag 120 ctcggcgcgc ctgcaggtcg acaagcttgc ggccgcataa tgcttaagtc gaacagaaag 180 taatcgtatt gtacacggcc gcataatcga aattaatacg actcactata ggggaattgt 240 gagcggataa caattcccca tcttagtata ttagttaagt ataagaagga gatatacata 300 tgagtaaaaa ctttgatgag ttattatcaa gattaaagga agttccaaca aaaaaagtgg 360 ctgtagccgt agcacaagat gaaccagtat tagaggctat aaaagaagct acagaaaata 420 acatcgcaca agcaatattg gttggtgata aacaacaaat ccatgaaatc gcaaagaaaa 480 taaacttgga cttatctgat tatgaaataa tggatattaa agatccaaag aaagcaacat 540 tagaagcagt aaaattagtt tctagtggtc atgcagatat gttaatgaaa ggtctagttg 600 atactgcaac attcctaaga agcgtattaa acaaagaggt tggtcttaga acaggaaaat 660 taatgtccca tgtagctgtg tttgatgtgg aaggttggga tagactgtta tttttaactg 720 atgcagcatt taatacatat ccagaattta aggataaagt tggaatgata aataatgcag 780 ttgtagttgc tcatgcatgt ggaatagatg ttccaagagt agcacctata tgcccagttg 840 aagttgtaaa tacaagtatg caatcaacag ttgatgcagc attgttagct aaaatgagtg 900 acagggggca aattaaagga tgcgtaattg atggaccttt tgccttagat aatgcaatat 960 cagaagaagc agctcatcat aaaggtgtta caggatcagt agcaggtaaa gctgatatat 1020 tattattacc aaatatagaa gcagcaaatg taatgtataa aacattaaca tatttctcta 1080 aatcaagaaa tggtggactt ttagtaggta catcagcacc agtaatttta acttcaagag 1140 cagattcatt cgaaactaaa gttaattcaa ttgctcttgc agcattagtt gcagcaagaa 1200 ataagtaata aatcaatcca taataattaa tgcataatta atggagagat ttatatggaa 1260 tttgcaatgc actattagat tctataataa tttcttctga aaattatgca ttatgactgt 1320 atagaatgca ttaaatttaa gggggattca gaatgtcata taagctatta ataatcaatc 1380 caggttcaac atcaacaaag attggtgttt acgaaggaga aaaggaacta tttgaagaaa 1440 ctttgagaca cacaaatgaa gaaataaaga gatatgatac aatatatgat caatttgaat 1500 ttagaaaaga agttatatta aatgttctta aagaaaagaa ttttgatata aagactctaa 1560 gtgctattgt tggtagaggt ggaatgctta gaccagttga aggtggaaca tatgcagtaa 1620 atgatgcaat ggttgaagat ttaaaagttg gagttcaagg acctcatgct tctaaccttg 1680 gcggaataat tgccaagtca attggagatg aattaaatat tccatcattt atagtagatc 1740 cagttgttac agatgagtta gcagatgtag caagactatc tggagtacca gaactaccaa 1800 gaaaaagtaa attccatgct ttaaatcaaa aagcggtagc taaaagatat ggaaaagaaa 1860 gtggacaagg atatgaaaac ctaaatcttg tagttgtaca tatgggtgga ggcgtttcag 1920 ttggtgctca caatcatggg aaagttgtcg atgtaaataa tgcattagat ggagatggcc 1980 cattctcacc agaaagagct ggatcagttc caattggtga tttagttaaa atgtgtttta 2040 gtggaaaata tagtgaagca gaagtatatg gcaaggctgt aggaaaaggt ggatttgttg 2100 gttatctaaa cacaaatgat gtaaaaggtg ttattgataa gatggaagaa ggagataaag 2160 aatgtgaatc aatatacaaa gcatttgttt atcaaatttc aaaagcaatc ggagaaatgt 2220 cagttgtatt agaaggtaaa gttgatcaaa ttatttttac cggaggaatt gcatactcac 2280 caacacttgt tccagacctt aaagcaaaag ttgaatggat agccccagtt acagtttatc 2340 ctggagaaga tgaattactt gctctagctc aaggtgctat aagagtactt gatggagaag 2400 aacaagctaa ggtttactag gtaccctcga gtctggtaaa gaaaccgctg ctgcgaaatt 2460 tgaacgccag cacatggact cgtctactag cgcagcttaa ttaacctagg ctgctgccac 2520 cgctgagcaa taactagcat aaccccttgg ggcctctaaa cgggtcttga ggggtttttt 2580 gctgaaagga ggaactatat ccggattggc gaatgggacg cgccctgtag cggcgcatta 2640 agcgcggcgg gtgtggtggt tacgcgcagc gtgaccgcta cacttgccag cgccctagcg 2700 cccgctcctt tcgctttctt cccttccttt ctcgccacgt tcgccggctt tccccgtcaa 2760 gctctaaatc gggggctccc tttagggttc cgatttagtg ctttacggca cctcgacccc 2820 aaaaaacttg attagggtga tggttcacgt agtgggccat cgccctgata gacggttttt 2880 cgccctttga cgttggagtc cacgttcttt aatagtggac tcttgttcca aactggaaca 2940 acactcaacc ctatctcggt ctattctttt gatttataag ggattttgcc gatttcggcc 3000 tattggttaa aaaatgagct gatttaacaa aaatttaacg cgaattttaa caaaatatta 3060 acgtttacaa tttctggcgg cacgatggca tgagattatc aaaaaggatc ttcacctaga 3120 tccttttaaa ttaaaaatga agttttaaat caatctaaag tatatatgag taaacttggt 3180 ctgacagtta ccaatgctta atcagtgagg cacctatctc agcgatctgt ctatttcgtt 3240 catccatagt tgcctgactc cccgtcgtgt agataactac gatacgggag ggcttaccat 3300 ctggccccag tgctgcaatg ataccgcgag acccacgctc accggctcca gatttatcag 3360 caataaacca gccagccgga agggccgagc gcagaagtgg tcctgcaact ttatccgcct 3420 ccatccagtc tattaattgt tgccgggaag ctagagtaag tagttcgcca gttaatagtt 3480 tgcgcaacgt tgttgccatt gctacaggca tcgtggtgtc acgctcgtcg tttggtatgg 3540 cttcattcag ctccggttcc caacgatcaa ggcgagttac atgatccccc atgttgtgca 3600 aaaaagcggt tagctccttc ggtcctccga tcgttgtcag aagtaagttg gccgcagtgt 3660 tatcactcat ggttatggca gcactgcata attctcttac tgtcatgcca tccgtaagat 3720 gcttttctgt gactggtgag tactcaacca agtcattctg agaatagtgt atgcggcgac 3780 cgagttgctc ttgcccggcg tcaatacggg ataataccgc gccacatagc agaactttaa 3840 aagtgctcat cattggaaaa cgttcttcgg ggcgaaaact ctcaaggatc ttaccgctgt 3900 tgagatccag ttcgatgtaa cccactcgtg cacccaactg atcttcagca tcttttactt 3960 tcaccagcgt ttctgggtga gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa 4020 gggcgacacg gaaatgttga atactcatac tcttcctttt tcaatcatga ttgaagcatt 4080 tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa aaataaacaa 4140 ataggtcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt cagaccccgt 4200 agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct gctgcttgca 4260 aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc taccaactct 4320 ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgtcc ttctagtgta 4380 gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc tcgctctgct 4440 aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg ggttggactc 4500 aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt cgtgcacaca 4560 gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg agctatgaga 4620 aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg gcagggtcgg 4680 aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt atagtcctgt 4740 cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag gggggcggag 4800 cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt gctggccttt 4860 tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta ttaccgcctt 4920 tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt cagtgagcga 4980 ggaagcggaa gagcgcctga tgcggtattt tctccttacg catctgtgcg gtatttcaca 5040 ccgcatatat ggtgcactct cagtacaatc tgctctgatg ccgcatagtt aagccagtat 5100 acactccgct atcgctacgt gactgggtca tggctgcgcc ccgacacccg ccaacacccg 5160 ctgacgcgcc ctgacgggct tgtctgctcc cggcatccgc ttacagacaa gctgtgaccg 5220 tctccgggag ctgcatgtgt cagaggtttt caccgtcatc accgaaacgc gcgaggcagc 5280 tgcggtaaag ctcatcagcg tggtcgtgaa gcgattcaca gatgtctgcc tgttcatccg 5340 cgtccagctc gttgagtttc tccagaagcg ttaatgtctg gcttctgata aagcgggcca 5400 tgttaagggc ggttttttcc tgtttggtca ctgatgcctc cgtgtaaggg ggatttctgt 5460 tcatgggggt aatgataccg atgaaacgag agaggatgct cacgatacgg gttactgatg 5520 atgaacatgc ccggttactg gaacgttgtg agggtaaaca actggcggta tggatgcggc 5580 gggaccagag aaaaatcact cagggtcaat gccagcgctt cgttaataca gatgtaggtg 5640 ttccacaggg tagccagcag catcctgcga tgcagatccg gaacataatg gtgcagggcg 5700 ctgacttccg cgtttccaga ctttacgaaa cacggaaacc gaagaccatt catgttgttg 5760 ctcaggtcgc agacgttttg cagcagcagt cgcttcacgt tcgctcgcgt atcggtgatt 5820 cattctgcta accagtaagg caaccccgcc agcctagccg ggtcctcaac gacaggagca 5880 cgatcatgct agtcatgccc cgcgcccacc ggaaggagct gactgggttg aaggctctca 5940 agggcatcgg tcgagatccc ggtgcctaat gagtgagcta acttacatta attgcgttgc 6000 gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa tgaatcggcc 6060 aacgcgcggg gagaggcggt ttgcgtattg ggcgccaggg tggtttttct tttcaccagt 6120 gagacgggca acagctgatt gcccttcacc gcctggccct gagagagttg cagcaagcgg 6180 tccacgctgg tttgccccag caggcgaaaa tcctgtttga tggtggttaa cggcgggata 6240 taacatgagc tgtcttcggt atcgtcgtat cccactaccg agatgtccgc accaacgcgc 6300 agcccggact cggtaatggc gcgcattgcg cccagcgcca tctgatcgtt ggcaaccagc 6360 atcgcagtgg gaacgatgcc ctcattcagc atttgcatgg tttgttgaaa accggacatg 6420 gcactccagt cgccttcccg ttccgctatc ggctgaattt gattgcgagt gagatattta 6480 tgccagccag ccagacgcag acgcgccgag acagaactta atgggcccgc taacagcgcg 6540 atttgctggt gacccaatgc gaccagatgc tccacgccca gtcgcgtacc gtcttcatgg 6600 gagaaaataa tactgttgat gggtgtctgg tcagagacat caagaaataa cgccggaaca 6660 ttagtgcagg cagcttccac agcaatggca tcctggtcat ccagcggata gttaatgatc 6720 agcccactga cgcgttgcgc gagaagattg tgcaccgccg ctttacaggc ttcgacgccg 6780 cttcgttcta ccatcgacac caccacgctg gcacccagtt gatcggcgcg agatttaatc 6840 gccgcgacaa tttgcgacgg cgcgtgcagg gccagactgg aggtggcaac gccaatcagc 6900 aacgactgtt tgcccgccag ttgttgtgcc acgcggttgg gaatgtaatt cagctccgcc 6960 atcgccgctt ccactttttc ccgcgttttc gcagaaacgt ggctggcctg gttcaccacg 7020 cgggaaacgg tctgataaga gacaccggca tactctgcga catcgtataa cgttactggt 7080 ttcacattca ccaccctgaa ttgactctct tccgggcgct atcatgccat accgcgaaag 7140 gttttgcgcc attcgatggt gtccgggatc tcgacgctct cccttatgcg actcctgcat 7200 taggaagcag cccagtagta ggttgaggcc gttgagcacc gccgccgcaa ggaatggtgc 7260 atgcaaggag atggcgccca acagtccccc ggccacgggg cctgccacca tacccacgcc 7320 gaaacaagcg ctcatgagcc cgaagtggcg agcccgatct tccccatcgg tgatgtcggc 7380 gatataggcg ccagcaaccg cacctgtggc gccggtgatg ccggccacga tgcgtccggc 7440 gtagaggatc gagatcgatc tcgatcccgc gaaattaata cgactcacta ta 7492 <210> SEQ ID NO 187 <211> LENGTH: 6233 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pDUET-tesB, plasmid <400> SEQUENCE: 187 ggggaattgt gagcggataa caattcccct ctagaaataa ttttgtttaa ctttaagaag 60 gagatatacc atgggcagca gccatcacca tcatcaccac agccaggatc cgaattcgag 120 ctcggcgcgc ctgcaggtcg acaagcttgc ggccgcataa tgcttaagtc gaacagaaag 180 taatcgtatt gtacacggcc gcataatcga aattaatacg actcactata ggggaattgt 240 gagcggataa caattcccca tcttagtata ttagttaagt ataagaagga gatatacata 300 tgagtcaggc acttaaaaat ttacttactt tacttaatct tgaaaaaata gaagaaggtt 360 tatttagagg acagtcagaa gatttaggat taagacaagt atttggaggt caagtagttg 420 gtcaggcact ttatgcagct aaagaaactg tacctgaaga aagacttgtt catagttttc 480 attcttattt tcttagacct ggagattcta aaaaaccaat tatatatgat gtagaaactc 540 ttagagatgg aaattcattt agtgcaagaa gagttgcagc tattcaaaat ggtaaaccta 600 tattttacat gacagcttct tttcaagcac cagaagctgg atttgaacat cagaaaacta 660 tgccttcagc acctgctcca gatggattac catcagaaac acaaatagca cagagtttag 720 ctcatttact tcctccagta cttaaagata aatttatttg tgatagacct ttagaagtta 780 gaccagttga atttcataat cctcttaaag gacatgtagc agaaccacat agacaagttt 840 ggataagagc taatggaagt gtaccagatg atcttagagt tcatcagtat cttcttggtt 900 atgcatctga tttaaatttt cttcctgtag ctttacaacc acatggaata ggttttcttg 960 aacctggaat acagatagca actatagatc attcaatgtg gtttcataga ccatttaatc 1020 ttaatgaatg gcttctttat agtgtagaat ctacatcagc aagttctgct agaggatttg 1080 ttaggggtga attttatact caagatggag tacttgttgc tagtacagta caggaaggtg 1140 ttatgagaaa tcataattaa ggtaccctcg agtctggtaa agaaaccgct gctgcgaaat 1200 ttgaacgcca gcacatggac tcgtctacta gcgcagctta attaacctag gctgctgcca 1260 ccgctgagca ataactagca taaccccttg gggcctctaa acgggtcttg aggggttttt 1320 tgctgaaagg aggaactata tccggattgg cgaatgggac gcgccctgta gcggcgcatt 1380 aagcgcggcg ggtgtggtgg ttacgcgcag cgtgaccgct acacttgcca gcgccctagc 1440 gcccgctcct ttcgctttct tcccttcctt tctcgccacg ttcgccggct ttccccgtca 1500 agctctaaat cgggggctcc ctttagggtt ccgatttagt gctttacggc acctcgaccc 1560 caaaaaactt gattagggtg atggttcacg tagtgggcca tcgccctgat agacggtttt 1620 tcgccctttg acgttggagt ccacgttctt taatagtgga ctcttgttcc aaactggaac 1680 aacactcaac cctatctcgg tctattcttt tgatttataa gggattttgc cgatttcggc 1740 ctattggtta aaaaatgagc tgatttaaca aaaatttaac gcgaatttta acaaaatatt 1800 aacgtttaca atttctggcg gcacgatggc atgagattat caaaaaggat cttcacctag 1860 atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg 1920 tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg tctatttcgt 1980 tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga gggcttacca 2040 tctggcccca gtgctgcaat gataccgcga gacccacgct caccggctcc agatttatca 2100 gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac tttatccgcc 2160 tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc agttaatagt 2220 ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc gtttggtatg 2280 gcttcattca gctccggttc ccaacgatca aggcgagtta catgatcccc catgttgtgc 2340 aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt ggccgcagtg 2400 ttatcactca tggttatggc agcactgcat aattctctta ctgtcatgcc atccgtaaga 2460 tgcttttctg tgactggtga gtactcaacc aagtcattct gagaatagtg tatgcggcga 2520 ccgagttgct cttgcccggc gtcaatacgg gataataccg cgccacatag cagaacttta 2580 aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat cttaccgctg 2640 ttgagatcca gttcgatgta acccactcgt gcacccaact gatcttcagc atcttttact 2700 ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa aaagggaata 2760 agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatcatg attgaagcat 2820 ttatcagggt tattgtctca tgagcggata catatttgaa tgtatttaga aaaataaaca 2880 aataggtcat gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg tcagaccccg 2940 tagaaaagat caaaggatct tcttgagatc ctttttttct gcgcgtaatc tgctgcttgc 3000 aaacaaaaaa accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc 3060 tttttccgaa ggtaactggc ttcagcagag cgcagatacc aaatactgtc cttctagtgt 3120 agccgtagtt aggccaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc 3180 taatcctgtt accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact 3240 caagacgata gttaccggat aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac 3300 agcccagctt ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag 3360 aaagcgccac gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg 3420 gaacaggaga gcgcacgagg gagcttccag ggggaaacgc ctggtatctt tatagtcctg 3480 tcgggtttcg ccacctctga cttgagcgtc gatttttgtg atgctcgtca ggggggcgga 3540 gcctatggaa aaacgccagc aacgcggcct ttttacggtt cctggccttt tgctggcctt 3600 ttgctcacat gttctttcct gcgttatccc ctgattctgt ggataaccgt attaccgcct 3660 ttgagtgagc tgataccgct cgccgcagcc gaacgaccga gcgcagcgag tcagtgagcg 3720 aggaagcgga agagcgcctg atgcggtatt ttctccttac gcatctgtgc ggtatttcac 3780 accgcatata tggtgcactc tcagtacaat ctgctctgat gccgcatagt taagccagta 3840 tacactccgc tatcgctacg tgactgggtc atggctgcgc cccgacaccc gccaacaccc 3900 gctgacgcgc cctgacgggc ttgtctgctc ccggcatccg cttacagaca agctgtgacc 3960 gtctccggga gctgcatgtg tcagaggttt tcaccgtcat caccgaaacg cgcgaggcag 4020 ctgcggtaaa gctcatcagc gtggtcgtga agcgattcac agatgtctgc ctgttcatcc 4080 gcgtccagct cgttgagttt ctccagaagc gttaatgtct ggcttctgat aaagcgggcc 4140 atgttaaggg cggttttttc ctgtttggtc actgatgcct ccgtgtaagg gggatttctg 4200 ttcatggggg taatgatacc gatgaaacga gagaggatgc tcacgatacg ggttactgat 4260 gatgaacatg cccggttact ggaacgttgt gagggtaaac aactggcggt atggatgcgg 4320 cgggaccaga gaaaaatcac tcagggtcaa tgccagcgct tcgttaatac agatgtaggt 4380 gttccacagg gtagccagca gcatcctgcg atgcagatcc ggaacataat ggtgcagggc 4440 gctgacttcc gcgtttccag actttacgaa acacggaaac cgaagaccat tcatgttgtt 4500 gctcaggtcg cagacgtttt gcagcagcag tcgcttcacg ttcgctcgcg tatcggtgat 4560 tcattctgct aaccagtaag gcaaccccgc cagcctagcc gggtcctcaa cgacaggagc 4620 acgatcatgc tagtcatgcc ccgcgcccac cggaaggagc tgactgggtt gaaggctctc 4680 aagggcatcg gtcgagatcc cggtgcctaa tgagtgagct aacttacatt aattgcgttg 4740 cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc 4800 caacgcgcgg ggagaggcgg tttgcgtatt gggcgccagg gtggtttttc ttttcaccag 4860 tgagacgggc aacagctgat tgcccttcac cgcctggccc tgagagagtt gcagcaagcg 4920 gtccacgctg gtttgcccca gcaggcgaaa atcctgtttg atggtggtta acggcgggat 4980 ataacatgag ctgtcttcgg tatcgtcgta tcccactacc gagatgtccg caccaacgcg 5040 cagcccggac tcggtaatgg cgcgcattgc gcccagcgcc atctgatcgt tggcaaccag 5100 catcgcagtg ggaacgatgc cctcattcag catttgcatg gtttgttgaa aaccggacat 5160 ggcactccag tcgccttccc gttccgctat cggctgaatt tgattgcgag tgagatattt 5220 atgccagcca gccagacgca gacgcgccga gacagaactt aatgggcccg ctaacagcgc 5280 gatttgctgg tgacccaatg cgaccagatg ctccacgccc agtcgcgtac cgtcttcatg 5340 ggagaaaata atactgttga tgggtgtctg gtcagagaca tcaagaaata acgccggaac 5400 attagtgcag gcagcttcca cagcaatggc atcctggtca tccagcggat agttaatgat 5460 cagcccactg acgcgttgcg cgagaagatt gtgcaccgcc gctttacagg cttcgacgcc 5520 gcttcgttct accatcgaca ccaccacgct ggcacccagt tgatcggcgc gagatttaat 5580 cgccgcgaca atttgcgacg gcgcgtgcag ggccagactg gaggtggcaa cgccaatcag 5640 caacgactgt ttgcccgcca gttgttgtgc cacgcggttg ggaatgtaat tcagctccgc 5700 catcgccgct tccacttttt cccgcgtttt cgcagaaacg tggctggcct ggttcaccac 5760 gcgggaaacg gtctgataag agacaccggc atactctgcg acatcgtata acgttactgg 5820 tttcacattc accaccctga attgactctc ttccgggcgc tatcatgcca taccgcgaaa 5880 ggttttgcgc cattcgatgg tgtccgggat ctcgacgctc tcccttatgc gactcctgca 5940 ttaggaagca gcccagtagt aggttgaggc cgttgagcac cgccgccgca aggaatggtg 6000 catgcaagga gatggcgccc aacagtcccc cggccacggg gcctgccacc atacccacgc 6060 cgaaacaagc gctcatgagc ccgaagtggc gagcccgatc ttccccatcg gtgatgtcgg 6120 cgatataggc gccagcaacc gcacctgtgg cgccggtgat gccggccacg atgcgtccgg 6180 cgtagaggat cgagatcgat ctcgatcccg cgaaattaat acgactcact ata 6233 <210> SEQ ID NO 188 <211> LENGTH: 3120 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: codon optimized gene cassette containing the Wood-Ljungdahl promoter in front of the genes meaB, hcmA and hcmB <400> SEQUENCE: 188 atgacttatg taccatcatc agcactttta gaacaactta gagcaggaaa tacttgggct 60 ttaggaagac ttatatcaag agcagaagct ggagttgcag aagctagacc tgcacttgct 120 gaagtatata gacatgcagg ttcagctcat gttataggtt taacaggagt accaggatct 180 ggtaaatcaa ctcttgtagc aaaacttaca gcagctctta gaaaaagagg agaaaaagtt 240 ggtatagtag ctattgatcc tagttctcca tatagtggag gagcaatact tggagataga 300 attagaatga ctgaattagc aaatgattca ggagtattta taagaagtat ggcaactaga 360 ggtgctactg gaggaatggc tagagcagct cttgatgcag ttgatttact tgatgtagct 420 ggatatcata ctattatttt agaaacagtt ggagtaggtc aagatgaagt tgaagtagca 480 catgcttctg atactacagt agttgtatca gcacctggac ttggtgatga aatacaggca 540 attaaagctg gagttttaga aattgctgat attcatgttg taagtaaatg tgatagagat 600 gatgcaaata gaactcttac agatcttaaa caaatgctta ctttaggaac aatggtagga 660 cctaaaagag catgggctat accagttgta ggagtttcaa gttatacagg agaaggtgta 720 gatgatttac ttggtagaat tgcagctcat agacaagcaa ctgctgatac agaacttgga 780 agagaaagaa gaagaagagt agctgaattt agacttcaaa aaactgcaga aacattactt 840 ttagaaagat ttactacagg agcacagcct ttttcaccag cattagctga tagtctttct 900 aatagagcta gtgatcctta tgcagctgca agagaattaa tagctagaac tataagaaaa 960 gaatattcta atgatcttgc atgtgctaaa cttactataa catggttaga accacaaatt 1020 aaaagtcaac ttcagtctga aagaaaagat tgggaagcaa atgaagttgg agcatttctt 1080 aaaaaagcac ctgaaagaaa agaacaattt catacaattg gagattttcc agtacagaga 1140 acttatacag ctgcagatat agcagatact cctcttgaag atattggttt acctggaaga 1200 tatccattta ctagaggacc ttatccaaca atgtatagaa gtagaacttg gacaatgaga 1260 caaatagctg gatttggtac tggagaagat acaaataaaa gatttaaata tcttatagca 1320 cagggtcaga ctggaatatc aacagatttt gatatgccta cattaatggg atatgattca 1380 gatcatccaa tgagtgatgg tgaagttgga agagaaggtg tagctataga tacacttgca 1440 gatatggaag cacttcttgc tgatattgat ttagaaaaaa tttcagttag ttttactata 1500 aatccaagtg catggattct tttagcaatg tatgtagctt taggtgaaaa aagaggttat 1560 gatcttaata aactttctgg aacagtacaa gctgatatac ttaaagaata tatggcacag 1620 aaagaatata tttatcctat agctccaagt gttagaattg taagagatat aattacttat 1680 tctgcaaaaa atcttaaaag atataatcct attaatattt ctggatatca tatatcagaa 1740 gctggttctt caccattaca agaagctgca tttactcttg caaatcttat tacttatgta 1800 aatgaagtaa ctaaaacagg aatgcatgta gatgaatttg cacctagatt agcatttttc 1860 tttgttagtc aaggagattt ctttgaagaa gtagcaaaat ttagagcttt aagaagatgt 1920 tatgctaaaa taatgaaaga aagatttgga gcaagaaatc ctgaatctat gagacttaga 1980 tttcattgtc aaactgctgc agctactctt acaaaaccac agtatatggt taatgttgta 2040 agaacaagtc ttcaagcatt atctgctgta ttgggaggag cacaaagtct tcatactaat 2100 ggatatgatg aagcatttgc tatacctact gaagatgcaa tgaaaatggc tcttagaaca 2160 caacagatta tagctgaaga atctggagtt gcagatgtaa tagatcctct tggaggaagt 2220 tattatgttg aagcattaac tacagaatat gaaaagaaaa tatttgaaat tcttgaagaa 2280 gtagaaaaaa gaggtggaac tattaaactt attgaacaag gatggtttca aaaacagata 2340 gcagattttg cttatgaaac tgcacttaga aaacaatcag gacagaaacc tgttataggt 2400 gtaaatagat ttgttgaaaa tgaagaagat gtaaaaattg aaatacatcc ttatgataat 2460 actacagctg aaagacaaat atcaagaact agaagagtta gagcagaaag agatgaagca 2520 aaagtacaag ctatgcttga tcagttagtt gcagtagcta aagatgaaag tcagaatctt 2580 atgcctctta ctattgaatt agtaaaagca ggagctacaa tgggtgatat tgtagaaaaa 2640 cttaaaggta tttggggaac ttatagagaa acaccagtat tttaagcact agttggagag 2700 cttcccacga tggatcagat tcctattaga gtattattag caaaagtagg tttagatgga 2760 catgatagag gtgtaaaagt tgtagcaaga gcattaagag atgctggaat ggatgtaata 2820 tatagtggtc ttcatagaac tcctgaagaa gtagttaata cagcaattca agaagatgta 2880 gatgttttag gagttagttt actttctggt gtacagctta ctgtttttcc taaaattttt 2940 aaattacttg atgaaagagg agctggtgat ttaatagtaa ttgctggagg agtaatgcca 3000 gatgaagatg cagctgcaat aagaaaactt ggagtaagag aagttttact tcaagataca 3060 ccaccacagg caataataga ttcaataaga agtttagtag cagcaagagg agcaagataa 3120 <210> SEQ ID NO 189 <211> LENGTH: 894 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: hcmA and meaB fusion <400> SEQUENCE: 189 Met Thr Tyr Val Pro Ser Ser Ala Leu Leu Glu Gln Leu Arg Ala Gly 1 5 10 15 Asn Thr Trp Ala Leu Gly Arg Leu Ile Ser Arg Ala Glu Ala Gly Val 20 25 30 Ala Glu Ala Arg Pro Ala Leu Ala Glu Val Tyr Arg His Ala Gly Ser 35 40 45 Ala His Val Ile Gly Leu Thr Gly Val Pro Gly Ser Gly Lys Ser Thr 50 55 60 Leu Val Ala Lys Leu Thr Ala Ala Leu Arg Lys Arg Gly Glu Lys Val 65 70 75 80 Gly Ile Val Ala Ile Asp Pro Ser Ser Pro Tyr Ser Gly Gly Ala Ile 85 90 95 Leu Gly Asp Arg Ile Arg Met Thr Glu Leu Ala Asn Asp Ser Gly Val 100 105 110 Phe Ile Arg Ser Met Ala Thr Arg Gly Ala Thr Gly Gly Met Ala Arg 115 120 125 Ala Ala Leu Asp Ala Val Asp Leu Leu Asp Val Ala Gly Tyr His Thr 130 135 140 Ile Ile Leu Glu Thr Val Gly Val Gly Gln Asp Glu Val Glu Val Ala 145 150 155 160 His Ala Ser Asp Thr Thr Val Val Val Ser Ala Pro Gly Leu Gly Asp 165 170 175 Glu Ile Gln Ala Ile Lys Ala Gly Val Leu Glu Ile Ala Asp Ile His 180 185 190 Val Val Ser Lys Cys Asp Arg Asp Asp Ala Asn Arg Thr Leu Thr Asp 195 200 205 Leu Lys Gln Met Leu Thr Leu Gly Thr Met Val Gly Pro Lys Arg Ala 210 215 220 Trp Ala Ile Pro Val Val Gly Val Ser Ser Tyr Thr Gly Glu Gly Val 225 230 235 240 Asp Asp Leu Leu Gly Arg Ile Ala Ala His Arg Gln Ala Thr Ala Asp 245 250 255 Thr Glu Leu Gly Arg Glu Arg Arg Arg Arg Val Ala Glu Phe Arg Leu 260 265 270 Gln Lys Thr Ala Glu Thr Leu Leu Leu Glu Arg Phe Thr Thr Gly Ala 275 280 285 Gln Pro Phe Ser Pro Ala Leu Ala Asp Ser Leu Ser Asn Arg Ala Ser 290 295 300 Asp Pro Tyr Ala Ala Ala Arg Glu Leu Ile Ala Arg Thr Ile Arg Lys 305 310 315 320 Glu Tyr Ser Asn Asp Leu Ala Cys Ala Lys Leu Thr Ile Thr Trp Leu 325 330 335 Glu Pro Gln Ile Lys Ser Gln Leu Gln Ser Glu Arg Lys Asp Trp Glu 340 345 350 Ala Asn Glu Val Gly Ala Phe Leu Lys Lys Ala Pro Glu Arg Lys Glu 355 360 365 Gln Phe His Thr Ile Gly Asp Phe Pro Val Gln Arg Thr Tyr Thr Ala 370 375 380 Ala Asp Ile Ala Asp Thr Pro Leu Glu Asp Ile Gly Leu Pro Gly Arg 385 390 395 400 Tyr Pro Phe Thr Arg Gly Pro Tyr Pro Thr Met Tyr Arg Ser Arg Thr 405 410 415 Trp Thr Met Arg Gln Ile Ala Gly Phe Gly Thr Gly Glu Asp Thr Asn 420 425 430 Lys Arg Phe Lys Tyr Leu Ile Ala Gln Gly Gln Thr Gly Ile Ser Thr 435 440 445 Asp Phe Asp Met Pro Thr Leu Met Gly Tyr Asp Ser Asp His Pro Met 450 455 460 Ser Asp Gly Glu Val Gly Arg Glu Gly Val Ala Ile Asp Thr Leu Ala 465 470 475 480 Asp Met Glu Ala Leu Leu Ala Asp Ile Asp Leu Glu Lys Ile Ser Val 485 490 495 Ser Phe Thr Ile Asn Pro Ser Ala Trp Ile Leu Leu Ala Met Tyr Val 500 505 510 Ala Leu Gly Glu Lys Arg Gly Tyr Asp Leu Asn Lys Leu Ser Gly Thr 515 520 525 Val Gln Ala Asp Ile Leu Lys Glu Tyr Met Ala Gln Lys Glu Tyr Ile 530 535 540 Tyr Pro Ile Ala Pro Ser Val Arg Ile Val Arg Asp Ile Ile Thr Tyr 545 550 555 560 Ser Ala Lys Asn Leu Lys Arg Tyr Asn Pro Ile Asn Ile Ser Gly Tyr 565 570 575 His Ile Ser Glu Ala Gly Ser Ser Pro Leu Gln Glu Ala Ala Phe Thr 580 585 590 Leu Ala Asn Leu Ile Thr Tyr Val Asn Glu Val Thr Lys Thr Gly Met 595 600 605 His Val Asp Glu Phe Ala Pro Arg Leu Ala Phe Phe Phe Val Ser Gln 610 615 620 Gly Asp Phe Phe Glu Glu Val Ala Lys Phe Arg Ala Leu Arg Arg Cys 625 630 635 640 Tyr Ala Lys Ile Met Lys Glu Arg Phe Gly Ala Arg Asn Pro Glu Ser 645 650 655 Met Arg Leu Arg Phe His Cys Gln Thr Ala Ala Ala Thr Leu Thr Lys 660 665 670 Pro Gln Tyr Met Val Asn Val Val Arg Thr Ser Leu Gln Ala Leu Ser 675 680 685 Ala Val Leu Gly Gly Ala Gln Ser Leu His Thr Asn Gly Tyr Asp Glu 690 695 700 Ala Phe Ala Ile Pro Thr Glu Asp Ala Met Lys Met Ala Leu Arg Thr 705 710 715 720 Gln Gln Ile Ile Ala Glu Glu Ser Gly Val Ala Asp Val Ile Asp Pro 725 730 735 Leu Gly Gly Ser Tyr Tyr Val Glu Ala Leu Thr Thr Glu Tyr Glu Lys 740 745 750 Lys Ile Phe Glu Ile Leu Glu Glu Val Glu Lys Arg Gly Gly Thr Ile 755 760 765 Lys Leu Ile Glu Gln Gly Trp Phe Gln Lys Gln Ile Ala Asp Phe Ala 770 775 780 Tyr Glu Thr Ala Leu Arg Lys Gln Ser Gly Gln Lys Pro Val Ile Gly 785 790 795 800 Val Asn Arg Phe Val Glu Asn Glu Glu Asp Val Lys Ile Glu Ile His 805 810 815 Pro Tyr Asp Asn Thr Thr Ala Glu Arg Gln Ile Ser Arg Thr Arg Arg 820 825 830 Val Arg Ala Glu Arg Asp Glu Ala Lys Val Gln Ala Met Leu Asp Gln 835 840 845 Leu Val Ala Val Ala Lys Asp Glu Ser Gln Asn Leu Met Pro Leu Thr 850 855 860 Ile Glu Leu Val Lys Ala Gly Ala Thr Met Gly Asp Ile Val Glu Lys 865 870 875 880 Leu Lys Gly Ile Trp Gly Thr Tyr Arg Glu Thr Pro Val Phe 885 890 <210> SEQ ID NO 190 <211> LENGTH: 849 <212> TYPE: DNA <213> ORGANISM: Clostridium acetobutylicum <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: hbd <400> SEQUENCE: 190 atgagtatta aaagtgtagc ggttttaggt agtggaacta tgtctcgtgg aattgtgcag 60 gcttttgcag aagcaggtat agatgtaatt atccgtggaa gaactgaagg tagtattgga 120 aaaggtctag cagcagtaaa gaaagcttat gataaaaaag tatcaaaggg gaaaatttcc 180 caggaagatg ctgataaaat agttggaaga gtaagtacaa caactgaact tgaaaaattg 240 gctgattgtg atcttataat agaagcagca tcagaggata tgaatataaa gaaagactat 300 tttggaaaat tagaagaaat atgcaagcct gaaacaattt ttgctactaa tacttcttca 360 ttatctataa ctgaagtagc aacagctaca aagagaccag ataaattcat aggaatgcat 420 ttctttaatc cagcaaatgt tatgaaatta gttgaaatca taagaggtat gaatacttca 480 caagaaactt ttgatattat aaaagaagct tccattaaaa taggaaaaac tcctgtagaa 540 gttgcagaag ctccaggatt tgttgtaaac aagatattag taccaatgat caatgaagca 600 gtaggaattt tggcagaagg aatagcttca gcagaagata tcgatacagc tatgaaatta 660 ggcgctaatc acccaatggg tcctttagca ttaggagatc ttattggact tgatgtagtt 720 cttgcagtta tggatgtact ttatagtgaa actggagatt caaaatatag agctcataca 780 ttacttagaa aatatgtaag agcaggatgg cttggaagaa aatcaggaaa aggattcttc 840 gcttattaa 849 <210> SEQ ID NO 191 <211> LENGTH: 10647 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB <400> SEQUENCE: 191 cctgcaggat aaaaaaattg tagataaatt ttataaaata gttttatcta caattttttt 60 atcaggaaac agctatgacc gcggccgcaa tatgatattt atgtccattg tgaaagggat 120 tatattcaac tattattcca gttacgttca tagaaatttt cctttctaaa atattttatt 180 ccatgtcaag aactctgttt atttcattaa agaactataa gtacaaagta taaggcattt 240 gaaaaaatag gctagtatat tgattgatta tttattttaa aatgcctaag tgaaatatat 300 acatattata acaataaaat aagtattagt gtaggatttt taaatagagt atctattttc 360 agattaaatt tttgattatt tgatttacat tatataatat tgagtaaagt attgactagc 420 aaaatttttt gatactttaa tttgtgaaat ttcttatcaa aagttatatt tttgaataat 480 ttttattgaa aaatacaact aaaaaggatt atagtataag tgtgtgtaat tttgtgttaa 540 atttaaaggg aggaaatgaa catgaaacat atgaaagaag ttgtaatagc tagtgcagta 600 agaacagcga ttggatctta tggaaagtct cttaaggatg taccagcagt agatttagga 660 gctacagcta taaaggaagc agttaaaaaa gcaggaataa aaccagagga tgttaatgaa 720 gtcattttag gaaatgttct tcaagcaggt ttaggacaga atccagcaag acaggcatct 780 tttaaagcag gattaccagt tgaaattcca gctatgacta ttaataaggt ttgtggttca 840 ggacttagaa cagttagctt agcagcacaa attataaaag caggagatgc tgacgtaata 900 atagcaggtg gtatggaaaa tatgtctaga gctccttact tagcgaataa cgctagatgg 960 ggatatagaa tgggaaacgc taaatttgtt gatgaaatga tcactgacgg attgtgggat 1020 gcatttaatg attaccacat gggaataaca gcagaaaaca tagctgagag atggaacatt 1080 tcaagagaag aacaagatga gtttgctctt gcatcacaaa aaaaagctga agaagctata 1140 aaatcaggtc aatttaaaga tgaaatagtt cctgtagtaa ttaaaggcag aaagggagaa 1200 actgtagttg atacagatga gcaccctaga tttggatcaa ctatagaagg acttgcaaaa 1260 ttaaaacctg ccttcaaaaa agatggaaca gttacagctg gtaatgcatc aggattaaat 1320 gactgtgcag cagtacttgt aatcatgagt gcagaaaaag ctaaagagct tggagtaaaa 1380 ccacttgcta agatagtttc ttatggttca gcaggagttg acccagcaat aatgggatat 1440 ggacctttct atgcaacaaa agcagctatt gaaaaagcag gttggacagt tgatgaatta 1500 gatttaatag aatcaaatga agcttttgca gctcaaagtt tagcagtagc aaaagattta 1560 aaatttgata tgaataaagt aaatgtaaat ggaggagcta ttgcccttgg tcatccaatt 1620 ggagcatcag gtgcaagaat actcgttact cttgtacacg caatgcaaaa aagagatgca 1680 aaaaaaggct tagcaacttt atgtataggt ggcggacaag gaacagcaat attgctagaa 1740 aagtgctagg aattctcaaa aattcggtta aataaaataa ttaggaggtt caatcatgtc 1800 tattaaatca gttgcagttt taggttcagg tacaatgtca agaggtattg ttcaagcatt 1860 tgctgaagca ggtatagatg taataattag aggtagaaca gaaggatcaa taggaaaagg 1920 acttgctgct gttaagaaag catacgataa aaaggtaagt aaaggaaaga tatcacaaga 1980 agatgctgat aaaatagttg gtagagtatc tactactaca gaattagaaa aattagcaga 2040 ttgcgacctt ataattgagg ctgcatcaga agatatgaac ataaagaaag attattttgg 2100 aaaacttgaa gaaatatgta aaccagaaac tatttttgct actaatacat caagtttaag 2160 tattacagaa gtagcaacag caactaaaag accagataag ttcataggaa tgcacttctt 2220 taatcctgct aatgtaatga agcttgtaga gattataaga ggtatgaata cttctcagga 2280 aacatttgat ataattaagg aagcaagtat taaaatagga aaaactcctg tagaagtagc 2340 agaagcacca ggatttgttg ttaataagat acttgttcct atgataaatg aggctgtagg 2400 tatacttgct gaaggtattg ctagtgctga agacatagac actgctatga agttaggtgc 2460 aaaccatcct atgggaccat tagcattagg tgatcttatt ggattagatg ttgttttagc 2520 agtaatggat gtactttatt ctgagacagg tgattctaaa tatagagctc atacacttct 2580 tagaaagtat gtaagagctg gttggttagg tagaaagtct ggtaaaggat ttttcgcata 2640 ttaaggtacc gcagatagtc ataatagttc cagaatagtt caatttagaa attagactaa 2700 acttcaaaat gtttgttaaa tatataccaa actagtatag atatttttta aatactggac 2760 ttaaacagta gtaatttgcc taaaaaattt tttcaatttt ttttaaaaaa tccttttcaa 2820 gttgtacatt gttatggtaa tatgtaattg aagaagttat gtagtaatat tgtaaacgtt 2880 tcttgatttt tttacatcca tgtagtgctt aaaaaaccaa aatatgtcac atgcaattgt 2940 atatttcaaa taacaatatt tattttctcg ttaaattcac aaataattta ttaataatat 3000 caataaccaa gattatactt aaatggatgt ttatttttta acacttttat agtaaatata 3060 tttattttat gtagtaaaaa ggttataatt ataattgtat ttattacaat taattaaaat 3120 aaaaaatagg gttttaggta aaattaagtt attttaagaa gtaattacaa taaaaattga 3180 agttatttct ttaaggaggg aattattcat atgacttatg taccatcatc agcactttta 3240 gaacaactta gagcaggaaa tacttgggct ttaggaagac ttatatcaag agcagaagct 3300 ggagttgcag aagctagacc tgcacttgct gaagtatata gacatgcagg ttcagctcat 3360 gttataggtt taacaggagt accaggatct ggtaaatcaa ctcttgtagc aaaacttaca 3420 gcagctctta gaaaaagagg agaaaaagtt ggtatagtag ctattgatcc tagttctcca 3480 tatagtggag gagcaatact tggagataga attagaatga ctgaattagc aaatgattca 3540 ggagtattta taagaagtat ggcaactaga ggtgctactg gaggaatggc tagagcagct 3600 cttgatgcag ttgatttact tgatgtagct ggatatcata ctattatttt agaaacagtt 3660 ggagtaggtc aagatgaagt tgaagtagca catgcttctg atactacagt agttgtatca 3720 gcacctggac ttggtgatga aatacaggca attaaagctg gagttttaga aattgctgat 3780 attcatgttg taagtaaatg tgatagagat gatgcaaata gaactcttac agatcttaaa 3840 caaatgctta ctttaggaac aatggtagga cctaaaagag catgggctat accagttgta 3900 ggagtttcaa gttatacagg agaaggtgta gatgatttac ttggtagaat tgcagctcat 3960 agacaagcaa ctgctgatac agaacttgga agagaaagaa gaagaagagt agctgaattt 4020 agacttcaaa aaactgcaga aacattactt ttagaaagat ttactacagg agcacagcct 4080 ttttcaccag cattagctga tagtctttct aatagagcta gtgatcctta tgcagctgca 4140 agagaattaa tagctagaac tataagaaaa gaatattcta atgatcttgc atgtgctaaa 4200 cttactataa catggttaga accacaaatt aaaagtcaac ttcagtctga aagaaaagat 4260 tgggaagcaa atgaagttgg agcatttctt aaaaaagcac ctgaaagaaa agaacaattt 4320 catacaattg gagattttcc agtacagaga acttatacag ctgcagatat agcagatact 4380 cctcttgaag atattggttt acctggaaga tatccattta ctagaggacc ttatccaaca 4440 atgtatagaa gtagaacttg gacaatgaga caaatagctg gatttggtac tggagaagat 4500 acaaataaaa gatttaaata tcttatagca cagggtcaga ctggaatatc aacagatttt 4560 gatatgccta cattaatggg atatgattca gatcatccaa tgagtgatgg tgaagttgga 4620 agagaaggtg tagctataga tacacttgca gatatggaag cacttcttgc tgatattgat 4680 ttagaaaaaa tttcagttag ttttactata aatccaagtg catggattct tttagcaatg 4740 tatgtagctt taggtgaaaa aagaggttat gatcttaata aactttctgg aacagtacaa 4800 gctgatatac ttaaagaata tatggcacag aaagaatata tttatcctat agctccaagt 4860 gttagaattg taagagatat aattacttat tctgcaaaaa atcttaaaag atataatcct 4920 attaatattt ctggatatca tatatcagaa gctggttctt caccattaca agaagctgca 4980 tttactcttg caaatcttat tacttatgta aatgaagtaa ctaaaacagg aatgcatgta 5040 gatgaatttg cacctagatt agcatttttc tttgttagtc aaggagattt ctttgaagaa 5100 gtagcaaaat ttagagcttt aagaagatgt tatgctaaaa taatgaaaga aagatttgga 5160 gcaagaaatc ctgaatctat gagacttaga tttcattgtc aaactgctgc agctactctt 5220 acaaaaccac agtatatggt taatgttgta agaacaagtc ttcaagcatt atctgctgta 5280 ttgggaggag cacaaagtct tcatactaat ggatatgatg aagcatttgc tatacctact 5340 gaagatgcaa tgaaaatggc tcttagaaca caacagatta tagctgaaga atctggagtt 5400 gcagatgtaa tagatcctct tggaggaagt tattatgttg aagcattaac tacagaatat 5460 gaaaagaaaa tatttgaaat tcttgaagaa gtagaaaaaa gaggtggaac tattaaactt 5520 attgaacaag gatggtttca aaaacagata gcagattttg cttatgaaac tgcacttaga 5580 aaacaatcag gacagaaacc tgttataggt gtaaatagat ttgttgaaaa tgaagaagat 5640 gtaaaaattg aaatacatcc ttatgataat actacagctg aaagacaaat atcaagaact 5700 agaagagtta gagcagaaag agatgaagca aaagtacaag ctatgcttga tcagttagtt 5760 gcagtagcta aagatgaaag tcagaatctt atgcctctta ctattgaatt agtaaaagca 5820 ggagctacaa tgggtgatat tgtagaaaaa cttaaaggta tttggggaac ttatagagaa 5880 acaccagtat tttaagcact agttggagag cttcccacga tggatcagat tcctattaga 5940 gtattattag caaaagtagg tttagatgga catgatagag gtgtaaaagt tgtagcaaga 6000 gcattaagag atgctggaat ggatgtaata tatagtggtc ttcatagaac tcctgaagaa 6060 gtagttaata cagcaattca agaagatgta gatgttttag gagttagttt actttctggt 6120 gtacagctta ctgtttttcc taaaattttt aaattacttg atgaaagagg agctggtgat 6180 ttaatagtaa ttgctggagg agtaatgcca gatgaagatg cagctgcaat aagaaaactt 6240 ggagtaagag aagttttact tcaagataca ccaccacagg caataataga ttcaataaga 6300 agtttagtag cagcaagagg agcaagataa ccatggagat ctcgaggcct gcagacatgc 6360 aagcttggca ctggccgtcg ttttacaacg tcgtgactgg gaaaaccctg gcgttaccca 6420 acttaatcgc cttgcagcac atcccccttt cgccagctgg cgtaatagcg aagaggcccg 6480 caccgatcgc ccttcccaac agttgcgcag cctgaatggc gaatggcgct agcataaaaa 6540 taagaagcct gcatttgcag gcttcttatt tttatggcgc gccgccatta tttttttgaa 6600 caattgacaa ttcatttctt attttttatt aagtgatagt caaaaggcat aacagtgctg 6660 aatagaaaga aatttacaga aaagaaaatt atagaattta gtatgattaa ttatactcat 6720 ttatgaatgt ttaattgaat acaaaaaaaa atacttgtta tgtattcaat tacgggttaa 6780 aatatagaca agttgaaaaa tttaataaaa aaataagtcc tcagctctta tatattaagc 6840 taccaactta gtatataagc caaaacttaa atgtgctacc aacacatcaa gccgttagag 6900 aactctatct atagcaatat ttcaaatgta ccgacataca agagaaacat taactatata 6960 tattcaattt atgagattat cttaacagat ataaatgtaa attgcaataa gtaagattta 7020 gaagtttata gcctttgtgt attggaagca gtacgcaaag gcttttttat ttgataaaaa 7080 ttagaagtat atttattttt tcataattaa tttatgaaaa tgaaaggggg tgagcaaagt 7140 gacagaggaa agcagtatct tatcaaataa caaggtatta gcaatatcat tattgacttt 7200 agcagtaaac attatgactt ttatagtgct tgtagctaag tagtacgaaa gggggagctt 7260 taaaaagctc cttggaatac atagaattca taaattaatt tatgaaaaga agggcgtata 7320 tgaaaacttg taaaaattgc aaagagttta ttaaagatac tgaaatatgc aaaatacatt 7380 cgttgatgat tcatgataaa acagtagcaa cctattgcag taaatacaat gagtcaagat 7440 gtttacataa agggaaagtc caatgtatta attgttcaaa gatgaaccga tatggatggt 7500 gtgccataaa aatgagatgt tttacagagg aagaacagaa aaaagaacgt acatgcatta 7560 aatattatgc aaggagcttt aaaaaagctc atgtaaagaa gagtaaaaag aaaaaataat 7620 ttatttatta atttaatatt gagagtgccg acacagtatg cactaaaaaa tatatctgtg 7680 gtgtagtgag ccgatacaaa aggatagtca ctcgcatttt cataatacat cttatgttat 7740 gattatgtgt cggtgggact tcacgacgaa aacccacaat aaaaaaagag ttcggggtag 7800 ggttaagcat agttgaggca actaaacaat caagctagga tatgcagtag cagaccgtaa 7860 ggtcgttgtt taggtgtgtt gtaatacata cgctattaag atgtaaaaat acggatacca 7920 atgaagggaa aagtataatt tttggatgta gtttgtttgt tcatctatgg gcaaactacg 7980 tccaaagccg tttccaaatc tgctaaaaag tatatccttt ctaaaatcaa agtcaagtat 8040 gaaatcataa ataaagttta attttgaagt tattatgata ttatgttttt ctattaaaat 8100 aaattaagta tatagaatag tttaataata gtatatactt aatgtgataa gtgtctgaca 8160 gtgtcacaga aaggatgatt gttatggatt ataagcggcc ggccagtggg caagttgaaa 8220 aattcacaaa aatgtggtat aatatctttg ttcattagag cgataaactt gaatttgaga 8280 gggaacttag atggtatttg aaaaaattga taaaaatagt tggaacagaa aagagtattt 8340 tgaccactac tttgcaagtg taccttgtac ctacagcatg accgttaaag tggatatcac 8400 acaaataaag gaaaagggaa tgaaactata tcctgcaatg ctttattata ttgcaatgat 8460 tgtaaaccgc cattcagagt ttaggacggc aatcaatcaa gatggtgaat tggggatata 8520 tgatgagatg ataccaagct atacaatatt tcacaatgat actgaaacat tttccagcct 8580 ttggactgag tgtaagtctg actttaaatc atttttagca gattatgaaa gtgatacgca 8640 acggtatgga aacaatcata gaatggaagg aaagccaaat gctccggaaa acatttttaa 8700 tgtatctatg ataccgtggt caaccttcga tggctttaat ctgaatttgc agaaaggata 8760 tgattatttg attcctattt ttactatggg gaaatattat aaagaagata acaaaattat 8820 acttcctttg gcaattcaag ttcatcacgc agtatgtgac ggatttcaca tttgccgttt 8880 tgtaaacgaa ttgcaggaat tgataaatag ttaacttcag gtttgtctgt aactaaaaac 8940 aagtatttaa gcaaaaacat cgtagaaata cggtgttttt tgttacccta agtttaaact 9000 cctttttgat aatctcatga ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc 9060 agaccccgta gaaaagatca aaggatcttc ttgagatcct ttttttctgc gcgtaatctg 9120 ctgcttgcaa acaaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct 9180 accaactctt tttccgaagg taactggctt cagcagagcg cagataccaa atactgttct 9240 tctagtgtag ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct 9300 cgctctgcta atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg 9360 gttggactca agacgatagt taccggataa ggcgcagcgg tcgggctgaa cggggggttc 9420 gtgcacacag cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga 9480 gctatgagaa agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg 9540 cagggtcgga acaggagagc gcacgaggga gcttccaggg ggaaacgcct ggtatcttta 9600 tagtcctgtc gggtttcgcc acctctgact tgagcgtcga tttttgtgat gctcgtcagg 9660 ggggcggagc ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg 9720 ctggcctttt gctcacatgt tctttcctgc gttatcccct gattctgtgg ataaccgtat 9780 taccgccttt gagtgagctg ataccgctcg ccgcagccga acgaccgagc gcagcgagtc 9840 agtgagcgag gaagcggaag agcgcccaat acgcagggcc ccctgcttcg gggtcattat 9900 agcgattttt tcggtatatc catccttttt cgcacgatat acaggatttt gccaaagggt 9960 tcgtgtagac tttccttggt gtatccaacg gcgtcagccg ggcaggatag gtgaagtagg 10020 cccacccgcg agcgggtgtt ccttcttcac tgtcccttat tcgcacctgg cggtgctcaa 10080 cgggaatcct gctctgcgag gctggccggc taccgccggc gtaacagatg agggcaagcg 10140 gatggctgat gaaaccaagc caaccaggaa gggcagccca cctatcaagg tgtactgcct 10200 tccagacgaa cgaagagcga ttgaggaaaa ggcggcggcg gccggcatga gcctgtcggc 10260 ctacctgctg gccgtcggcc agggctacaa aatcacgggc gtcgtggact atgagcacgt 10320 ccgcgagctg gcccgcatca atggcgacct gggccgcctg ggcggcctgc tgaaactctg 10380 gctcaccgac gacccgcgca cggcgcggtt cggtgatgcc acgatcctcg ccctgctggc 10440 gaagatcgaa gagaagcagg acgagcttgg caaggtcatg atgggcgtgg tccgcccgag 10500 ggcagagcca tgactttttt agccgctaaa acggccgggg ggtgcgcgtg attgccaagc 10560 acgtccccat gcgctccatc aagaagagcg acttcgcgga gctggtgaag tacatcaccg 10620 acgagcaagg caagaccgat cgggccc 10647 <210> SEQ ID NO 192 <211> LENGTH: 10539 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB <400> SEQUENCE: 192 cctgcaggat aaaaaaattg tagataaatt ttataaaata gttttatcta caattttttt 60 atcaggaaac agctatgacc gcggccgcaa tatgatattt atgtccattg tgaaagggat 120 tatattcaac tattattcca gttacgttca tagaaatttt cctttctaaa atattttatt 180 ccatgtcaag aactctgttt atttcattaa agaactataa gtacaaagta taaggcattt 240 gaaaaaatag gctagtatat tgattgatta tttattttaa aatgcctaag tgaaatatat 300 acatattata acaataaaat aagtattagt gtaggatttt taaatagagt atctattttc 360 agattaaatt tttgattatt tgatttacat tatataatat tgagtaaagt attgactagc 420 aaaatttttt gatactttaa tttgtgaaat ttcttatcaa aagttatatt tttgaataat 480 ttttattgaa aaatacaact aaaaaggatt atagtataag tgtgtgtaat tttgtgttaa 540 atttaaaggg aggaaatgaa catgaaacat atgaaagaag ttgtaatagc tagtgcagta 600 agaacagcga ttggatctta tggaaagtct cttaaggatg taccagcagt agatttagga 660 gctacagcta taaaggaagc agttaaaaaa gcaggaataa aaccagagga tgttaatgaa 720 gtcattttag gaaatgttct tcaagcaggt ttaggacaga atccagcaag acaggcatct 780 tttaaagcag gattaccagt tgaaattcca gctatgacta ttaataaggt ttgtggttca 840 ggacttagaa cagttagctt agcagcacaa attataaaag caggagatgc tgacgtaata 900 atagcaggtg gtatggaaaa tatgtctaga gctccttact tagcgaataa cgctagatgg 960 ggatatagaa tgggaaacgc taaatttgtt gatgaaatga tcactgacgg attgtgggat 1020 gcatttaatg attaccacat gggaataaca gcagaaaaca tagctgagag atggaacatt 1080 tcaagagaag aacaagatga gtttgctctt gcatcacaaa aaaaagctga agaagctata 1140 aaatcaggtc aatttaaaga tgaaatagtt cctgtagtaa ttaaaggcag aaagggagaa 1200 actgtagttg atacagatga gcaccctaga tttggatcaa ctatagaagg acttgcaaaa 1260 ttaaaacctg ccttcaaaaa agatggaaca gttacagctg gtaatgcatc aggattaaat 1320 gactgtgcag cagtacttgt aatcatgagt gcagaaaaag ctaaagagct tggagtaaaa 1380 ccacttgcta agatagtttc ttatggttca gcaggagttg acccagcaat aatgggatat 1440 ggacctttct atgcaacaaa agcagctatt gaaaaagcag gttggacagt tgatgaatta 1500 gatttaatag aatcaaatga agcttttgca gctcaaagtt tagcagtagc aaaagattta 1560 aaatttgata tgaataaagt aaatgtaaat ggaggagcta ttgcccttgg tcatccaatt 1620 ggagcatcag gtgcaagaat actcgttact cttgtacacg caatgcaaaa aagagatgca 1680 aaaaaaggct tagcaacttt atgtataggt ggcggacaag gaacagcaat attgctagaa 1740 aagtgctagg aattctcaaa aattcggtta aataaaataa ttaggaggtt caatcatgac 1800 tcagcgcatt gcgtatgtga ccggcggcat gggtggtatc ggaaccgcca tttgccagcg 1860 gctggccaag gatggctttc gtgtggtggc cggttgcggc cccaactcgc cgcgccgcga 1920 aaagtggctg gagcagcaga aggccctggg cttcgatttc attgcctcgg aaggcaatgt 1980 ggctgactgg gactcgacca agaccgcatt cgacaaggtc aagtccgagg tcggcgaggt 2040 tgatgtgctg atcaacaacg ccggtatcac ccgcgacgtg gtgttccgca agatgacccg 2100 cgccgactgg gatgcggtga tcgacaccaa cctgacctcg ctgttcaacg tcaccaagca 2160 ggtgatcgac ggcatggccg accgtggctg gggccgcatc gtcaacatct cgtcggtgaa 2220 cgggcagaag ggccagttcg gccagaccaa ctactccacc gccaaggccg gcctgcatgg 2280 cttcaccatg gcactggcgc aggaagtggc gaccaagggc gtgaccgtca acacggtctc 2340 tccgggctat atcgccaccg acatggtcaa ggcgatccgc caggacgtgc tcgacaagat 2400 cgtcgcgacg atcccggtca agcgcctggg cctgccggaa gagatcgcct cgatctgcgc 2460 ctggttgtcg tcggaggagt ccggtttctc gaccggcgcc gacttctcgc tcaacggcgg 2520 cctgcatatg ggctgaggta ccgcagatag tcataatagt tccagaatag ttcaatttag 2580 aaattagact aaacttcaaa atgtttgtta aatatatacc aaactagtat agatattttt 2640 taaatactgg acttaaacag tagtaatttg cctaaaaaat tttttcaatt ttttttaaaa 2700 aatccttttc aagttgtaca ttgttatggt aatatgtaat tgaagaagtt atgtagtaat 2760 attgtaaacg tttcttgatt tttttacatc catgtagtgc ttaaaaaacc aaaatatgtc 2820 acatgcaatt gtatatttca aataacaata tttattttct cgttaaattc acaaataatt 2880 tattaataat atcaataacc aagattatac ttaaatggat gtttattttt taacactttt 2940 atagtaaata tatttatttt atgtagtaaa aaggttataa ttataattgt atttattaca 3000 attaattaaa ataaaaaata gggttttagg taaaattaag ttattttaag aagtaattac 3060 aataaaaatt gaagttattt ctttaaggag ggaattattc atatgactta tgtaccatca 3120 tcagcacttt tagaacaact tagagcagga aatacttggg ctttaggaag acttatatca 3180 agagcagaag ctggagttgc agaagctaga cctgcacttg ctgaagtata tagacatgca 3240 ggttcagctc atgttatagg tttaacagga gtaccaggat ctggtaaatc aactcttgta 3300 gcaaaactta cagcagctct tagaaaaaga ggagaaaaag ttggtatagt agctattgat 3360 cctagttctc catatagtgg aggagcaata cttggagata gaattagaat gactgaatta 3420 gcaaatgatt caggagtatt tataagaagt atggcaacta gaggtgctac tggaggaatg 3480 gctagagcag ctcttgatgc agttgattta cttgatgtag ctggatatca tactattatt 3540 ttagaaacag ttggagtagg tcaagatgaa gttgaagtag cacatgcttc tgatactaca 3600 gtagttgtat cagcacctgg acttggtgat gaaatacagg caattaaagc tggagtttta 3660 gaaattgctg atattcatgt tgtaagtaaa tgtgatagag atgatgcaaa tagaactctt 3720 acagatctta aacaaatgct tactttagga acaatggtag gacctaaaag agcatgggct 3780 ataccagttg taggagtttc aagttataca ggagaaggtg tagatgattt acttggtaga 3840 attgcagctc atagacaagc aactgctgat acagaacttg gaagagaaag aagaagaaga 3900 gtagctgaat ttagacttca aaaaactgca gaaacattac ttttagaaag atttactaca 3960 ggagcacagc ctttttcacc agcattagct gatagtcttt ctaatagagc tagtgatcct 4020 tatgcagctg caagagaatt aatagctaga actataagaa aagaatattc taatgatctt 4080 gcatgtgcta aacttactat aacatggtta gaaccacaaa ttaaaagtca acttcagtct 4140 gaaagaaaag attgggaagc aaatgaagtt ggagcatttc ttaaaaaagc acctgaaaga 4200 aaagaacaat ttcatacaat tggagatttt ccagtacaga gaacttatac agctgcagat 4260 atagcagata ctcctcttga agatattggt ttacctggaa gatatccatt tactagagga 4320 ccttatccaa caatgtatag aagtagaact tggacaatga gacaaatagc tggatttggt 4380 actggagaag atacaaataa aagatttaaa tatcttatag cacagggtca gactggaata 4440 tcaacagatt ttgatatgcc tacattaatg ggatatgatt cagatcatcc aatgagtgat 4500 ggtgaagttg gaagagaagg tgtagctata gatacacttg cagatatgga agcacttctt 4560 gctgatattg atttagaaaa aatttcagtt agttttacta taaatccaag tgcatggatt 4620 cttttagcaa tgtatgtagc tttaggtgaa aaaagaggtt atgatcttaa taaactttct 4680 ggaacagtac aagctgatat acttaaagaa tatatggcac agaaagaata tatttatcct 4740 atagctccaa gtgttagaat tgtaagagat ataattactt attctgcaaa aaatcttaaa 4800 agatataatc ctattaatat ttctggatat catatatcag aagctggttc ttcaccatta 4860 caagaagctg catttactct tgcaaatctt attacttatg taaatgaagt aactaaaaca 4920 ggaatgcatg tagatgaatt tgcacctaga ttagcatttt tctttgttag tcaaggagat 4980 ttctttgaag aagtagcaaa atttagagct ttaagaagat gttatgctaa aataatgaaa 5040 gaaagatttg gagcaagaaa tcctgaatct atgagactta gatttcattg tcaaactgct 5100 gcagctactc ttacaaaacc acagtatatg gttaatgttg taagaacaag tcttcaagca 5160 ttatctgctg tattgggagg agcacaaagt cttcatacta atggatatga tgaagcattt 5220 gctataccta ctgaagatgc aatgaaaatg gctcttagaa cacaacagat tatagctgaa 5280 gaatctggag ttgcagatgt aatagatcct cttggaggaa gttattatgt tgaagcatta 5340 actacagaat atgaaaagaa aatatttgaa attcttgaag aagtagaaaa aagaggtgga 5400 actattaaac ttattgaaca aggatggttt caaaaacaga tagcagattt tgcttatgaa 5460 actgcactta gaaaacaatc aggacagaaa cctgttatag gtgtaaatag atttgttgaa 5520 aatgaagaag atgtaaaaat tgaaatacat ccttatgata atactacagc tgaaagacaa 5580 atatcaagaa ctagaagagt tagagcagaa agagatgaag caaaagtaca agctatgctt 5640 gatcagttag ttgcagtagc taaagatgaa agtcagaatc ttatgcctct tactattgaa 5700 ttagtaaaag caggagctac aatgggtgat attgtagaaa aacttaaagg tatttgggga 5760 acttatagag aaacaccagt attttaagca ctagttggag agcttcccac gatggatcag 5820 attcctatta gagtattatt agcaaaagta ggtttagatg gacatgatag aggtgtaaaa 5880 gttgtagcaa gagcattaag agatgctgga atggatgtaa tatatagtgg tcttcataga 5940 actcctgaag aagtagttaa tacagcaatt caagaagatg tagatgtttt aggagttagt 6000 ttactttctg gtgtacagct tactgttttt cctaaaattt ttaaattact tgatgaaaga 6060 ggagctggtg atttaatagt aattgctgga ggagtaatgc cagatgaaga tgcagctgca 6120 ataagaaaac ttggagtaag agaagtttta cttcaagata caccaccaca ggcaataata 6180 gattcaataa gaagtttagt agcagcaaga ggagcaagat aaccatggag atctcgaggc 6240 ctgcagacat gcaagcttgg cactggccgt cgttttacaa cgtcgtgact gggaaaaccc 6300 tggcgttacc caacttaatc gccttgcagc acatccccct ttcgccagct ggcgtaatag 6360 cgaagaggcc cgcaccgatc gcccttccca acagttgcgc agcctgaatg gcgaatggcg 6420 ctagcataaa aataagaagc ctgcatttgc aggcttctta tttttatggc gcgccgccat 6480 tatttttttg aacaattgac aattcatttc ttatttttta ttaagtgata gtcaaaaggc 6540 ataacagtgc tgaatagaaa gaaatttaca gaaaagaaaa ttatagaatt tagtatgatt 6600 aattatactc atttatgaat gtttaattga atacaaaaaa aaatacttgt tatgtattca 6660 attacgggtt aaaatataga caagttgaaa aatttaataa aaaaataagt cctcagctct 6720 tatatattaa gctaccaact tagtatataa gccaaaactt aaatgtgcta ccaacacatc 6780 aagccgttag agaactctat ctatagcaat atttcaaatg taccgacata caagagaaac 6840 attaactata tatattcaat ttatgagatt atcttaacag atataaatgt aaattgcaat 6900 aagtaagatt tagaagttta tagcctttgt gtattggaag cagtacgcaa aggctttttt 6960 atttgataaa aattagaagt atatttattt tttcataatt aatttatgaa aatgaaaggg 7020 ggtgagcaaa gtgacagagg aaagcagtat cttatcaaat aacaaggtat tagcaatatc 7080 attattgact ttagcagtaa acattatgac ttttatagtg cttgtagcta agtagtacga 7140 aagggggagc tttaaaaagc tccttggaat acatagaatt cataaattaa tttatgaaaa 7200 gaagggcgta tatgaaaact tgtaaaaatt gcaaagagtt tattaaagat actgaaatat 7260 gcaaaataca ttcgttgatg attcatgata aaacagtagc aacctattgc agtaaataca 7320 atgagtcaag atgtttacat aaagggaaag tccaatgtat taattgttca aagatgaacc 7380 gatatggatg gtgtgccata aaaatgagat gttttacaga ggaagaacag aaaaaagaac 7440 gtacatgcat taaatattat gcaaggagct ttaaaaaagc tcatgtaaag aagagtaaaa 7500 agaaaaaata atttatttat taatttaata ttgagagtgc cgacacagta tgcactaaaa 7560 aatatatctg tggtgtagtg agccgataca aaaggatagt cactcgcatt ttcataatac 7620 atcttatgtt atgattatgt gtcggtggga cttcacgacg aaaacccaca ataaaaaaag 7680 agttcggggt agggttaagc atagttgagg caactaaaca atcaagctag gatatgcagt 7740 agcagaccgt aaggtcgttg tttaggtgtg ttgtaataca tacgctatta agatgtaaaa 7800 atacggatac caatgaaggg aaaagtataa tttttggatg tagtttgttt gttcatctat 7860 gggcaaacta cgtccaaagc cgtttccaaa tctgctaaaa agtatatcct ttctaaaatc 7920 aaagtcaagt atgaaatcat aaataaagtt taattttgaa gttattatga tattatgttt 7980 ttctattaaa ataaattaag tatatagaat agtttaataa tagtatatac ttaatgtgat 8040 aagtgtctga cagtgtcaca gaaaggatga ttgttatgga ttataagcgg ccggccagtg 8100 ggcaagttga aaaattcaca aaaatgtggt ataatatctt tgttcattag agcgataaac 8160 ttgaatttga gagggaactt agatggtatt tgaaaaaatt gataaaaata gttggaacag 8220 aaaagagtat tttgaccact actttgcaag tgtaccttgt acctacagca tgaccgttaa 8280 agtggatatc acacaaataa aggaaaaggg aatgaaacta tatcctgcaa tgctttatta 8340 tattgcaatg attgtaaacc gccattcaga gtttaggacg gcaatcaatc aagatggtga 8400 attggggata tatgatgaga tgataccaag ctatacaata tttcacaatg atactgaaac 8460 attttccagc ctttggactg agtgtaagtc tgactttaaa tcatttttag cagattatga 8520 aagtgatacg caacggtatg gaaacaatca tagaatggaa ggaaagccaa atgctccgga 8580 aaacattttt aatgtatcta tgataccgtg gtcaaccttc gatggcttta atctgaattt 8640 gcagaaagga tatgattatt tgattcctat ttttactatg gggaaatatt ataaagaaga 8700 taacaaaatt atacttcctt tggcaattca agttcatcac gcagtatgtg acggatttca 8760 catttgccgt tttgtaaacg aattgcagga attgataaat agttaacttc aggtttgtct 8820 gtaactaaaa acaagtattt aagcaaaaac atcgtagaaa tacggtgttt tttgttaccc 8880 taagtttaaa ctcctttttg ataatctcat gaccaaaatc ccttaacgtg agttttcgtt 8940 ccactgagcg tcagaccccg tagaaaagat caaaggatct tcttgagatc ctttttttct 9000 gcgcgtaatc tgctgcttgc aaacaaaaaa accaccgcta ccagcggtgg tttgtttgcc 9060 ggatcaagag ctaccaactc tttttccgaa ggtaactggc ttcagcagag cgcagatacc 9120 aaatactgtt cttctagtgt agccgtagtt aggccaccac ttcaagaact ctgtagcacc 9180 gcctacatac ctcgctctgc taatcctgtt accagtggct gctgccagtg gcgataagtc 9240 gtgtcttacc gggttggact caagacgata gttaccggat aaggcgcagc ggtcgggctg 9300 aacggggggt tcgtgcacac agcccagctt ggagcgaacg acctacaccg aactgagata 9360 cctacagcgt gagctatgag aaagcgccac gcttcccgaa gggagaaagg cggacaggta 9420 tccggtaagc ggcagggtcg gaacaggaga gcgcacgagg gagcttccag ggggaaacgc 9480 ctggtatctt tatagtcctg tcgggtttcg ccacctctga cttgagcgtc gatttttgtg 9540 atgctcgtca ggggggcgga gcctatggaa aaacgccagc aacgcggcct ttttacggtt 9600 cctggccttt tgctggcctt ttgctcacat gttctttcct gcgttatccc ctgattctgt 9660 ggataaccgt attaccgcct ttgagtgagc tgataccgct cgccgcagcc gaacgaccga 9720 gcgcagcgag tcagtgagcg aggaagcgga agagcgccca atacgcaggg ccccctgctt 9780 cggggtcatt atagcgattt tttcggtata tccatccttt ttcgcacgat atacaggatt 9840 ttgccaaagg gttcgtgtag actttccttg gtgtatccaa cggcgtcagc cgggcaggat 9900 aggtgaagta ggcccacccg cgagcgggtg ttccttcttc actgtccctt attcgcacct 9960 ggcggtgctc aacgggaatc ctgctctgcg aggctggccg gctaccgccg gcgtaacaga 10020 tgagggcaag cggatggctg atgaaaccaa gccaaccagg aagggcagcc cacctatcaa 10080 ggtgtactgc cttccagacg aacgaagagc gattgaggaa aaggcggcgg cggccggcat 10140 gagcctgtcg gcctacctgc tggccgtcgg ccagggctac aaaatcacgg gcgtcgtgga 10200 ctatgagcac gtccgcgagc tggcccgcat caatggcgac ctgggccgcc tgggcggcct 10260 gctgaaactc tggctcaccg acgacccgcg cacggcgcgg ttcggtgatg ccacgatcct 10320 cgccctgctg gcgaagatcg aagagaagca ggacgagctt ggcaaggtca tgatgggcgt 10380 ggtccgcccg agggcagagc catgactttt ttagccgcta aaacggccgg ggggtgcgcg 10440 tgattgccaa gcacgtcccc atgcgctcca tcaagaagag cgacttcgcg gagctggtga 10500 agtacatcac cgacgagcaa ggcaagaccg atcgggccc 10539 <210> SEQ ID NO 193 <211> LENGTH: 487 <212> TYPE: DNA <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: promoter region of phosphate acetyltransferase <400> SEQUENCE: 193 ggccgcaata tgatatttat gtccattgtg aaagggatta tattcaacta ttattccagt 60 tacgttcata gaaattttcc tttctaaaat attttattcc atgtcaagaa ctctgtttat 120 ttcattaaag aactataagt acaaagtata aggcatttga aaaaataggc tagtatattg 180 attgattatt tattttaaaa tgcctaagtg aaatatatac atattataac aataaaataa 240 gtattagtgt aggattttta aatagagtat ctattttcag attaaatttt tgattatttg 300 atttacatta tataatattg agtaaagtat tgactagcaa aattttttga tactttaatt 360 tgtgaaattt cttatcaaaa gttatatttt tgaataattt ttattgaaaa atacaactaa 420 aaaggattat agtataagtg tgtgtaattt tgtgttaaat ttaaagggag gaaatgaaca 480 tgaaaca 487 <210> SEQ ID NO 194 <211> LENGTH: 7884 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pMTL82256-ptb-buk <400> SEQUENCE: 194 gagatctcga ggcctgcaga catgcaagct tggcactggc cgtcgtttta caacgtcgtg 60 actgggaaaa ccctggcgtt acccaactta atcgccttgc agcacatccc cctttcgcca 120 gctggcgtaa tagcgaagag gcccgcaccg atcgcccttc ccaacagttg cgcagcctga 180 atggcgaatg gcgctagcat aaaaataaga agcctgcatt tgcaggcttc ttatttttat 240 ggcgcgccgt tctgaatcct tagctaatgg ttcaacaggt aactatgacg aagatagcac 300 cctggataag tctgtaatgg attctaaggc atttaatgaa gacgtgtata taaaatgtgc 360 taatgaaaaa gaaaatgcgt taaaagagcc taaaatgagt tcaaatggtt ttgaaattga 420 ttggtagttt aatttaatat attttttcta ttggctatct cgatacctat agaatcttct 480 gttcactttt gtttttgaaa tataaaaagg ggctttttag cccctttttt ttaaaactcc 540 ggaggagttt cttcattctt gatactatac gtaactattt tcgatttgac ttcattgtca 600 attaagctag taaaatcaat ggttaaaaaa caaaaaactt gcatttttct acctagtaat 660 ttataatttt aagtgtcgag tttaaaagta taatttacca ggaaaggagc aagtttttta 720 ataaggaaaa atttttcctt ttaaaattct atttcgttat atgactaatt ataatcaaaa 780 aaatgaaaat aaacaagagg taaaaactgc tttagagaaa tgtactgata aaaaaagaaa 840 aaatcctaga tttacgtcat acatagcacc tttaactact aagaaaaata ttgaaaggac 900 ttccacttgt ggagattatt tgtttatgtt gagtgatgca gacttagaac attttaaatt 960 acataaaggt aatttttgcg gtaatagatt ttgtccaatg tgtagttggc gacttgcttg 1020 taaggatagt ttagaaatat ctattcttat ggagcattta agaaaagaag aaaataaaga 1080 gtttatattt ttaactctta caactccaaa tgtaaaaagt tatgatctta attattctat 1140 taaacaatat aataaatctt ttaaaaaatt aatggagcgt aaggaagtta aggatataac 1200 taaaggttat ataagaaaat tagaagtaac ttaccaaaag gaaaaataca taacaaagga 1260 tttatggaaa ataaaaaaag attattatca aaaaaaagga cttgaaattg gtgatttaga 1320 acctaatttt gatacttata atcctcattt tcatgtagtt attgcagtta ataaaagtta 1380 ttttacagat aaaaattatt atataaatcg agaaagatgg ttggaattat ggaagtttgc 1440 tactaaggat gattctataa ctcaagttga tgttagaaaa gcaaaaatta atgattataa 1500 agaggtttac gaacttgcga aatattcagc taaagacact gattatttaa tatcgaggcc 1560 agtatttgaa attttttata aagcattaaa aggcaagcag gtattagttt ttagtggatt 1620 ttttaaagat gcacacaaat tgtacaagca aggaaaactt gatgtttata aaaagaaaga 1680 tgaaattaaa tatgtctata tagtttatta taattggtgc aaaaaacaat atgaaaaaac 1740 tagaataagg gaacttacgg aagatgaaaa agaagaatta aatcaagatt taatagatga 1800 aatagaaata gattaaagtg taactatact ttatatatat atgattaaaa aaataaaaaa 1860 caacagccta ttaggttgtt gttttttatt ttctttatta atttttttaa tttttagttt 1920 ttagttcttt tttaaaataa gtttcagcct ctttttcaat attttttaaa gaaggagtat 1980 ttgcatgaat tgcctttttt ctaacagact taggaaatat tttaacagta tcttcttgcg 2040 ccggtgattt tggaacttca taacttacta atttataatt attattttct tttttaattg 2100 taacagttgc aaaagaagct gaacctgttc cttcaactag tttatcatct tcaatataat 2160 attcttgacc tatatagtat aaatatattt ttattatatt tttacttttt tctgaatcta 2220 ttattttata atcataaaaa gttttaccac caaaagaagg ttgtactcct tctggtccaa 2280 catatttttt tactatatta tctaaataat ttttgggaac tggtgttgta atttgattaa 2340 tcgaacaacc agttatactt aaaggaatta taactataaa aatatatagg attatctttt 2400 taaatttcat tattggcctc ctttttatta aatttatgtt accataaaaa ggacataacg 2460 ggaatatgta gaatattttt aatgtagaca aaattttaca taaatataaa gaaaggaagt 2520 gtttgtttaa attttatagc aaactatcaa aaattagggg gataaaaatt tatgaaaaaa 2580 aggttttcga tgttattttt atgtttaact ttaatagttt gtggtttatt tacaaattcg 2640 gccggccgaa gcaaacttaa gagtgtgttg atagtgcagt atcttaaaat tttgtataat 2700 aggaattgaa gttaaattag atgctaaaaa tttgtaatta agaaggagtg attacatgaa 2760 caaaaatata aaatattctc aaaacttttt aacgagtgaa aaagtactca accaaataat 2820 aaaacaattg aatttaaaag aaaccgatac cgtttacgaa attggaacag gtaaagggca 2880 tttaacgacg aaactggcta aaataagtaa acaggtaacg tctattgaat tagacagtca 2940 tctattcaac ttatcgtcag aaaaattaaa actgaatact cgtgtcactt taattcacca 3000 agatattcta cagtttcaat tccctaacaa acagaggtat aaaattgttg ggagtattcc 3060 ttaccattta agcacacaaa ttattaaaaa agtggttttt gaaagccatg cgtctgacat 3120 ctatctgatt gttgaagaag gattctacaa gcgtaccttg gatattcacc gaacactagg 3180 gttgctcttg cacactcaag tctcgattca gcaattgctt aagctgccag cggaatgctt 3240 tcatcctaaa ccaaaagtaa acagtgtctt aataaaactt acccgccata ccacagatgt 3300 tccagataaa tattggaagc tatatacgta ctttgtttca aaatgggtca atcgagaata 3360 tcgtcaactg tttactaaaa atcagtttca tcaagcaatg aaacacgcca aagtaaacaa 3420 tttaagtacc gttacttatg agcaagtatt gtctattttt aatagttatc tattatttaa 3480 cgggaggaaa taattctatg agtcgctttt gtaaatttgg aaagttacac gttactaaag 3540 ggaatgtgtt taaactcctt tttgataatc tcatgaccaa aatcccttaa cgtgagtttt 3600 cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatccttttt 3660 ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt 3720 tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc agagcgcaga 3780 taccaaatac tgttcttcta gtgtagccgt agttaggcca ccacttcaag aactctgtag 3840 caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc agtggcgata 3900 agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg 3960 gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga 4020 gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca 4080 ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa 4140 acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag cgtcgatttt 4200 tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg gcctttttac 4260 ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta tcccctgatt 4320 ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc agccgaacga 4380 ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cccaatacgc agggccccct 4440 gcttcggggt cattatagcg attttttcgg tatatccatc ctttttcgca cgatatacag 4500 gattttgcca aagggttcgt gtagactttc cttggtgtat ccaacggcgt cagccgggca 4560 ggataggtga agtaggccca cccgcgagcg ggtgttcctt cttcactgtc ccttattcgc 4620 acctggcggt gctcaacggg aatcctgctc tgcgaggctg gccggctacc gccggcgtaa 4680 cagatgaggg caagcggatg gctgatgaaa ccaagccaac caggaagggc agcccaccta 4740 tcaaggtgta ctgccttcca gacgaacgaa gagcgattga ggaaaaggcg gcggcggccg 4800 gcatgagcct gtcggcctac ctgctggccg tcggccaggg ctacaaaatc acgggcgtcg 4860 tggactatga gcacgtccgc gagctggccc gcatcaatgg cgacctgggc cgcctgggcg 4920 gcctgctgaa actctggctc accgacgacc cgcgcacggc gcggttcggt gatgccacga 4980 tcctcgccct gctggcgaag atcgaagaga agcaggacga gcttggcaag gtcatgatgg 5040 gcgtggtccg cccgagggca gagccatgac ttttttagcc gctaaaacgg ccggggggtg 5100 cgcgtgattg ccaagcacgt ccccatgcgc tccatcaaga agagcgactt cgcggagctg 5160 gtgaagtaca tcaccgacga gcaaggcaag accgatcggg ccccctgcag gataaaaaaa 5220 ttgtagataa attttataaa atagttttat ctacaatttt tttatcagga aacagctatg 5280 accgcggccg caaaatagtt gataataatg cagagttata aacaaaggtg aaaagcatta 5340 cttgtattct tttttatata ttattataaa ttaaaatgaa gctgtattag aaaaaataca 5400 cacctgtaat ataaaatttt aaattaattt ttaatttttt caaaatgtat tttacatgtt 5460 tagaattttg atgtatatta aaatagtaga atacataaga tacttaattt aattaaagat 5520 agttaagtac ttttcaatgt gcttttttag atgtttaata caaatcttta attgtaaaag 5580 aaatgctgta ctatttactg tactagtgac gggattaaac tgtattaatt ataaataaaa 5640 aataagtaca gttgtttaaa attatatttt gtattaaatc taatagtacg atgtaagtta 5700 ttttatacta ttgctagttt aataaaaaga tttaattata tgcttgaaaa ggagaggaat 5760 ccaatgagta aaaactttga tgagttatta tcaagattaa aggaagttcc aacaaaaaaa 5820 gtggctgtag ccgtagcaca agatgaacca gtattagagg ctataaaaga agctacagaa 5880 aataacatcg cacaagcaat attggttggt gataaacaac aaatccatga aatcgcaaag 5940 aaaataaact tggacttatc tgattatgaa ataatggata ttaaagatcc aaagaaagca 6000 acattagaag cagtaaaatt agtttctagt ggtcatgcag atatgttaat gaaaggtcta 6060 gttgatactg caacattcct aagaagcgta ttaaacaaag aggttggtct tagaacagga 6120 aaattaatgt cccatgtagc tgtgtttgat gtggaaggtt gggatagact gttattttta 6180 actgatgcag catttaatac atatccagaa tttaaggata aagttggaat gataaataat 6240 gcagttgtag ttgctcatgc atgtggaata gatgttccaa gagtagcacc tatatgccca 6300 gttgaagttg taaatacaag tatgcaatca acagttgatg cagcattgtt agctaaaatg 6360 agtgacaggg ggcaaattaa aggatgcgta attgatggac cttttgcctt agataatgca 6420 atatcagaag aagcagctca tcataaaggt gttacaggat cagtagcagg taaagctgat 6480 atattattat taccaaatat agaagcagca aatgtaatgt ataaaacatt aacatatttc 6540 tctaaatcaa gaaatggtgg acttttagta ggtacatcag caccagtaat tttaacttca 6600 agagcagatt cattcgaaac taaagttaat tcaattgctc ttgcagcatt agttgcagca 6660 agaaataagt aataaatcaa tccataataa ttaatgcata attaatggag agatttatat 6720 ggaatttgca atgcactatt agattctata ataatttctt ctgaaaatta tgcattatga 6780 ctgtatagaa tgcattaaat ttaaggggga ttcagaatgt catataagct attaataatc 6840 aatccaggtt caacatcaac aaagattggt gtttacgaag gagaaaagga actatttgaa 6900 gaaactttga gacacacaaa tgaagaaata aagagatatg atacaatata tgatcaattt 6960 gaatttagaa aagaagttat attaaatgtt cttaaagaaa agaattttga tataaagact 7020 ctaagtgcta ttgttggtag aggtggaatg cttagaccag ttgaaggtgg aacatatgca 7080 gtaaatgatg caatggttga agatttaaaa gttggagttc aaggacctca tgcttctaac 7140 cttggcggaa taattgccaa gtcaattgga gatgaattaa atattccatc atttatagta 7200 gatccagttg ttacagatga gttagcagat gtagcaagac tatctggagt accagaacta 7260 ccaagaaaaa gtaaattcca tgctttaaat caaaaagcgg tagctaaaag atatggaaaa 7320 gaaagtggac aaggatatga aaacctaaat cttgtagttg tacatatggg tggaggcgtt 7380 tcagttggtg ctcacaatca tgggaaagtt gtcgatgtaa ataatgcatt agatggagat 7440 ggcccattct caccagaaag agctggatca gttccaattg gtgatttagt taaaatgtgt 7500 tttagtggaa aatatagtga agcagaagta tatggcaagg ctgtaggaaa aggtggattt 7560 gttggttatc taaacacaaa tgatgtaaaa ggtgttattg ataagatgga agaaggagat 7620 aaagaatgtg aatcaatata caaagcattt gtttatcaaa tttcaaaagc aatcggagaa 7680 atgtcagttg tattagaagg taaagttgat caaattattt ttaccggagg aattgcatac 7740 tcaccaacac ttgttccaga ccttaaagca aaagttgaat ggatagcccc agttacagtt 7800 tatcctggag aagatgaatt acttgctcta gctcaaggtg ctataagagt acttgatgga 7860 gaagaacaag ctaaggttta ctag 7884 <210> SEQ ID NO 195 <211> LENGTH: 6624 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: pMTL82256-tesB <400> SEQUENCE: 195 gagatctcga ggcctgcaga catgcaagct tggcactggc cgtcgtttta caacgtcgtg 60 actgggaaaa ccctggcgtt acccaactta atcgccttgc agcacatccc cctttcgcca 120 gctggcgtaa tagcgaagag gcccgcaccg atcgcccttc ccaacagttg cgcagcctga 180 atggcgaatg gcgctagcat aaaaataaga agcctgcatt tgcaggcttc ttatttttat 240 ggcgcgccgt tctgaatcct tagctaatgg ttcaacaggt aactatgacg aagatagcac 300 cctggataag tctgtaatgg attctaaggc atttaatgaa gacgtgtata taaaatgtgc 360 taatgaaaaa gaaaatgcgt taaaagagcc taaaatgagt tcaaatggtt ttgaaattga 420 ttggtagttt aatttaatat attttttcta ttggctatct cgatacctat agaatcttct 480 gttcactttt gtttttgaaa tataaaaagg ggctttttag cccctttttt ttaaaactcc 540 ggaggagttt cttcattctt gatactatac gtaactattt tcgatttgac ttcattgtca 600 attaagctag taaaatcaat ggttaaaaaa caaaaaactt gcatttttct acctagtaat 660 ttataatttt aagtgtcgag tttaaaagta taatttacca ggaaaggagc aagtttttta 720 ataaggaaaa atttttcctt ttaaaattct atttcgttat atgactaatt ataatcaaaa 780 aaatgaaaat aaacaagagg taaaaactgc tttagagaaa tgtactgata aaaaaagaaa 840 aaatcctaga tttacgtcat acatagcacc tttaactact aagaaaaata ttgaaaggac 900 ttccacttgt ggagattatt tgtttatgtt gagtgatgca gacttagaac attttaaatt 960 acataaaggt aatttttgcg gtaatagatt ttgtccaatg tgtagttggc gacttgcttg 1020 taaggatagt ttagaaatat ctattcttat ggagcattta agaaaagaag aaaataaaga 1080 gtttatattt ttaactctta caactccaaa tgtaaaaagt tatgatctta attattctat 1140 taaacaatat aataaatctt ttaaaaaatt aatggagcgt aaggaagtta aggatataac 1200 taaaggttat ataagaaaat tagaagtaac ttaccaaaag gaaaaataca taacaaagga 1260 tttatggaaa ataaaaaaag attattatca aaaaaaagga cttgaaattg gtgatttaga 1320 acctaatttt gatacttata atcctcattt tcatgtagtt attgcagtta ataaaagtta 1380 ttttacagat aaaaattatt atataaatcg agaaagatgg ttggaattat ggaagtttgc 1440 tactaaggat gattctataa ctcaagttga tgttagaaaa gcaaaaatta atgattataa 1500 agaggtttac gaacttgcga aatattcagc taaagacact gattatttaa tatcgaggcc 1560 agtatttgaa attttttata aagcattaaa aggcaagcag gtattagttt ttagtggatt 1620 ttttaaagat gcacacaaat tgtacaagca aggaaaactt gatgtttata aaaagaaaga 1680 tgaaattaaa tatgtctata tagtttatta taattggtgc aaaaaacaat atgaaaaaac 1740 tagaataagg gaacttacgg aagatgaaaa agaagaatta aatcaagatt taatagatga 1800 aatagaaata gattaaagtg taactatact ttatatatat atgattaaaa aaataaaaaa 1860 caacagccta ttaggttgtt gttttttatt ttctttatta atttttttaa tttttagttt 1920 ttagttcttt tttaaaataa gtttcagcct ctttttcaat attttttaaa gaaggagtat 1980 ttgcatgaat tgcctttttt ctaacagact taggaaatat tttaacagta tcttcttgcg 2040 ccggtgattt tggaacttca taacttacta atttataatt attattttct tttttaattg 2100 taacagttgc aaaagaagct gaacctgttc cttcaactag tttatcatct tcaatataat 2160 attcttgacc tatatagtat aaatatattt ttattatatt tttacttttt tctgaatcta 2220 ttattttata atcataaaaa gttttaccac caaaagaagg ttgtactcct tctggtccaa 2280 catatttttt tactatatta tctaaataat ttttgggaac tggtgttgta atttgattaa 2340 tcgaacaacc agttatactt aaaggaatta taactataaa aatatatagg attatctttt 2400 taaatttcat tattggcctc ctttttatta aatttatgtt accataaaaa ggacataacg 2460 ggaatatgta gaatattttt aatgtagaca aaattttaca taaatataaa gaaaggaagt 2520 gtttgtttaa attttatagc aaactatcaa aaattagggg gataaaaatt tatgaaaaaa 2580 aggttttcga tgttattttt atgtttaact ttaatagttt gtggtttatt tacaaattcg 2640 gccggccgaa gcaaacttaa gagtgtgttg atagtgcagt atcttaaaat tttgtataat 2700 aggaattgaa gttaaattag atgctaaaaa tttgtaatta agaaggagtg attacatgaa 2760 caaaaatata aaatattctc aaaacttttt aacgagtgaa aaagtactca accaaataat 2820 aaaacaattg aatttaaaag aaaccgatac cgtttacgaa attggaacag gtaaagggca 2880 tttaacgacg aaactggcta aaataagtaa acaggtaacg tctattgaat tagacagtca 2940 tctattcaac ttatcgtcag aaaaattaaa actgaatact cgtgtcactt taattcacca 3000 agatattcta cagtttcaat tccctaacaa acagaggtat aaaattgttg ggagtattcc 3060 ttaccattta agcacacaaa ttattaaaaa agtggttttt gaaagccatg cgtctgacat 3120 ctatctgatt gttgaagaag gattctacaa gcgtaccttg gatattcacc gaacactagg 3180 gttgctcttg cacactcaag tctcgattca gcaattgctt aagctgccag cggaatgctt 3240 tcatcctaaa ccaaaagtaa acagtgtctt aataaaactt acccgccata ccacagatgt 3300 tccagataaa tattggaagc tatatacgta ctttgtttca aaatgggtca atcgagaata 3360 tcgtcaactg tttactaaaa atcagtttca tcaagcaatg aaacacgcca aagtaaacaa 3420 tttaagtacc gttacttatg agcaagtatt gtctattttt aatagttatc tattatttaa 3480 cgggaggaaa taattctatg agtcgctttt gtaaatttgg aaagttacac gttactaaag 3540 ggaatgtgtt taaactcctt tttgataatc tcatgaccaa aatcccttaa cgtgagtttt 3600 cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatccttttt 3660 ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt 3720 tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc agagcgcaga 3780 taccaaatac tgttcttcta gtgtagccgt agttaggcca ccacttcaag aactctgtag 3840 caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc agtggcgata 3900 agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg 3960 gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga 4020 gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca 4080 ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa 4140 acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag cgtcgatttt 4200 tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg gcctttttac 4260 ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta tcccctgatt 4320 ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc agccgaacga 4380 ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cccaatacgc agggccccct 4440 gcttcggggt cattatagcg attttttcgg tatatccatc ctttttcgca cgatatacag 4500 gattttgcca aagggttcgt gtagactttc cttggtgtat ccaacggcgt cagccgggca 4560 ggataggtga agtaggccca cccgcgagcg ggtgttcctt cttcactgtc ccttattcgc 4620 acctggcggt gctcaacggg aatcctgctc tgcgaggctg gccggctacc gccggcgtaa 4680 cagatgaggg caagcggatg gctgatgaaa ccaagccaac caggaagggc agcccaccta 4740 tcaaggtgta ctgccttcca gacgaacgaa gagcgattga ggaaaaggcg gcggcggccg 4800 gcatgagcct gtcggcctac ctgctggccg tcggccaggg ctacaaaatc acgggcgtcg 4860 tggactatga gcacgtccgc gagctggccc gcatcaatgg cgacctgggc cgcctgggcg 4920 gcctgctgaa actctggctc accgacgacc cgcgcacggc gcggttcggt gatgccacga 4980 tcctcgccct gctggcgaag atcgaagaga agcaggacga gcttggcaag gtcatgatgg 5040 gcgtggtccg cccgagggca gagccatgac ttttttagcc gctaaaacgg ccggggggtg 5100 cgcgtgattg ccaagcacgt ccccatgcgc tccatcaaga agagcgactt cgcggagctg 5160 gtgaagtaca tcaccgacga gcaaggcaag accgatcggg ccccctgcag gataaaaaaa 5220 ttgtagataa attttataaa atagttttat ctacaatttt tttatcagga aacagctatg 5280 accgcggccg caaaatagtt gataataatg cagagttata aacaaaggtg aaaagcatta 5340 cttgtattct tttttatata ttattataaa ttaaaatgaa gctgtattag aaaaaataca 5400 cacctgtaat ataaaatttt aaattaattt ttaatttttt caaaatgtat tttacatgtt 5460 tagaattttg atgtatatta aaatagtaga atacataaga tacttaattt aattaaagat 5520 agttaagtac ttttcaatgt gcttttttag atgtttaata caaatcttta attgtaaaag 5580 aaatgctgta ctatttactg tactagtgac gggattaaac tgtattaatt ataaataaaa 5640 aataagtaca gttgtttaaa attatatttt gtattaaatc taatagtacg atgtaagtta 5700 ttttatacta ttgctagttt aataaaaaga tttaattata tgcttgaaaa ggagaggaat 5760 ccaatgagtc aggcacttaa aaatttactt actttactta atcttgaaaa aatagaagaa 5820 ggtttattta gaggacagtc agaagattta ggattaagac aagtatttgg aggtcaagta 5880 gttggtcagg cactttatgc agctaaagaa actgtacctg aagaaagact tgttcatagt 5940 tttcattctt attttcttag acctggagat tctaaaaaac caattatata tgatgtagaa 6000 actcttagag atggaaattc atttagtgca agaagagttg cagctattca aaatggtaaa 6060 cctatatttt acatgacagc ttcttttcaa gcaccagaag ctggatttga acatcagaaa 6120 actatgcctt cagcacctgc tccagatgga ttaccatcag aaacacaaat agcacagagt 6180 ttagctcatt tacttcctcc agtacttaaa gataaattta tttgtgatag acctttagaa 6240 gttagaccag ttgaatttca taatcctctt aaaggacatg tagcagaacc acatagacaa 6300 gtttggataa gagctaatgg aagtgtacca gatgatctta gagttcatca gtatcttctt 6360 ggttatgcat ctgatttaaa ttttcttcct gtagctttac aaccacatgg aataggtttt 6420 cttgaacctg gaatacagat agcaactata gatcattcaa tgtggtttca tagaccattt 6480 aatcttaatg aatggcttct ttatagtgta gaatctacat cagcaagttc tgctagagga 6540 tttgttaggg gtgaatttta tactcaagat ggagtacttg ttgctagtac agtacaggaa 6600 ggtgttatga gaaatcataa ttaa 6624

1 SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 195 <210> SEQ ID NO 1 <211> LENGTH: 392 <212> TYPE: PRT <213> ORGANISM: Clostridium acetobutylicum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: ThlA, WP_010966157.1 <400> SEQUENCE: 1 Met Lys Glu Val Val Ile Ala Ser Ala Val Arg Thr Ala Ile Gly Ser 1 5 10 15 Tyr Gly Lys Ser Leu Lys Asp Val Pro Ala Val Asp Leu Gly Ala Thr 20 25 30 Ala Ile Lys Glu Ala Val Lys Lys Ala Gly Ile Lys Pro Glu Asp Val 35 40 45 Asn Glu Val Ile Leu Gly Asn Val Leu Gln Ala Gly Leu Gly Gln Asn 50 55 60 Pro Ala Arg Gln Ala Ser Phe Lys Ala Gly Leu Pro Val Glu Ile Pro 65 70 75 80 Ala Met Thr Ile Asn Lys Val Cys Gly Ser Gly Leu Arg Thr Val Ser 85 90 95 Leu Ala Ala Gln Ile Ile Lys Ala Gly Asp Ala Asp Val Ile Ile Ala 100 105 110 Gly Gly Met Glu Asn Met Ser Arg Ala Pro Tyr Leu Ala Asn Asn Ala 115 120 125 Arg Trp Gly Tyr Arg Met Gly Asn Ala Lys Phe Val Asp Glu Met Ile 130 135 140 Thr Asp Gly Leu Trp Asp Ala Phe Asn Asp Tyr His Met Gly Ile Thr 145 150 155 160 Ala Glu Asn Ile Ala Glu Arg Trp Asn Ile Ser Arg Glu Glu Gln Asp 165 170 175 Glu Phe Ala Leu Ala Ser Gln Lys Lys Ala Glu Glu Ala Ile Lys Ser 180 185 190 Gly Gln Phe Lys Asp Glu Ile Val Pro Val Val Ile Lys Gly Arg Lys 195 200 205 Gly Glu Thr Val Val Asp Thr Asp Glu His Pro Arg Phe Gly Ser Thr 210 215 220 Ile Glu Gly Leu Ala Lys Leu Lys Pro Ala Phe Lys Lys Asp Gly Thr 225 230 235 240 Val Thr Ala Gly Asn Ala Ser Gly Leu Asn Asp Cys Ala Ala Val Leu 245 250 255 Val Ile Met Ser Ala Glu Lys Ala Lys Glu Leu Gly Val Lys Pro Leu 260 265 270 Ala Lys Ile Val Ser Tyr Gly Ser Ala Gly Val Asp Pro Ala Ile Met 275 280 285 Gly Tyr Gly Pro Phe Tyr Ala Thr Lys Ala Ala Ile Glu Lys Ala Gly 290 295 300 Trp Thr Val Asp Glu Leu Asp Leu Ile Glu Ser Asn Glu Ala Phe Ala 305 310 315 320 Ala Gln Ser Leu Ala Val Ala Lys Asp Leu Lys Phe Asp Met Asn Lys 325 330 335 Val Asn Val Asn Gly Gly Ala Ile Ala Leu Gly His Pro Ile Gly Ala 340 345 350 Ser Gly Ala Arg Ile Leu Val Thr Leu Val His Ala Met Gln Lys Arg 355 360 365 Asp Ala Lys Lys Gly Leu Ala Thr Leu Cys Ile Gly Gly Gly Gln Gly 370 375 380 Thr Ala Ile Leu Leu Glu Lys Cys 385 390 <210> SEQ ID NO 2 <211> LENGTH: 393 <212> TYPE: PRT <213> ORGANISM: Cupriavidus necator <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: PhaA, WP_013956452.1 <400> SEQUENCE: 2 Met Thr Asp Val Val Ile Val Ser Ala Ala Arg Thr Ala Val Gly Lys 1 5 10 15 Phe Gly Gly Ser Leu Ala Lys Ile Pro Ala Pro Glu Leu Gly Ala Val 20 25 30 Val Ile Lys Ala Ala Leu Glu Arg Ala Gly Val Lys Pro Glu Gln Val 35 40 45 Ser Glu Val Ile Met Gly Gln Val Leu Thr Ala Gly Ser Gly Gln Asn 50 55 60 Pro Ala Arg Gln Ala Ala Ile Lys Ala Gly Leu Pro Ala Met Val Pro 65 70 75 80 Ala Met Thr Ile Asn Lys Val Cys Gly Ser Gly Leu Lys Ala Val Met 85 90 95 Leu Ala Ala Asn Ala Ile Met Ala Gly Asp Ala Glu Ile Val Val Ala 100 105 110 Gly Gly Gln Glu Asn Met Ser Ala Ala Pro His Val Leu Pro Gly Ser 115 120 125 Arg Asp Gly Phe Arg Met Gly Asp Ala Lys Leu Val Asp Thr Met Ile 130 135 140 Val Asp Gly Leu Trp Asp Val Tyr Asn Gln Tyr His Met Gly Ile Thr 145 150 155 160 Ala Glu Asn Val Ala Lys Glu Tyr Gly Ile Thr Arg Glu Ala Gln Asp 165 170 175 Glu Leu Ala Val Gly Ser Gln Asn Lys Ala Glu Ala Ala Gln Lys Ala 180 185 190 Gly Lys Phe Asp Glu Glu Ile Val Pro Val Leu Ile Pro Gln Arg Lys 195 200 205 Gly Asp Pro Val Ala Phe Lys Thr Asp Glu Phe Val Arg Gln Gly Ala 210 215 220 Thr Leu Asp Ser Met Ser Gly Leu Lys Pro Ala Phe Asp Lys Ala Gly 225 230 235 240 Thr Val Thr Ala Ala Asn Ala Ser Gly Leu Asn Asp Gly Ala Ala Ala 245 250 255 Val Val Val Met Ser Ala Ala Lys Ala Lys Glu Leu Gly Leu Thr Pro 260 265 270 Leu Ala Thr Ile Lys Ser Tyr Ala Asn Ala Gly Val Asp Pro Lys Val 275 280 285 Met Gly Met Gly Pro Val Pro Ala Ser Lys Arg Ala Leu Ser Arg Ala 290 295 300 Glu Trp Thr Pro Gln Asp Leu Asp Leu Met Glu Ile Asn Glu Ala Phe 305 310 315 320 Ala Ala Gln Ala Leu Ala Val His Gln Gln Met Gly Trp Asp Thr Ser 325 330 335 Lys Val Asn Val Asn Gly Gly Ala Ile Ala Ile Gly His Pro Ile Gly 340 345 350 Ala Ser Gly Cys Arg Ile Leu Val Thr Leu Leu His Glu Met Lys Arg 355 360 365 Arg Asp Ala Lys Lys Gly Leu Ala Ser Leu Cys Ile Gly Gly Gly Met 370 375 380 Gly Val Ala Leu Ala Val Glu Arg Lys 385 390 <210> SEQ ID NO 3 <211> LENGTH: 394 <212> TYPE: PRT <213> ORGANISM: Cupriavidus necator <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: BktB, WP_011615089.1 <400> SEQUENCE: 3 Met Thr Arg Glu Val Val Val Val Ser Gly Val Arg Thr Ala Ile Gly 1 5 10 15 Thr Phe Gly Gly Ser Leu Lys Asp Val Ala Pro Ala Glu Leu Gly Ala 20 25 30 Leu Val Val Arg Glu Ala Leu Ala Arg Ala Gln Val Ser Gly Asp Asp 35 40 45 Val Gly His Val Val Phe Gly Asn Val Ile Gln Thr Glu Pro Arg Asp 50 55 60 Met Tyr Leu Gly Arg Val Ala Ala Val Asn Gly Gly Val Thr Ile Asn 65 70 75 80 Ala Pro Ala Leu Thr Val Asn Arg Leu Cys Gly Ser Gly Leu Gln Ala 85 90 95 Ile Val Ser Ala Ala Gln Thr Ile Leu Leu Gly Asp Thr Asp Val Ala 100 105 110 Ile Gly Gly Gly Ala Glu Ser Met Ser Arg Ala Pro Tyr Leu Ala Pro 115 120 125 Ala Ala Arg Trp Gly Ala Arg Met Gly Asp Ala Gly Leu Val Asp Met 130 135 140 Met Leu Gly Ala Leu His Asp Pro Phe His Arg Ile His Met Gly Val 145 150 155 160 Thr Ala Glu Asn Val Ala Lys Glu Tyr Asp Ile Ser Arg Ala Gln Gln 165 170 175 Asp Glu Ala Ala Leu Glu Ser His Arg Arg Ala Ser Ala Ala Ile Lys 180 185 190 Ala Gly Tyr Phe Lys Asp Gln Ile Val Pro Val Val Ser Lys Gly Arg 195 200 205 Lys Gly Asp Val Thr Phe Asp Thr Asp Glu His Val Arg His Asp Ala 210 215 220 Thr Ile Asp Asp Met Thr Lys Leu Arg Pro Val Phe Val Lys Glu Asn 225 230 235 240 Gly Thr Val Thr Ala Gly Asn Ala Ser Gly Leu Asn Asp Ala Ala Ala 245 250 255 Ala Val Val Met Met Glu Arg Ala Glu Ala Glu Arg Arg Gly Leu Lys 260 265 270 Pro Leu Ala Arg Leu Val Ser Tyr Gly His Ala Gly Val Asp Pro Lys 275 280 285 Ala Met Gly Ile Gly Pro Val Pro Ala Thr Lys Ile Ala Leu Glu Arg 290 295 300 Ala Gly Leu Gln Val Ser Asp Leu Asp Val Ile Glu Ala Asn Glu Ala 305 310 315 320 Phe Ala Ala Gln Ala Cys Ala Val Thr Lys Ala Leu Gly Leu Asp Pro 325 330 335

Ala Lys Val Asn Pro Asn Gly Ser Gly Ile Ser Leu Gly His Pro Ile 340 345 350 Gly Ala Thr Gly Ala Leu Ile Thr Val Lys Ala Leu His Glu Leu Asn 355 360 365 Arg Val Gln Gly Arg Tyr Ala Leu Val Thr Met Cys Ile Gly Gly Gly 370 375 380 Gln Gly Ile Ala Ala Ile Phe Glu Arg Ile 385 390 <210> SEQ ID NO 4 <211> LENGTH: 394 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AtoB, NP_416728.1 <400> SEQUENCE: 4 Met Lys Asn Cys Val Ile Val Ser Ala Val Arg Thr Ala Ile Gly Ser 1 5 10 15 Phe Asn Gly Ser Leu Ala Ser Thr Ser Ala Ile Asp Leu Gly Ala Thr 20 25 30 Val Ile Lys Ala Ala Ile Glu Arg Ala Lys Ile Asp Ser Gln His Val 35 40 45 Asp Glu Val Ile Met Gly Asn Val Leu Gln Ala Gly Leu Gly Gln Asn 50 55 60 Pro Ala Arg Gln Ala Leu Leu Lys Ser Gly Leu Ala Glu Thr Val Cys 65 70 75 80 Gly Phe Thr Val Asn Lys Val Cys Gly Ser Gly Leu Lys Ser Val Ala 85 90 95 Leu Ala Ala Gln Ala Ile Gln Ala Gly Gln Ala Gln Ser Ile Val Ala 100 105 110 Gly Gly Met Glu Asn Met Ser Leu Ala Pro Tyr Leu Leu Asp Ala Lys 115 120 125 Ala Arg Ser Gly Tyr Arg Leu Gly Asp Gly Gln Val Tyr Asp Val Ile 130 135 140 Leu Arg Asp Gly Leu Met Cys Ala Thr His Gly Tyr His Met Gly Ile 145 150 155 160 Thr Ala Glu Asn Val Ala Lys Glu Tyr Gly Ile Thr Arg Glu Met Gln 165 170 175 Asp Glu Leu Ala Leu His Ser Gln Arg Lys Ala Ala Ala Ala Ile Glu 180 185 190 Ser Gly Ala Phe Thr Ala Glu Ile Val Pro Val Asn Val Val Thr Arg 195 200 205 Lys Lys Thr Phe Val Phe Ser Gln Asp Glu Phe Pro Lys Ala Asn Ser 210 215 220 Thr Ala Glu Ala Leu Gly Ala Leu Arg Pro Ala Phe Asp Lys Ala Gly 225 230 235 240 Thr Val Thr Ala Gly Asn Ala Ser Gly Ile Asn Asp Gly Ala Ala Ala 245 250 255 Leu Val Ile Met Glu Glu Ser Ala Ala Leu Ala Ala Gly Leu Thr Pro 260 265 270 Leu Ala Arg Ile Lys Ser Tyr Ala Ser Gly Gly Val Pro Pro Ala Leu 275 280 285 Met Gly Met Gly Pro Val Pro Ala Thr Gln Lys Ala Leu Gln Leu Ala 290 295 300 Gly Leu Gln Leu Ala Asp Ile Asp Leu Ile Glu Ala Asn Glu Ala Phe 305 310 315 320 Ala Ala Gln Phe Leu Ala Val Gly Lys Asn Leu Gly Phe Asp Ser Glu 325 330 335 Lys Val Asn Val Asn Gly Gly Ala Ile Ala Leu Gly His Pro Ile Gly 340 345 350 Ala Ser Gly Ala Arg Ile Leu Val Thr Leu Leu His Ala Met Gln Ala 355 360 365 Arg Asp Lys Thr Leu Gly Leu Ala Thr Leu Cys Ile Gly Gly Gly Gln 370 375 380 Gly Ile Ala Met Val Ile Glu Arg Leu Asn 385 390 <210> SEQ ID NO 5 <211> LENGTH: 217 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: CtfA, WP_012059996.1 <400> SEQUENCE: 5 Met Asn Lys Leu Val Lys Leu Thr Asp Leu Lys Arg Ile Phe Lys Asp 1 5 10 15 Gly Met Thr Ile Met Val Gly Gly Phe Leu Asp Cys Gly Thr Pro Glu 20 25 30 Asn Ile Ile Asp Met Leu Val Asp Leu Asn Ile Lys Asn Leu Thr Ile 35 40 45 Ile Ser Asn Asp Thr Ala Phe Pro Asn Lys Gly Ile Gly Lys Leu Ile 50 55 60 Val Asn Gly Gln Val Ser Lys Val Ile Ala Ser His Ile Gly Thr Asn 65 70 75 80 Pro Glu Thr Gly Lys Lys Met Ser Ser Gly Glu Leu Lys Val Glu Leu 85 90 95 Ser Pro Gln Gly Thr Leu Ile Glu Arg Ile Arg Ala Ala Gly Ser Gly 100 105 110 Leu Gly Gly Val Leu Thr Pro Thr Gly Leu Gly Thr Ile Val Glu Glu 115 120 125 Gly Lys Lys Lys Val Thr Ile Asp Gly Lys Glu Tyr Leu Leu Glu Leu 130 135 140 Pro Leu Ser Ala Asp Val Ser Leu Ile Lys Gly Ser Ile Val Asp Glu 145 150 155 160 Phe Gly Asn Thr Phe Tyr Arg Ala Ala Thr Lys Asn Phe Asn Pro Tyr 165 170 175 Met Ala Met Ala Ala Lys Thr Val Ile Val Glu Ala Glu Asn Leu Val 180 185 190 Lys Cys Glu Asp Leu Lys Arg Asp Ala Ile Met Thr Pro Gly Val Leu 195 200 205 Val Asp Tyr Ile Val Lys Glu Ala Ala 210 215 <210> SEQ ID NO 6 <211> LENGTH: 221 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: CtfB, WP_012059997.1 <400> SEQUENCE: 6 Met Ile Val Asp Lys Val Leu Ala Lys Glu Ile Ile Ala Lys Arg Val 1 5 10 15 Ala Lys Glu Leu Lys Lys Asp Gln Leu Val Asn Leu Gly Ile Gly Leu 20 25 30 Pro Thr Leu Val Ala Asn Tyr Val Pro Lys Glu Met Asn Ile Thr Phe 35 40 45 Glu Ser Glu Asn Gly Met Val Gly Met Ala Gln Met Ala Ser Ser Gly 50 55 60 Glu Asn Asp Pro Asp Ile Ile Asn Ala Gly Gly Glu Tyr Val Thr Leu 65 70 75 80 Leu Pro Gln Gly Ser Phe Phe Asp Ser Ser Met Ser Phe Ala Leu Ile 85 90 95 Arg Gly Gly His Val Asp Val Ala Val Leu Gly Ala Leu Glu Val Asp 100 105 110 Glu Lys Gly Asn Leu Ala Asn Trp Ile Val Pro Asn Lys Ile Val Pro 115 120 125 Gly Met Gly Gly Ala Met Asp Leu Ala Ile Gly Ala Lys Lys Ile Ile 130 135 140 Val Ala Met Gln His Thr Gly Lys Ser Lys Pro Lys Ile Val Lys Lys 145 150 155 160 Cys Thr Leu Pro Leu Thr Ala Lys Ala Gln Val Asp Leu Ile Val Thr 165 170 175 Glu Leu Cys Val Ile Asp Val Thr Asn Asp Gly Leu Leu Leu Lys Glu 180 185 190 Ile His Lys Asp Thr Thr Ile Asp Glu Ile Lys Phe Leu Thr Asp Ala 195 200 205 Asp Leu Ile Ile Pro Asp Asn Leu Lys Ile Met Asp Ile 210 215 220 <210> SEQ ID NO 7 <211> LENGTH: 286 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: TesB, NP_414986.1 <400> SEQUENCE: 7 Met Ser Gln Ala Leu Lys Asn Leu Leu Thr Leu Leu Asn Leu Glu Lys 1 5 10 15 Ile Glu Glu Gly Leu Phe Arg Gly Gln Ser Glu Asp Leu Gly Leu Arg 20 25 30 Gln Val Phe Gly Gly Gln Val Val Gly Gln Ala Leu Tyr Ala Ala Lys 35 40 45 Glu Thr Val Pro Glu Glu Arg Leu Val His Ser Phe His Ser Tyr Phe 50 55 60 Leu Arg Pro Gly Asp Ser Lys Lys Pro Ile Ile Tyr Asp Val Glu Thr 65 70 75 80 Leu Arg Asp Gly Asn Ser Phe Ser Ala Arg Arg Val Ala Ala Ile Gln 85 90 95 Asn Gly Lys Pro Ile Phe Tyr Met Thr Ala Ser Phe Gln Ala Pro Glu 100 105 110 Ala Gly Phe Glu His Gln Lys Thr Met Pro Ser Ala Pro Ala Pro Asp 115 120 125 Gly Leu Pro Ser Glu Thr Gln Ile Ala Gln Ser Leu Ala His Leu Leu 130 135 140 Pro Pro Val Leu Lys Asp Lys Phe Ile Cys Asp Arg Pro Leu Glu Val 145 150 155 160 Arg Pro Val Glu Phe His Asn Pro Leu Lys Gly His Val Ala Glu Pro 165 170 175 His Arg Gln Val Trp Ile Arg Ala Asn Gly Ser Val Pro Asp Asp Leu 180 185 190 Arg Val His Gln Tyr Leu Leu Gly Tyr Ala Ser Asp Leu Asn Phe Leu

195 200 205 Pro Val Ala Leu Gln Pro His Gly Ile Gly Phe Leu Glu Pro Gly Ile 210 215 220 Gln Ile Ala Thr Ile Asp His Ser Met Trp Phe His Arg Pro Phe Asn 225 230 235 240 Leu Asn Glu Trp Leu Leu Tyr Ser Val Glu Ser Thr Ser Ala Ser Ser 245 250 255 Ala Arg Gly Phe Val Arg Gly Glu Phe Tyr Thr Gln Asp Gly Val Leu 260 265 270 Val Ala Ser Thr Val Gln Glu Gly Val Met Arg Asn His Asn 275 280 285 <210> SEQ ID NO 8 <211> LENGTH: 436 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: putative thioesterase 1, AGY74947.1 <400> SEQUENCE: 8 Met Asn Asn Asp Asn Cys Thr Ile Lys Ile Thr Pro Glu Val Ser Arg 1 5 10 15 Val Asp Glu Pro Val Asp Ile Lys Ile Asn Gly Leu Pro Lys Asn Glu 20 25 30 Lys Val Ile Ile Arg Ala Val Ser Ser Asp Tyr Tyr Cys Ile Asn Ala 35 40 45 Ser Ile Leu Glu Ile Gly Asp Asn Thr Leu Trp Glu Ser Tyr Ala Val 50 55 60 Phe Glu Thr Asp Glu Cys Gly Asn Ile Asn Phe Glu Asn Ala Val Pro 65 70 75 80 Val Asp Gly Thr Tyr Ser Asn Cys Asp Lys Met Gly Leu Phe Tyr Ser 85 90 95 Met Arg Pro Lys Gln Ile Arg Lys Ser Lys Leu Ile Gln Lys Leu Ser 100 105 110 Ser Ile Asn Glu Asn Arg Lys Tyr Lys Ile Thr Phe Thr Val Glu Lys 115 120 125 Asn Gly Lys Ile Ile Gly Ser Lys Glu His Thr Arg Val Tyr Cys Asp 130 135 140 Asp Thr Ile Lys Ser Ile Asp Val Val Glu Lys Asn Leu Leu Ala Arg 145 150 155 160 Tyr Phe Thr Ser Lys Asp Asn Ile Lys His Pro Ala Ile Ile Val Leu 165 170 175 Ser Gly Ser Asp Gly Arg Ile Glu Lys Ala Gln Ala Ile Ala Glu Leu 180 185 190 Phe Ala Met Arg Gly Tyr Ser Ala Leu Ala Val Cys Tyr Phe Gly Leu 195 200 205 Glu Gly Thr Pro Glu Asp Leu Asn Met Ile Pro Leu Glu Tyr Val Glu 210 215 220 Asn Ala Val Lys Trp Leu Lys Arg Gln Asp Thr Val Asp Glu Asn Lys 225 230 235 240 Ile Ala Ile Tyr Gly Arg Ser Lys Gly Gly Glu Leu Val Leu Leu Ala 245 250 255 Ala Ser Met Phe Lys Asp Ile Ala Cys Val Ile Ala Asn Thr Pro Ser 260 265 270 Cys Tyr Val Tyr Glu Gly Ile Lys Ser Asn Lys Leu Pro Ser His His 275 280 285 Ser Ser Trp Met Tyr Arg Gly Arg Glu Ile Pro Tyr Leu Lys Phe Asn 290 295 300 Phe His Ile Ile Leu Arg Leu Ile Ile Lys Met Met Lys Lys Glu Lys 305 310 315 320 Gly Ala Leu Ala Trp Met Tyr Lys Lys Leu Ile Glu Glu Gly Asp Arg 325 330 335 Asp Lys Ala Thr Ile Ala Leu Asp Lys Ile Asn Gly Ser Val Leu Met 340 345 350 Ile Ser Ser Ala Ala Asp Glu Ile Trp Pro Ser Lys Met His Ser Glu 355 360 365 Thr Val Cys Ser Ile Phe Glu Lys Ser His Phe Lys His Glu Tyr Lys 370 375 380 His Ile Thr Phe Ala Lys Ser Gly His Ile Leu Thr Val Pro Phe Gln 385 390 395 400 Ser Ile Tyr Pro Ser Glu Lys Tyr Pro Tyr Asp Val Glu Ser Trp Ala 405 410 415 Lys Ala Asn Met Asp Ser Trp Asn Glu Thr Ile Lys Phe Leu Glu Lys 420 425 430 Trp Ala Ser Lys 435 <210> SEQ ID NO 9 <211> LENGTH: 137 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: putative thioesterase 2, AGY75747.1 <400> SEQUENCE: 9 Met Tyr Ile Asn Glu Thr Lys Val Val Val Arg Tyr Ala Glu Thr Asp 1 5 10 15 Lys Met Gly Ile Val His His Ser Asn Tyr Tyr Ile Tyr Phe Glu Glu 20 25 30 Ala Arg Thr Gln Phe Ile Lys Lys Thr Gly Ile Ser Tyr Ser Gln Met 35 40 45 Glu Lys Asp Gly Ile Met Phe Pro Leu Val Glu Ser Asn Cys Arg Tyr 50 55 60 Leu Gln Gly Ala Lys Tyr Glu Asp Glu Leu Leu Ile Lys Thr Trp Ile 65 70 75 80 Lys Glu Leu Thr Pro Val Lys Ala Glu Phe Asn Tyr Ser Val Ile Arg 85 90 95 Glu Asn Asp Gln Lys Glu Ile Ala Lys Gly Ser Thr Leu His Ala Phe 100 105 110 Val Asn Asn Asn Phe Lys Ile Ile Asn Leu Lys Lys Asn His Thr Glu 115 120 125 Leu Phe Lys Lys Leu Gln Ser Leu Ile 130 135 <210> SEQ ID NO 10 <211> LENGTH: 128 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: putative thioesterase 3, AGY75999.1 <400> SEQUENCE: 10 Met Asp Phe Ser Lys Leu Phe Lys Val Gly Ser Thr Tyr Val Ser Glu 1 5 10 15 Tyr Ile Val Lys Pro Glu Asp Thr Ala Asn Phe Ile Gly Asn Asn Gly 20 25 30 Val Val Met Leu Ser Thr Pro Ala Met Ile Lys Tyr Met Glu Tyr Thr 35 40 45 Thr Leu His Ile Val Asp Asn Val Ile Pro Lys Asn Tyr Arg Pro Val 50 55 60 Gly Thr Lys Ile Asp Val Glu His Ile Lys Pro Ile Pro Ala Asn Met 65 70 75 80 Lys Val Val Val Lys Val Thr Leu Ile Ser Ile Glu Gly Lys Lys Leu 85 90 95 Arg Tyr Asn Val Glu Ala Phe Asn Glu Lys Asn Cys Lys Val Gly Phe 100 105 110 Gly Ile Tyr Glu Gln Gln Ile Val Asn Leu Glu Gln Phe Leu Asn Arg 115 120 125 <210> SEQ ID NO 11 <211> LENGTH: 436 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: putative thioesterase 1, ADK15695.1 <400> SEQUENCE: 11 Met Asn Asn Asp Asn Cys Thr Ile Lys Ile Thr Pro Glu Val Ser Arg 1 5 10 15 Val Asp Glu Pro Val Asp Ile Lys Ile Asn Gly Leu Pro Lys Asn Glu 20 25 30 Lys Val Ile Ile Arg Ala Val Ser Ser Asp Tyr Tyr Cys Ile Asn Ala 35 40 45 Ser Ile Leu Glu Ile Gly Asp Asn Thr Leu Trp Glu Ser Tyr Ala Val 50 55 60 Phe Glu Thr Asp Glu Cys Gly Asn Ile Asn Phe Glu Asn Ala Val Pro 65 70 75 80 Val Asp Gly Thr Tyr Ser Asn Cys Asp Lys Met Gly Leu Phe Tyr Ser 85 90 95 Met Arg Pro Lys Gln Ile Arg Lys Ser Lys Leu Ile Gln Lys Leu Ser 100 105 110 Ser Ile Asn Glu Asn Arg Lys Tyr Lys Ile Thr Phe Thr Val Glu Lys 115 120 125 Asn Gly Lys Ile Ile Gly Ser Lys Glu His Thr Arg Val Tyr Cys Asp 130 135 140 Asp Thr Ile Lys Ser Ile Asp Val Val Glu Lys Asn Leu Leu Ala Arg 145 150 155 160 Tyr Phe Thr Ser Lys Asp Asn Ile Lys His Pro Ala Ile Ile Val Leu 165 170 175 Ser Gly Ser Asp Gly Arg Ile Glu Lys Ala Gln Ala Ile Ala Glu Leu 180 185 190 Phe Ala Met Arg Gly Tyr Ser Ala Leu Ala Val Cys Tyr Phe Gly Leu 195 200 205 Glu Gly Thr Pro Glu Asp Leu Asn Met Ile Pro Leu Glu Tyr Val Glu 210 215 220 Asn Ala Val Lys Trp Leu Lys Arg Gln Asp Thr Val Asp Glu Asn Lys 225 230 235 240 Ile Ala Ile Tyr Gly Arg Ser Lys Gly Gly Glu Leu Val Leu Leu Ala 245 250 255 Ala Ser Met Phe Lys Asp Ile Ala Cys Val Ile Ala Asn Thr Pro Ser 260 265 270 Cys Tyr Val Tyr Glu Gly Ile Lys Ser Asn Lys Leu Pro Ser His His 275 280 285 Ser Ser Trp Met Tyr Arg Gly Arg Glu Ile Pro Tyr Leu Lys Phe Asn 290 295 300

Phe His Ile Ile Leu Arg Leu Ile Ile Lys Met Met Lys Lys Glu Lys 305 310 315 320 Gly Ala Leu Ala Trp Met Tyr Lys Lys Leu Ile Glu Glu Gly Asp Arg 325 330 335 Asp Lys Ala Thr Ile Ala Leu Asp Lys Ile Asn Gly Ser Val Leu Met 340 345 350 Ile Ser Ser Ala Ala Asp Glu Ile Trp Pro Ser Lys Met His Ser Glu 355 360 365 Thr Val Cys Ser Ile Phe Glu Lys Ser His Phe Lys His Glu Tyr Lys 370 375 380 His Ile Thr Phe Ala Lys Ser Gly His Ile Leu Thr Val Pro Phe Gln 385 390 395 400 Ser Ile Tyr Pro Ser Glu Lys Tyr Pro Tyr Asp Val Glu Ser Trp Ala 405 410 415 Lys Ala Asn Met Asp Ser Trp Asn Glu Thr Ile Lys Phe Leu Glu Lys 420 425 430 Trp Ala Ser Lys 435 <210> SEQ ID NO 12 <211> LENGTH: 137 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: putative thioesterase 2, ADK16655.1 <400> SEQUENCE: 12 Met Tyr Ile Asn Glu Thr Lys Val Val Val Arg Tyr Ala Glu Thr Asp 1 5 10 15 Lys Met Gly Ile Val His His Ser Asn Tyr Tyr Ile Tyr Phe Glu Glu 20 25 30 Ala Arg Thr Gln Phe Ile Lys Lys Thr Gly Ile Ser Tyr Ser Gln Met 35 40 45 Glu Lys Asp Gly Ile Met Phe Pro Leu Val Glu Ser Asn Cys Arg Tyr 50 55 60 Leu Gln Gly Ala Lys Tyr Glu Asp Glu Leu Leu Ile Lys Thr Trp Ile 65 70 75 80 Lys Glu Leu Thr Pro Val Lys Ala Glu Phe Asn Tyr Ser Val Ile Arg 85 90 95 Glu Asn Asp Gln Lys Glu Ile Ala Lys Gly Ser Thr Leu His Ala Phe 100 105 110 Val Asn Asn Asn Phe Lys Ile Ile Asn Leu Lys Lys Asn His Thr Glu 115 120 125 Leu Phe Lys Lys Leu Gln Ser Leu Ile 130 135 <210> SEQ ID NO 13 <211> LENGTH: 128 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: putative thioesterase 3, ADK16959.1 <400> SEQUENCE: 13 Met Asp Phe Ser Lys Leu Phe Lys Val Gly Ser Thr Tyr Val Ser Glu 1 5 10 15 Tyr Ile Val Lys Pro Glu Asp Thr Ala Asn Phe Ile Gly Asn Asn Gly 20 25 30 Val Val Met Leu Ser Thr Pro Ala Met Ile Lys Tyr Met Glu Tyr Thr 35 40 45 Thr Leu His Ile Val Asp Asn Val Ile Pro Lys Asn Tyr Arg Pro Val 50 55 60 Gly Thr Lys Ile Asp Val Glu His Ile Lys Pro Ile Pro Ala Asn Met 65 70 75 80 Lys Val Val Val Lys Val Thr Leu Ile Ser Ile Glu Gly Lys Lys Leu 85 90 95 Arg Tyr Asn Val Glu Ala Phe Asn Glu Lys Asn Cys Lys Val Gly Phe 100 105 110 Gly Ile Tyr Glu Gln Gln Ile Val Asn Leu Glu Gln Phe Leu Asn Arg 115 120 125 <210> SEQ ID NO 14 <211> LENGTH: 246 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Adc, WP_012059998.1 <400> SEQUENCE: 14 Met Leu Glu Ser Glu Val Ser Lys Gln Ile Thr Thr Pro Leu Ala Ala 1 5 10 15 Pro Ala Phe Pro Arg Gly Pro Tyr Arg Phe His Asn Arg Glu Tyr Leu 20 25 30 Asn Ile Ile Tyr Arg Thr Asp Leu Asp Ala Leu Arg Lys Ile Val Pro 35 40 45 Glu Pro Leu Glu Leu Asp Arg Ala Tyr Val Arg Phe Glu Met Met Ala 50 55 60 Met Pro Asp Thr Thr Gly Leu Gly Ser Tyr Thr Glu Cys Gly Gln Ala 65 70 75 80 Ile Pro Val Lys Tyr Asn Gly Val Lys Gly Asp Tyr Leu His Met Met 85 90 95 Tyr Leu Asp Asn Glu Pro Ala Ile Ala Val Gly Arg Glu Ser Ser Ala 100 105 110 Tyr Pro Lys Lys Leu Gly Tyr Pro Lys Leu Phe Val Asp Ser Asp Thr 115 120 125 Leu Val Gly Thr Leu Lys Tyr Gly Thr Leu Pro Val Ala Thr Ala Thr 130 135 140 Met Gly Tyr Lys His Glu Pro Leu Asp Leu Lys Glu Ala Tyr Ala Gln 145 150 155 160 Ile Ala Arg Pro Asn Phe Met Leu Lys Ile Ile Gln Gly Tyr Asp Gly 165 170 175 Lys Pro Arg Ile Cys Glu Leu Ile Cys Ala Glu Asn Thr Asp Ile Thr 180 185 190 Ile His Gly Ala Trp Thr Gly Ser Ala Arg Leu Gln Leu Phe Ser His 195 200 205 Ala Leu Ala Pro Leu Ala Asp Leu Pro Val Leu Glu Ile Val Ser Ala 210 215 220 Ser His Ile Leu Thr Asp Leu Thr Leu Gly Thr Pro Lys Val Val His 225 230 235 240 Asp Tyr Leu Ser Val Lys 245 <210> SEQ ID NO 15 <211> LENGTH: 548 <212> TYPE: PRT <213> ORGANISM: Lactococcus lactis <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: KivD <400> SEQUENCE: 15 Met Tyr Thr Val Gly Asp Tyr Leu Leu Asp Arg Leu His Glu Leu Gly 1 5 10 15 Ile Glu Glu Ile Phe Gly Val Pro Gly Asp Tyr Asn Leu Gln Phe Leu 20 25 30 Asp Gln Ile Ile Ser His Lys Asp Met Lys Trp Val Gly Asn Ala Asn 35 40 45 Glu Leu Asn Ala Ser Tyr Met Ala Asp Gly Tyr Ala Arg Thr Lys Lys 50 55 60 Ala Ala Ala Phe Leu Thr Thr Phe Gly Val Gly Glu Leu Ser Ala Val 65 70 75 80 Asn Gly Leu Ala Gly Ser Tyr Ala Glu Asn Leu Pro Val Val Glu Ile 85 90 95 Val Gly Ser Pro Thr Ser Lys Val Gln Asn Glu Gly Lys Phe Val His 100 105 110 His Thr Leu Ala Asp Gly Asp Phe Lys His Phe Met Lys Met His Glu 115 120 125 Pro Val Thr Ala Ala Arg Thr Leu Leu Thr Ala Glu Asn Ala Thr Val 130 135 140 Glu Ile Asp Arg Val Leu Ser Ala Leu Leu Lys Glu Arg Lys Pro Val 145 150 155 160 Tyr Ile Asn Leu Pro Val Asp Val Ala Ala Ala Lys Ala Glu Lys Pro 165 170 175 Ser Leu Pro Leu Lys Lys Glu Asn Ser Thr Ser Asn Thr Ser Asp Gln 180 185 190 Glu Ile Leu Asn Lys Ile Gln Glu Ser Leu Lys Asn Ala Lys Lys Pro 195 200 205 Ile Val Ile Thr Gly His Glu Ile Ile Ser Phe Gly Leu Glu Lys Thr 210 215 220 Val Thr Gln Phe Ile Ser Lys Thr Lys Leu Pro Ile Thr Thr Leu Asn 225 230 235 240 Phe Gly Lys Ser Ser Val Asp Glu Ala Leu Pro Ser Phe Leu Gly Ile 245 250 255 Tyr Asn Gly Thr Leu Ser Glu Pro Asn Leu Lys Glu Phe Val Glu Ser 260 265 270 Ala Asp Phe Ile Leu Met Leu Gly Val Lys Leu Thr Asp Ser Ser Thr 275 280 285 Gly Ala Phe Thr His His Leu Asn Glu Asn Lys Met Ile Ser Leu Asn 290 295 300 Ile Asp Glu Gly Lys Ile Phe Asn Glu Arg Ile Gln Asn Phe Asp Phe 305 310 315 320 Glu Ser Leu Ile Ser Ser Leu Leu Asp Leu Ser Glu Ile Glu Tyr Lys 325 330 335 Gly Lys Tyr Ile Asp Lys Lys Gln Glu Asp Phe Val Pro Ser Asn Ala 340 345 350 Leu Leu Ser Gln Asp Arg Leu Trp Gln Ala Val Glu Asn Leu Thr Gln 355 360 365 Ser Asn Glu Thr Ile Val Ala Glu Gln Gly Thr Ser Phe Phe Gly Ala 370 375 380 Ser Ser Ile Phe Leu Lys Ser Lys Ser His Phe Ile Gly Gln Pro Leu 385 390 395 400 Trp Gly Ser Ile Gly Tyr Thr Phe Pro Ala Ala Leu Gly Ser Gln Ile 405 410 415 Ala Asp Lys Glu Ser Arg His Leu Leu Phe Ile Gly Asp Gly Ser Leu 420 425 430

Gln Leu Thr Val Gln Glu Leu Gly Leu Ala Ile Arg Glu Lys Ile Asn 435 440 445 Pro Ile Cys Phe Ile Ile Asn Asn Asp Gly Tyr Thr Val Glu Arg Glu 450 455 460 Ile His Gly Pro Asn Gln Ser Tyr Asn Asp Ile Pro Met Trp Asn Tyr 465 470 475 480 Ser Lys Leu Pro Glu Ser Phe Gly Ala Thr Glu Asp Arg Val Val Ser 485 490 495 Lys Ile Val Arg Thr Glu Asn Glu Phe Val Ser Val Met Lys Glu Ala 500 505 510 Gln Ala Asp Pro Asn Arg Met Tyr Trp Ile Glu Leu Ile Leu Ala Lys 515 520 525 Glu Gly Ala Pro Lys Val Leu Lys Lys Met Gly Lys Leu Phe Ala Glu 530 535 540 Gln Asn Lys Ser 545 <210> SEQ ID NO 16 <211> LENGTH: 351 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: SecAdh, AGY74782.1 <400> SEQUENCE: 16 Met Lys Gly Phe Ala Met Leu Gly Ile Asn Lys Leu Gly Trp Ile Glu 1 5 10 15 Lys Lys Asn Pro Val Pro Gly Pro Tyr Asp Ala Ile Val His Pro Leu 20 25 30 Ala Val Ser Pro Cys Thr Ser Asp Ile His Thr Val Phe Glu Gly Ala 35 40 45 Leu Gly Asn Arg Glu Asn Met Ile Leu Gly His Glu Ala Val Gly Glu 50 55 60 Ile Ala Glu Val Gly Ser Glu Val Lys Asp Phe Lys Val Gly Asp Arg 65 70 75 80 Val Ile Val Pro Cys Thr Thr Pro Asp Trp Arg Ser Leu Glu Val Gln 85 90 95 Ala Gly Phe Gln Gln His Ser Asn Gly Met Leu Ala Gly Trp Lys Phe 100 105 110 Ser Asn Phe Lys Asp Gly Val Phe Ala Asp Tyr Phe His Val Asn Asp 115 120 125 Ala Asp Met Asn Leu Ala Ile Leu Pro Asp Glu Ile Pro Leu Glu Ser 130 135 140 Ala Val Met Met Thr Asp Met Met Thr Thr Gly Phe His Gly Ala Glu 145 150 155 160 Leu Ala Asp Ile Lys Met Gly Ser Ser Val Val Val Ile Gly Ile Gly 165 170 175 Ala Val Gly Leu Met Gly Ile Ala Gly Ser Lys Leu Arg Gly Ala Gly 180 185 190 Arg Ile Ile Gly Val Gly Ser Arg Pro Val Cys Val Glu Thr Ala Lys 195 200 205 Phe Tyr Gly Ala Thr Asp Ile Val Asn Tyr Lys Asn Gly Asp Ile Val 210 215 220 Glu Gln Ile Met Asp Leu Thr His Gly Lys Gly Val Asp Arg Val Ile 225 230 235 240 Met Ala Gly Gly Gly Ala Glu Thr Leu Ala Gln Ala Val Thr Met Val 245 250 255 Lys Pro Gly Gly Val Ile Ser Asn Ile Asn Tyr His Gly Ser Gly Asp 260 265 270 Thr Leu Pro Ile Pro Arg Val Gln Trp Gly Cys Gly Met Ala His Lys 275 280 285 Thr Ile Arg Gly Gly Leu Cys Pro Gly Gly Arg Leu Arg Met Glu Met 290 295 300 Leu Arg Asp Leu Val Leu Tyr Lys Arg Val Asp Leu Ser Lys Leu Val 305 310 315 320 Thr His Val Phe Asp Gly Ala Glu Asn Ile Glu Lys Ala Leu Leu Leu 325 330 335 Met Lys Asn Lys Pro Lys Asp Leu Ile Lys Ser Val Val Thr Phe 340 345 350 <210> SEQ ID NO 17 <211> LENGTH: 351 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: SecAdh, ADK15544.1 <400> SEQUENCE: 17 Met Lys Gly Phe Ala Met Leu Gly Ile Asn Lys Leu Gly Trp Ile Glu 1 5 10 15 Lys Lys Asn Pro Val Pro Gly Pro Tyr Asp Ala Ile Val His Pro Leu 20 25 30 Ala Val Ser Pro Cys Thr Ser Asp Ile His Thr Val Phe Glu Gly Ala 35 40 45 Leu Gly Asn Arg Glu Asn Met Ile Leu Gly His Glu Ala Val Gly Glu 50 55 60 Ile Ala Glu Val Gly Ser Glu Val Lys Asp Phe Lys Val Gly Asp Arg 65 70 75 80 Val Ile Val Pro Cys Thr Thr Pro Asp Trp Arg Ser Leu Glu Val Gln 85 90 95 Ala Gly Phe Gln Gln His Ser Asn Gly Met Leu Ala Gly Trp Lys Phe 100 105 110 Ser Asn Phe Lys Asp Gly Val Phe Ala Asp Tyr Phe His Val Asn Asp 115 120 125 Ala Asp Met Asn Leu Ala Ile Leu Pro Asp Glu Ile Pro Leu Glu Ser 130 135 140 Ala Val Met Met Thr Asp Met Met Thr Thr Gly Phe His Gly Ala Glu 145 150 155 160 Leu Ala Asp Ile Lys Met Gly Ser Ser Val Val Val Ile Gly Ile Gly 165 170 175 Ala Val Gly Leu Met Gly Ile Ala Gly Ser Lys Leu Arg Gly Ala Gly 180 185 190 Arg Ile Ile Gly Val Gly Ser Arg Pro Val Cys Val Glu Thr Ala Lys 195 200 205 Phe Tyr Gly Ala Thr Asp Ile Val Asn Tyr Lys Asn Gly Asp Ile Val 210 215 220 Glu Gln Ile Met Asp Leu Thr His Gly Lys Gly Val Asp Arg Val Ile 225 230 235 240 Met Ala Gly Gly Gly Ala Glu Thr Leu Ala Gln Ala Val Thr Met Val 245 250 255 Lys Pro Gly Gly Val Ile Ser Asn Ile Asn Tyr His Gly Ser Gly Asp 260 265 270 Thr Leu Pro Ile Pro Arg Val Gln Trp Gly Cys Gly Met Ala His Lys 275 280 285 Thr Ile Arg Gly Gly Leu Cys Pro Gly Gly Arg Leu Arg Met Glu Met 290 295 300 Leu Arg Asp Leu Val Leu Tyr Lys Arg Val Asp Leu Ser Lys Leu Val 305 310 315 320 Thr His Val Phe Asp Gly Ala Glu Asn Ile Glu Lys Ala Leu Leu Leu 325 330 335 Met Lys Asn Lys Pro Lys Asp Leu Ile Lys Ser Val Val Thr Phe 340 345 350 <210> SEQ ID NO 18 <211> LENGTH: 351 <212> TYPE: PRT <213> ORGANISM: Clostridium ragsdalei <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: SecAdh, WP_013239134.1 <400> SEQUENCE: 18 Met Lys Gly Phe Ala Met Leu Gly Ile Asn Lys Leu Gly Trp Ile Glu 1 5 10 15 Lys Lys Asn Pro Val Pro Gly Pro Tyr Asp Ala Ile Val His Pro Leu 20 25 30 Ala Val Ser Pro Cys Thr Ser Asp Ile His Thr Val Phe Glu Gly Ala 35 40 45 Leu Gly Asn Arg Glu Asn Met Ile Leu Gly His Glu Ala Val Gly Glu 50 55 60 Ile Ala Glu Val Gly Ser Glu Val Lys Asp Phe Lys Val Gly Asp Arg 65 70 75 80 Val Ile Val Pro Cys Thr Thr Pro Asp Trp Arg Ser Leu Glu Val Gln 85 90 95 Ala Gly Phe Gln Gln His Ser Asn Gly Met Leu Ala Gly Trp Lys Phe 100 105 110 Ser Asn Phe Lys Asp Gly Val Phe Ala Asp Tyr Phe His Val Asn Asp 115 120 125 Ala Asp Met Asn Leu Ala Ile Leu Pro Asp Glu Ile Pro Leu Glu Ser 130 135 140 Ala Val Met Met Thr Asp Met Met Thr Thr Gly Phe His Gly Ala Glu 145 150 155 160 Leu Ala Asp Ile Lys Met Gly Ser Ser Val Val Val Ile Gly Ile Gly 165 170 175 Ala Val Gly Leu Met Gly Ile Ala Gly Ser Lys Leu Arg Gly Ala Gly 180 185 190 Arg Ile Ile Gly Val Gly Ser Arg Pro Val Cys Val Glu Thr Ala Lys 195 200 205 Phe Tyr Gly Ala Thr Asp Ile Val Asn Tyr Lys Asn Gly Asp Ile Val 210 215 220 Glu Gln Ile Met Asp Leu Thr His Gly Lys Gly Val Asp Arg Val Ile 225 230 235 240 Met Ala Gly Gly Gly Ala Glu Thr Leu Ala Gln Ala Val Thr Met Val 245 250 255 Lys Pro Gly Gly Val Ile Ser Asn Ile Asn Tyr His Gly Ser Gly Asp 260 265 270 Thr Leu Pro Ile Pro Arg Val Gln Trp Gly Cys Gly Met Ala His Lys 275 280 285 Thr Ile Arg Gly Gly Leu Cys Pro Gly Gly Arg Leu Arg Met Glu Met 290 295 300 Leu Arg Asp Leu Val Leu Tyr Lys Arg Val Asp Leu Ser Lys Leu Val 305 310 315 320 Thr His Val Phe Asp Gly Ala Glu Asn Ile Glu Lys Ala Leu Leu Leu 325 330 335

Met Lys Asn Lys Pro Lys Asp Leu Ile Lys Ser Val Val Thr Phe 340 345 350 <210> SEQ ID NO 19 <211> LENGTH: 351 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: SecAdh, WP_026889046.1 <400> SEQUENCE: 19 Met Lys Gly Phe Ala Met Leu Gly Ile Asn Lys Leu Gly Trp Ile Glu 1 5 10 15 Lys Glu Arg Pro Val Ala Gly Ser Tyr Asp Ala Ile Val Arg Pro Leu 20 25 30 Ala Val Ser Pro Cys Thr Ser Asp Ile His Thr Val Phe Glu Gly Ala 35 40 45 Leu Gly Asp Arg Lys Asn Met Ile Leu Gly His Glu Ala Val Gly Glu 50 55 60 Val Val Glu Val Gly Ser Glu Val Lys Asp Phe Lys Pro Gly Asp Arg 65 70 75 80 Val Ile Val Pro Cys Thr Thr Pro Asp Trp Arg Ser Leu Glu Val Gln 85 90 95 Ala Gly Phe Gln Gln His Ser Asn Gly Met Leu Ala Gly Trp Lys Phe 100 105 110 Ser Asn Phe Lys Asp Gly Val Phe Gly Glu Tyr Phe His Val Asn Asp 115 120 125 Ala Asp Met Asn Leu Ala Ile Leu Pro Lys Asp Met Pro Leu Glu Asn 130 135 140 Ala Val Met Ile Thr Asp Met Met Thr Thr Gly Phe His Gly Ala Glu 145 150 155 160 Leu Ala Asp Ile Gln Met Gly Ser Ser Val Val Val Ile Gly Ile Gly 165 170 175 Ala Val Gly Leu Met Gly Ile Ala Gly Ala Lys Leu Arg Gly Ala Gly 180 185 190 Arg Ile Ile Gly Val Gly Ser Arg Pro Val Cys Val Glu Thr Ala Lys 195 200 205 Phe Tyr Gly Ala Thr Asp Ile Leu Asn Tyr Lys Asn Gly His Ile Val 210 215 220 Asp Gln Val Met Lys Leu Thr Asn Gly Lys Gly Val Asp Arg Val Ile 225 230 235 240 Met Ala Gly Gly Gly Ser Glu Thr Leu Ser Gln Ala Val Ser Met Val 245 250 255 Lys Pro Gly Gly Ile Ile Ser Asn Ile Asn Tyr His Gly Ser Gly Asp 260 265 270 Ala Leu Leu Ile Pro Arg Val Glu Trp Gly Cys Gly Met Ala His Lys 275 280 285 Thr Ile Lys Gly Gly Leu Cys Pro Gly Gly Arg Leu Arg Ala Glu Met 290 295 300 Leu Arg Asp Met Val Val Tyr Asn Arg Val Asp Leu Ser Lys Leu Val 305 310 315 320 Thr His Val Tyr His Gly Phe Asp His Ile Glu Glu Ala Leu Leu Leu 325 330 335 Met Lys Asp Lys Pro Lys Asp Leu Ile Lys Ala Val Val Ile Leu 340 345 350 <210> SEQ ID NO 20 <211> LENGTH: 352 <212> TYPE: PRT <213> ORGANISM: Thermoanaerobacter brokii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: SecAdh, 3FSR_A <400> SEQUENCE: 20 Met Lys Gly Phe Ala Met Leu Ser Ile Gly Lys Val Gly Trp Ile Glu 1 5 10 15 Lys Glu Lys Pro Ala Pro Gly Pro Phe Asp Ala Ile Val Arg Pro Leu 20 25 30 Ala Val Ala Pro Cys Thr Ser Asp Ile His Thr Val Phe Glu Gly Ala 35 40 45 Ile Gly Glu Arg His Asn Met Ile Leu Gly His Glu Ala Val Gly Glu 50 55 60 Val Val Glu Val Gly Ser Glu Val Lys Asp Phe Lys Pro Gly Asp Arg 65 70 75 80 Val Val Val Pro Ala Ile Thr Pro Asp Trp Arg Thr Ser Glu Val Gln 85 90 95 Arg Gly Tyr His Gln His Ser Gly Gly Met Leu Ala Gly Trp Lys Phe 100 105 110 Ser Asn Val Lys Asp Gly Val Phe Gly Glu Phe Phe His Val Asn Asp 115 120 125 Ala Asp Met Asn Leu Ala His Leu Pro Lys Glu Ile Pro Leu Glu Ala 130 135 140 Ala Val Met Ile Pro Asp Met Met Thr Thr Gly Phe His Gly Ala Glu 145 150 155 160 Leu Ala Asp Ile Gln Met Gly Ser Ser Val Val Val Ile Gly Ile Gly 165 170 175 Ala Val Gly Leu Met Gly Ile Ala Gly Ala Lys Leu Arg Gly Ala Gly 180 185 190 Arg Ile Ile Gly Val Gly Ser Arg Pro Ile Cys Val Glu Ala Ala Lys 195 200 205 Phe Tyr Gly Ala Thr Asp Ile Leu Asn Tyr Lys Asn Gly His Ile Val 210 215 220 Asp Gln Val Met Lys Leu Thr Asn Gly Lys Gly Val Asp Arg Val Ile 225 230 235 240 Met Ala Gly Gly Gly Ser Glu Thr Leu Ser Gln Ala Val Ser Met Val 245 250 255 Lys Pro Gly Gly Ile Ile Ser Asn Ile Asn Tyr His Gly Ser Gly Asp 260 265 270 Ala Leu Leu Ile Pro Arg Val Glu Trp Gly Cys Gly Met Ala His Lys 275 280 285 Thr Ile Lys Gly Gly Leu Cys Pro Gly Gly Arg Leu Arg Met Glu Arg 290 295 300 Leu Ile Asp Leu Val Phe Tyr Lys Arg Val Asp Pro Ser Lys Leu Val 305 310 315 320 Thr His Val Phe Arg Gly Phe Asp Asn Ile Glu Lys Ala Phe Met Leu 325 330 335 Met Lys Asp Lys Pro Lys Asp Leu Ile Lys Pro Val Val Ile Leu Ala 340 345 350 <210> SEQ ID NO 21 <211> LENGTH: 520 <212> TYPE: PRT <213> ORGANISM: Mus musculus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: HMG-CoA synthase <400> SEQUENCE: 21 Met Pro Gly Ser Leu Pro Leu Asn Ala Glu Ala Cys Trp Pro Lys Asp 1 5 10 15 Val Gly Ile Val Ala Leu Glu Ile Tyr Phe Pro Ser Gln Tyr Val Asp 20 25 30 Gln Ala Glu Leu Glu Lys Tyr Asp Gly Val Asp Ala Gly Lys Tyr Thr 35 40 45 Ile Gly Leu Gly Gln Ala Arg Met Gly Phe Cys Thr Asp Arg Glu Asp 50 55 60 Ile Asn Ser Leu Cys Leu Thr Val Val Gln Lys Leu Met Glu Arg His 65 70 75 80 Ser Leu Ser Tyr Asp Cys Ile Gly Arg Leu Glu Val Gly Thr Glu Thr 85 90 95 Ile Ile Asp Lys Ser Lys Ser Val Lys Ser Lys Leu Met Gln Leu Phe 100 105 110 Glu Glu Ser Gly Asn Thr Asp Ile Glu Gly Ile Asp Thr Thr Asn Ala 115 120 125 Cys Tyr Gly Gly Thr Ala Ala Val Phe Asn Ala Val Asn Trp Val Glu 130 135 140 Ser Ser Ser Trp Asp Gly Arg Tyr Ala Leu Val Val Ala Gly Asp Ile 145 150 155 160 Ala Ile Tyr Ala Thr Gly Asn Ala Arg Pro Thr Gly Gly Val Gly Ala 165 170 175 Val Ala Leu Leu Ile Gly Pro Asn Ala Pro Leu Ile Phe Asp Arg Gly 180 185 190 Leu Arg Gly Thr His Met Gln His Ala Tyr Asp Phe Tyr Lys Pro Asp 195 200 205 Met Leu Ser Glu Tyr Pro Val Val Asp Gly Lys Leu Ser Ile Gln Cys 210 215 220 Tyr Leu Ser Ala Leu Asp Arg Cys Tyr Ser Val Tyr Arg Lys Lys Ile 225 230 235 240 Arg Ala Gln Trp Gln Lys Glu Gly Lys Asp Lys Asp Phe Thr Leu Asn 245 250 255 Asp Phe Gly Phe Met Ile Phe His Ser Pro Tyr Cys Lys Leu Val Gln 260 265 270 Lys Ser Leu Ala Arg Met Phe Leu Asn Asp Phe Leu Asn Asp Gln Asn 275 280 285 Arg Asp Lys Asn Ser Ile Tyr Ser Gly Leu Glu Ala Phe Gly Asp Val 290 295 300 Lys Leu Glu Asp Thr Tyr Phe Asp Arg Asp Val Glu Lys Ala Phe Met 305 310 315 320 Lys Ala Ser Ser Glu Leu Phe Asn Gln Lys Thr Lys Ala Ser Leu Leu 325 330 335 Val Ser Asn Gln Asn Gly Asn Met Tyr Thr Ser Ser Val Tyr Gly Ser 340 345 350 Leu Ala Ser Val Leu Ala Gln Tyr Ser Pro Gln Gln Leu Ala Gly Lys 355 360 365 Arg Val Gly Val Phe Ser Tyr Gly Ser Gly Leu Ala Ala Thr Leu Tyr 370 375 380 Ser Leu Lys Val Thr Gln Asp Ala Thr Pro Gly Ser Ala Leu Asp Lys 385 390 395 400 Ile Thr Ala Ser Leu Cys Asp Leu Lys Ser Arg Leu Asp Ser Arg Thr 405 410 415 Cys Val Ala Pro Asp Val Phe Ala Glu Asn Met Lys Leu Arg Glu Asp 420 425 430 Thr His His Leu Ala Asn Tyr Ile Pro Gln Cys Ser Ile Asp Ser Leu

435 440 445 Phe Glu Gly Thr Trp Tyr Leu Val Arg Val Asp Glu Lys His Arg Arg 450 455 460 Thr Tyr Ala Arg Arg Pro Phe Thr Asn Asp His Ser Leu Asp Glu Gly 465 470 475 480 Met Gly Leu Val His Ser Asn Thr Ala Thr Glu His Ile Pro Ser Pro 485 490 495 Ala Lys Lys Val Pro Arg Leu Pro Ala Thr Ser Ala Glu Ser Glu Ser 500 505 510 Ala Val Ile Ser Asn Gly Glu His 515 520 <210> SEQ ID NO 22 <211> LENGTH: 396 <212> TYPE: PRT <213> ORGANISM: Saccharomyces cerevisiae <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Mdd, CAA96324.1 <400> SEQUENCE: 22 Met Thr Val Tyr Thr Ala Ser Val Thr Ala Pro Val Asn Ile Ala Thr 1 5 10 15 Leu Lys Tyr Trp Gly Lys Arg Asp Thr Lys Leu Asn Leu Pro Thr Asn 20 25 30 Ser Ser Ile Ser Val Thr Leu Ser Gln Asp Asp Leu Arg Thr Leu Thr 35 40 45 Ser Ala Ala Thr Ala Pro Glu Phe Glu Arg Asp Thr Leu Trp Leu Asn 50 55 60 Gly Glu Pro His Ser Ile Asp Asn Glu Arg Thr Gln Asn Cys Leu Arg 65 70 75 80 Asp Leu Arg Gln Leu Arg Lys Glu Met Glu Ser Lys Asp Ala Ser Leu 85 90 95 Pro Thr Leu Ser Gln Trp Lys Leu His Ile Val Ser Glu Asn Asn Phe 100 105 110 Pro Thr Ala Ala Gly Leu Ala Ser Ser Ala Ala Gly Phe Ala Ala Leu 115 120 125 Val Ser Ala Ile Ala Lys Leu Tyr Gln Leu Pro Gln Ser Thr Ser Glu 130 135 140 Ile Ser Arg Ile Ala Arg Lys Gly Ser Gly Ser Ala Cys Arg Ser Leu 145 150 155 160 Phe Gly Gly Tyr Val Ala Trp Glu Met Gly Lys Ala Glu Asp Gly His 165 170 175 Asp Ser Met Ala Val Gln Ile Ala Asp Ser Ser Asp Trp Pro Gln Met 180 185 190 Lys Ala Cys Val Leu Val Val Ser Asp Ile Lys Lys Asp Val Ser Ser 195 200 205 Thr Gln Gly Met Gln Leu Thr Val Ala Thr Ser Glu Leu Phe Lys Glu 210 215 220 Arg Ile Glu His Val Val Pro Lys Arg Phe Glu Val Met Arg Lys Ala 225 230 235 240 Ile Val Glu Lys Asp Phe Ala Thr Phe Ala Lys Glu Thr Met Met Asp 245 250 255 Ser Asn Ser Phe His Ala Thr Cys Leu Asp Ser Phe Pro Pro Ile Phe 260 265 270 Tyr Met Asn Asp Thr Ser Lys Arg Ile Ile Ser Trp Cys His Thr Ile 275 280 285 Asn Gln Phe Tyr Gly Glu Thr Ile Val Ala Tyr Thr Phe Asp Ala Gly 290 295 300 Pro Asn Ala Val Leu Tyr Tyr Leu Ala Glu Asn Glu Ser Lys Leu Phe 305 310 315 320 Ala Phe Ile Tyr Lys Leu Phe Gly Ser Val Pro Gly Trp Asp Lys Lys 325 330 335 Phe Thr Thr Glu Gln Leu Glu Ala Phe Asn His Gln Phe Glu Ser Ser 340 345 350 Asn Phe Thr Ala Arg Glu Leu Asp Leu Glu Leu Gln Lys Asp Val Ala 355 360 365 Arg Val Ile Leu Thr Gln Val Gly Ser Gly Pro Gln Glu Thr Asn Glu 370 375 380 Ser Leu Ile Asp Ala Lys Thr Gly Leu Pro Lys Glu 385 390 395 <210> SEQ ID NO 23 <211> LENGTH: 324 <212> TYPE: PRT <213> ORGANISM: Picrophilus torridus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Mdd, WP_011178157.1 <400> SEQUENCE: 23 Met Glu Asn Tyr Asn Val Lys Thr Arg Ala Phe Pro Thr Ile Gly Ile 1 5 10 15 Ile Leu Leu Gly Gly Ile Ser Asp Lys Lys Asn Arg Ile Pro Leu His 20 25 30 Thr Thr Ala Gly Ile Ala Tyr Thr Gly Ile Asn Asn Asp Val Tyr Thr 35 40 45 Glu Thr Lys Leu Tyr Val Ser Lys Asp Glu Lys Cys Tyr Ile Asp Gly 50 55 60 Lys Glu Ile Asp Leu Asn Ser Asp Arg Ser Pro Ser Lys Val Ile Asp 65 70 75 80 Lys Phe Lys His Glu Ile Leu Met Arg Val Asn Leu Asp Asp Glu Asn 85 90 95 Asn Leu Ser Ile Asp Ser Arg Asn Phe Asn Ile Leu Ser Gly Ser Ser 100 105 110 Asp Ser Gly Ala Ala Ala Leu Gly Glu Cys Ile Glu Ser Ile Phe Glu 115 120 125 Tyr Asn Ile Asn Ile Phe Thr Phe Glu Asn Asp Leu Gln Arg Ile Ser 130 135 140 Glu Ser Val Gly Arg Ser Leu Tyr Gly Gly Leu Thr Val Asn Tyr Ala 145 150 155 160 Asn Gly Arg Glu Ser Leu Thr Glu Pro Leu Leu Glu Pro Glu Ala Phe 165 170 175 Asn Asn Phe Thr Ile Ile Gly Ala His Phe Asn Ile Asp Arg Lys Pro 180 185 190 Ser Asn Glu Ile His Glu Asn Ile Ile Lys His Glu Asn Tyr Arg Glu 195 200 205 Arg Ile Lys Ser Ala Glu Arg Lys Ala Lys Lys Leu Glu Glu Leu Ser 210 215 220 Arg Asn Ala Asn Ile Lys Gly Ile Phe Glu Leu Ala Glu Ser Asp Thr 225 230 235 240 Val Glu Tyr His Lys Met Leu His Asp Val Gly Val Asp Ile Ile Asn 245 250 255 Asp Arg Met Glu Asn Leu Ile Glu Arg Val Lys Glu Met Lys Asn Asn 260 265 270 Phe Trp Asn Ser Tyr Ile Val Thr Gly Gly Pro Asn Val Phe Val Ile 275 280 285 Thr Glu Lys Lys Asp Val Asp Lys Ala Met Glu Gly Leu Asn Asp Leu 290 295 300 Cys Asp Asp Ile Arg Leu Leu Lys Val Ala Gly Lys Pro Gln Val Ile 305 310 315 320 Ser Lys Asn Phe <210> SEQ ID NO 24 <211> LENGTH: 460 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: CimA, AGY76958.1 <400> SEQUENCE: 24 Met Lys Lys Ser Ser Tyr Glu Tyr Lys Leu Asn Asn Val Asp Ser Pro 1 5 10 15 Asn Phe Tyr Lys Asn Ile Phe Pro Tyr Asp Glu Ile Pro Lys Ile Asn 20 25 30 Phe Asn Gly Val Gln Ile Pro Lys Asp Leu Pro Glu Asn Ile Tyr Ile 35 40 45 Thr Asp Thr Thr Phe Arg Asp Gly Gln Gln Ser Met Pro Pro Tyr Thr 50 55 60 Thr Glu Gln Ile Ile Arg Ile Phe Asp Tyr Leu His Asn Leu Asp Asn 65 70 75 80 Asn Ser Gly Ile Ile Lys Gln Thr Glu Phe Phe Leu Tyr Thr Glu Lys 85 90 95 Asp Arg Lys Ala Ala Gln Val Cys Met Glu Arg Gly Tyr Glu Phe Pro 100 105 110 Glu Val Thr Ser Trp Ile Arg Ala Asn Lys Glu Asp Phe Lys Leu Val 115 120 125 Lys Gln Met Gly Ile Lys Glu Thr Gly Met Leu Met Ser Cys Ser Asp 130 135 140 Tyr His Ile Phe Lys Lys Leu Arg Lys Thr Arg Lys Glu Thr Met Asp 145 150 155 160 Met Tyr Leu Gly Ile Val Lys Glu Ala Leu Asp Asn Gly Ile Arg Pro 165 170 175 Arg Cys His Leu Glu Asp Ile Thr Arg Ala Asp Phe Tyr Gly Phe Val 180 185 190 Val Pro Leu Val Asn Lys Leu Met Glu Leu Ser Lys Gln Ser Gly Ile 195 200 205 Pro Ile Lys Ile Arg Ala Cys Asp Thr Leu Gly Leu Gly Val Ser Tyr 210 215 220 Ser Gly Val Glu Leu Pro Arg Ser Val Gln Ala Ile Met Tyr Gly Leu 225 230 235 240 Arg Asn Asn Cys Gly Val Pro Ser Glu Cys Ile Glu Trp His Gly His 245 250 255 Asn Asp Phe Tyr Ala Val Val Asn Asn Ser Thr Thr Ala Trp Leu Tyr 260 265 270 Gly Ala Ser Ala Val Asn Thr Ser Phe Leu Gly Ile Gly Glu Arg Thr 275 280 285 Gly Asn Cys Pro Leu Glu Ala Met Ile Phe Glu Tyr Gly Gln Ile Lys 290 295 300 Gly Asn Thr Lys Asn Met Lys Leu Glu Val Ile Thr Glu Leu Ser Glu 305 310 315 320 Tyr Phe Lys Lys Glu Met Glu Tyr Ala Val Pro Pro Arg Thr Pro Phe 325 330 335 Val Gly Lys Glu Phe Asn Val Thr Arg Ala Gly Ile His Ala Asp Gly 340 345 350

Ile Leu Lys Asp Glu Glu Ile Tyr Asn Ile Phe Asp Thr Asp Lys Ile 355 360 365 Leu Gly Arg Pro Val Val Val Ala Val Asn Gln Tyr Ser Gly His Ala 370 375 380 Gly Ile Ala Ala Trp Ile Asn Thr Tyr Tyr Arg Leu Lys Asp Glu Glu 385 390 395 400 Lys Ile Asp Lys Trp Asp Thr Arg Ile Ala Lys Ile Lys Glu Trp Val 405 410 415 Asp Glu Gln Tyr Lys Ala Gly Arg Thr Ser Ile Ile Gly Asn Asp Glu 420 425 430 Leu Glu Leu Leu Val Asp Lys Met Leu Pro Asp Ile Ser Gln Lys Lys 435 440 445 Lys Lys Glu Leu Ala Arg Val Asp Thr Arg Phe Ile 450 455 460 <210> SEQ ID NO 25 <211> LENGTH: 491 <212> TYPE: PRT <213> ORGANISM: Methanocaldococcus jannaschii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: CimA, NP_248395.1 <400> SEQUENCE: 25 Met Met Val Arg Ile Phe Asp Thr Thr Leu Arg Asp Gly Glu Gln Thr 1 5 10 15 Pro Gly Val Ser Leu Thr Pro Asn Asp Lys Leu Glu Ile Ala Lys Lys 20 25 30 Leu Asp Glu Leu Gly Val Asp Val Ile Glu Ala Gly Ser Ala Ile Thr 35 40 45 Ser Lys Gly Glu Arg Glu Gly Ile Lys Leu Ile Thr Lys Glu Gly Leu 50 55 60 Asn Ala Glu Ile Cys Ser Phe Val Arg Ala Leu Pro Val Asp Ile Asp 65 70 75 80 Ala Ala Leu Glu Cys Asp Val Asp Ser Val His Leu Val Val Pro Thr 85 90 95 Ser Pro Ile His Met Lys Tyr Lys Leu Arg Lys Thr Glu Asp Glu Val 100 105 110 Leu Glu Thr Ala Leu Lys Ala Val Glu Tyr Ala Lys Glu His Gly Leu 115 120 125 Ile Val Glu Leu Ser Ala Glu Asp Ala Thr Arg Ser Asp Val Asn Phe 130 135 140 Leu Ile Lys Leu Phe Asn Glu Gly Glu Lys Val Gly Ala Asp Arg Val 145 150 155 160 Cys Val Cys Asp Thr Val Gly Val Leu Thr Pro Gln Lys Ser Gln Glu 165 170 175 Leu Phe Lys Lys Ile Thr Glu Asn Val Asn Leu Pro Val Ser Val His 180 185 190 Cys His Asn Asp Phe Gly Met Ala Thr Ala Asn Thr Cys Ser Ala Val 195 200 205 Leu Gly Gly Ala Val Gln Cys His Val Thr Val Asn Gly Ile Gly Glu 210 215 220 Arg Ala Gly Asn Ala Ser Leu Glu Glu Val Val Ala Ala Leu Lys Ile 225 230 235 240 Leu Tyr Gly Tyr Asp Thr Lys Ile Lys Met Glu Lys Leu Tyr Glu Val 245 250 255 Ser Arg Ile Val Ser Arg Leu Met Lys Leu Pro Val Pro Pro Asn Lys 260 265 270 Ala Ile Val Gly Asp Asn Ala Phe Ala His Glu Ala Gly Ile His Val 275 280 285 Asp Gly Leu Ile Lys Asn Thr Glu Thr Tyr Glu Pro Ile Lys Pro Glu 290 295 300 Met Val Gly Asn Arg Arg Arg Ile Ile Leu Gly Lys His Ser Gly Arg 305 310 315 320 Lys Ala Leu Lys Tyr Lys Leu Asp Leu Met Gly Ile Asn Val Ser Asp 325 330 335 Glu Gln Leu Asn Lys Ile Tyr Glu Arg Val Lys Glu Phe Gly Asp Leu 340 345 350 Gly Lys Tyr Ile Ser Asp Ala Asp Leu Leu Ala Ile Val Arg Glu Val 355 360 365 Thr Gly Lys Leu Val Glu Glu Lys Ile Lys Leu Asp Glu Leu Thr Val 370 375 380 Val Ser Gly Asn Lys Ile Thr Pro Ile Ala Ser Val Lys Leu His Tyr 385 390 395 400 Lys Gly Glu Asp Ile Thr Leu Ile Glu Thr Ala Tyr Gly Val Gly Pro 405 410 415 Val Asp Ala Ala Ile Asn Ala Val Arg Lys Ala Ile Ser Gly Val Ala 420 425 430 Asp Ile Lys Leu Val Glu Tyr Arg Val Glu Ala Ile Gly Gly Gly Thr 435 440 445 Asp Ala Leu Ile Glu Val Val Val Lys Leu Arg Lys Gly Thr Glu Ile 450 455 460 Val Glu Val Arg Lys Ser Asp Ala Asp Ile Ile Arg Ala Ser Val Asp 465 470 475 480 Ala Val Met Glu Gly Ile Asn Met Leu Leu Asn 485 490 <210> SEQ ID NO 26 <211> LENGTH: 421 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: LeuC, WP_023162955.1 <400> SEQUENCE: 26 Met Gly Met Thr Met Thr Gln Lys Ile Leu Ala His His Ala Lys Met 1 5 10 15 Asp Glu Val Lys Ala Gly Gln Leu Ile Lys Val Lys Leu Asp Leu Val 20 25 30 Leu Gly Asn Asp Ile Thr Thr Pro Val Ala Ile Asn Glu Phe Asn Lys 35 40 45 Ile Gly Leu Asn Asn Val Phe Asp Lys Asn Lys Ile Ala Ile Val Pro 50 55 60 Asp His Phe Thr Pro Asn Lys Asp Ile Lys Ser Ala Glu Gln Cys Lys 65 70 75 80 Tyr Val Arg Glu Phe Val Lys Lys Met Glu Ile Lys Asn Tyr Phe Glu 85 90 95 Val Gly Arg Met Gly Ile Glu His Ala Leu Ile Pro Glu Lys Gly Leu 100 105 110 Ala Val Cys Gly Asp Val Val Ile Gly Ala Asp Ser His Thr Cys Thr 115 120 125 Tyr Gly Ala Leu Gly Ala Phe Ser Thr Gly Ile Gly Ser Thr Asp Met 130 135 140 Ala Ala Gly Met Ala Thr Gly Glu Ala Trp Phe Lys Val Pro Glu Ala 145 150 155 160 Ile Lys Phe Val Leu Lys Gly Lys Leu Thr Lys Trp Val Ser Gly Lys 165 170 175 Asp Val Ile Leu His Ile Ile Gly Met Ile Gly Val Asp Gly Ala Leu 180 185 190 Tyr Lys Ser Met Glu Phe Thr Gly Glu Gly Val Ser Ser Leu Thr Met 195 200 205 Asp Asp Arg Phe Thr Ile Cys Asn Met Ala Ile Glu Ala Gly Ala Lys 210 215 220 Asn Gly Ile Phe Pro Val Asp Glu Asn Thr Ile Asn Tyr Val Lys Glu 225 230 235 240 His Ser Lys Lys Asn Tyr Thr Val Tyr Glu Ala Asp Ser Asp Ala Glu 245 250 255 Tyr Ser Gln Val Ile Glu Ile Asp Leu Ser Lys Ile Arg Pro Thr Val 260 265 270 Ala Phe Pro His Ile Pro Glu Asn Thr Lys Thr Ile Asp Glu Val Gly 275 280 285 Asp Ile Arg Ile Asp Gln Val Val Ile Gly Ser Cys Thr Asn Gly Arg 290 295 300 Ile Gly Asp Leu Arg Ala Ala Ala Ser Ile Leu Lys Gly Arg Lys Val 305 310 315 320 Asn Glu Asn Val Arg Ala Ile Ile Phe Pro Ala Thr Gln Ala Ile Tyr 325 330 335 Leu Gln Ala Met Lys Glu Gly Leu Ile Glu Ile Phe Ile Glu Ala Gly 340 345 350 Ala Val Val Ser Thr Pro Thr Cys Gly Pro Cys Leu Gly Gly His Met 355 360 365 Gly Ile Leu Ala Glu Gly Glu Arg Ala Val Ser Thr Thr Asn Arg Asn 370 375 380 Phe Val Gly Arg Met Gly His Val Lys Ser Glu Val Tyr Leu Ala Ser 385 390 395 400 Pro Glu Val Ala Ala Ala Ser Ala Val Thr Gly Lys Ile Ser Ser Pro 405 410 415 Glu Glu Val Val Lys 420 <210> SEQ ID NO 27 <211> LENGTH: 164 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: LeuD, AGY77204.1 <400> SEQUENCE: 27 Met Ile Lys Gly Lys Ala Ile Lys Tyr Gly Asp Asn Val Asp Thr Asp 1 5 10 15 Val Ile Ile Pro Ala Arg Tyr Leu Asn Thr Ser Asp His Lys Glu Leu 20 25 30 Ala Ser His Cys Met Glu Asp Ile Asp Lys Asp Phe Ser Lys Lys Ile 35 40 45 Ser Lys Gly Asp Ile Met Ile Ala Gly Lys Asn Phe Gly Cys Gly Ser 50 55 60 Ser Arg Glu His Ala Pro Ile Ala Ile Lys Ala Ser Gly Ile Ser Cys 65 70 75 80 Ile Ile Ala Glu Thr Phe Ala Arg Ile Phe Phe Arg Asn Ser Ile Asn 85 90 95 Ile Gly Leu Pro Ile Met Glu Cys Glu Glu Ala Ala Lys Asp Ile Asp 100 105 110 Glu Lys Asp Glu Val Ser Val Asp Thr Val Ser Gly Val Ile Thr Asn 115 120 125

Ile Thr Lys Asn Lys Thr Tyr Lys Ala Val Pro Phe Pro Glu Phe Met 130 135 140 His Lys Ile Ile Lys Ser Glu Gly Leu Ile Asn Tyr Ile Lys Glu Glu 145 150 155 160 Val Glu Asn Lys <210> SEQ ID NO 28 <211> LENGTH: 466 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: LeuC, NP_414614.1 <400> SEQUENCE: 28 Met Ala Lys Thr Leu Tyr Glu Lys Leu Phe Asp Ala His Val Val Tyr 1 5 10 15 Glu Ala Glu Asn Glu Thr Pro Leu Leu Tyr Ile Asp Arg His Leu Val 20 25 30 His Glu Val Thr Ser Pro Gln Ala Phe Asp Gly Leu Arg Ala His Gly 35 40 45 Arg Pro Val Arg Gln Pro Gly Lys Thr Phe Ala Thr Met Asp His Asn 50 55 60 Val Ser Thr Gln Thr Lys Asp Ile Asn Ala Cys Gly Glu Met Ala Arg 65 70 75 80 Ile Gln Met Gln Glu Leu Ile Lys Asn Cys Lys Glu Phe Gly Val Glu 85 90 95 Leu Tyr Asp Leu Asn His Pro Tyr Gln Gly Ile Val His Val Met Gly 100 105 110 Pro Glu Gln Gly Val Thr Leu Pro Gly Met Thr Ile Val Cys Gly Asp 115 120 125 Ser His Thr Ala Thr His Gly Ala Phe Gly Ala Leu Ala Phe Gly Ile 130 135 140 Gly Thr Ser Glu Val Glu His Val Leu Ala Thr Gln Thr Leu Lys Gln 145 150 155 160 Gly Arg Ala Lys Thr Met Lys Ile Glu Val Gln Gly Lys Ala Ala Pro 165 170 175 Gly Ile Thr Ala Lys Asp Ile Val Leu Ala Ile Ile Gly Lys Thr Gly 180 185 190 Ser Ala Gly Gly Thr Gly His Val Val Glu Phe Cys Gly Glu Ala Ile 195 200 205 Arg Asp Leu Ser Met Glu Gly Arg Met Thr Leu Cys Asn Met Ala Ile 210 215 220 Glu Met Gly Ala Lys Ala Gly Leu Val Ala Pro Asp Glu Thr Thr Phe 225 230 235 240 Asn Tyr Val Lys Gly Arg Leu His Ala Pro Lys Gly Lys Asp Phe Asp 245 250 255 Asp Ala Val Ala Tyr Trp Lys Thr Leu Gln Thr Asp Glu Gly Ala Thr 260 265 270 Phe Asp Thr Val Val Thr Leu Gln Ala Glu Glu Ile Ser Pro Gln Val 275 280 285 Thr Trp Gly Thr Asn Pro Gly Gln Val Ile Ser Val Asn Asp Asn Ile 290 295 300 Pro Asp Pro Ala Ser Phe Ala Asp Pro Val Glu Arg Ala Ser Ala Glu 305 310 315 320 Lys Ala Leu Ala Tyr Met Gly Leu Lys Pro Gly Ile Pro Leu Thr Glu 325 330 335 Val Ala Ile Asp Lys Val Phe Ile Gly Ser Cys Thr Asn Ser Arg Ile 340 345 350 Glu Asp Leu Arg Ala Ala Ala Glu Ile Ala Lys Gly Arg Lys Val Ala 355 360 365 Pro Gly Val Gln Ala Leu Val Val Pro Gly Ser Gly Pro Val Lys Ala 370 375 380 Gln Ala Glu Ala Glu Gly Leu Asp Lys Ile Phe Ile Glu Ala Gly Phe 385 390 395 400 Glu Trp Arg Leu Pro Gly Cys Ser Met Cys Leu Ala Met Asn Asn Asp 405 410 415 Arg Leu Asn Pro Gly Glu Arg Cys Ala Ser Thr Ser Asn Arg Asn Phe 420 425 430 Glu Gly Arg Gln Gly Arg Gly Gly Arg Thr His Leu Val Ser Pro Ala 435 440 445 Met Ala Ala Ala Ala Ala Val Thr Gly His Phe Ala Asp Ile Arg Asn 450 455 460 Ile Lys 465 <210> SEQ ID NO 29 <211> LENGTH: 201 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: LeuD, NP_414613.1 <400> SEQUENCE: 29 Met Ala Glu Lys Phe Ile Lys His Thr Gly Leu Val Val Pro Leu Asp 1 5 10 15 Ala Ala Asn Val Asp Thr Asp Ala Ile Ile Pro Lys Gln Phe Leu Gln 20 25 30 Lys Val Thr Arg Thr Gly Phe Gly Ala His Leu Phe Asn Asp Trp Arg 35 40 45 Phe Leu Asp Glu Lys Gly Gln Gln Pro Asn Pro Asp Phe Val Leu Asn 50 55 60 Phe Pro Gln Tyr Gln Gly Ala Ser Ile Leu Leu Ala Arg Glu Asn Phe 65 70 75 80 Gly Cys Gly Ser Ser Arg Glu His Ala Pro Trp Ala Leu Thr Asp Tyr 85 90 95 Gly Phe Lys Val Val Ile Ala Pro Ser Phe Ala Asp Ile Phe Tyr Gly 100 105 110 Asn Ser Phe Asn Asn Gln Leu Leu Pro Val Lys Leu Ser Asp Ala Glu 115 120 125 Val Asp Glu Leu Phe Ala Leu Val Lys Ala Asn Pro Gly Ile His Phe 130 135 140 Asp Val Asp Leu Glu Ala Gln Glu Val Lys Ala Gly Glu Lys Thr Tyr 145 150 155 160 Arg Phe Thr Ile Asp Ala Phe Arg Arg His Cys Met Met Asn Gly Leu 165 170 175 Asp Ser Ile Gly Leu Thr Leu Gln His Asp Asp Ala Ile Ala Ala Tyr 180 185 190 Glu Ala Lys Gln Pro Ala Phe Met Asn 195 200 <210> SEQ ID NO 30 <211> LENGTH: 354 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: LeuB, WP_023162957.1 <400> SEQUENCE: 30 Met Lys Ile Ala Ile Ile Pro Gly Asp Gly Ile Gly Lys Glu Ile Ile 1 5 10 15 Glu Gln Ala Lys Lys Val Leu Lys Ala Ala Ser Ala Lys Tyr Asn Phe 20 25 30 Asp Phe Glu Cys Glu Glu Val Leu Leu Gly Gly Ala Ala Val Asp Ala 35 40 45 Thr Gly Val Pro Leu Pro Asp Lys Thr Val Glu Val Cys Lys Lys Ser 50 55 60 Asp Ala Val Leu Leu Gly Ala Val Gly Gly Pro Lys Trp Asp Ser Leu 65 70 75 80 Pro Ser Lys Leu Arg Pro Glu Ala Gly Leu Leu Gly Ile Arg Lys Ala 85 90 95 Leu Gly Val Phe Ala Asn Leu Arg Pro Ala Ile Leu Phe Pro Glu Leu 100 105 110 Ile Ala Ala Ser Asn Leu Lys Pro Glu Val Leu Gly Gly Gly Leu Asp 115 120 125 Ile Met Ile Val Arg Glu Leu Ile Gly Gly Ala Tyr Phe Gly Glu Lys 130 135 140 Asn Arg Ile Asp Ile Glu Gly Gly Lys Lys Ala Trp Asp Thr Ile Ser 145 150 155 160 Tyr Thr Ser Phe Glu Ile Asp Arg Ile Thr Arg Lys Ala Phe Glu Ile 165 170 175 Ala Arg Lys Arg Ser Asn Arg Leu Thr Leu Val Asp Lys Ala Asn Val 180 185 190 Leu Glu Ser Ser Lys Leu Trp Arg Glu Val Val Gly Asn Ile Ala Lys 195 200 205 Glu Tyr Glu Asp Val Glu Ile Asn Tyr Met Tyr Val Asp Asn Ala Ser 210 215 220 Met Gln Leu Ile Arg Asp Pro Lys Gln Phe Asp Val Ile Leu Thr Glu 225 230 235 240 Asn Met Phe Gly Asp Ile Leu Ser Asp Glu Ala Ser Met Leu Thr Gly 245 250 255 Ser Leu Gly Met Leu Pro Ser Ala Ser Val Arg Gly Asp Ser Phe Gly 260 265 270 Leu Tyr Glu Pro Val His Gly Ser Ala Pro Asp Ile Ala Gly Gln Asn 275 280 285 Lys Ala Asn Pro Ile Gly Thr Ile Met Ser Val Ala Met Met Leu Lys 290 295 300 Tyr Ser Phe Asp Met Glu Gln Ala Tyr Val Asp Ile Lys Asn Ala Ile 305 310 315 320 Ser Lys Val Leu Lys Glu Gly Tyr Arg Thr Gly Asp Ile Ala Lys Glu 325 330 335 Asp Ser Lys Leu Val Gly Thr Glu Glu Met Gly Asp Leu Ile Val Lys 340 345 350 Asn Leu <210> SEQ ID NO 31 <211> LENGTH: 363 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: LeuB, NP_414615.4 <400> SEQUENCE: 31 Met Ser Lys Asn Tyr His Ile Ala Val Leu Pro Gly Asp Gly Ile Gly

1 5 10 15 Pro Glu Val Met Thr Gln Ala Leu Lys Val Leu Asp Ala Val Arg Asn 20 25 30 Arg Phe Ala Met Arg Ile Thr Thr Ser His Tyr Asp Val Gly Gly Ala 35 40 45 Ala Ile Asp Asn His Gly Gln Pro Leu Pro Pro Ala Thr Val Glu Gly 50 55 60 Cys Glu Gln Ala Asp Ala Val Leu Phe Gly Ser Val Gly Gly Pro Lys 65 70 75 80 Trp Glu His Leu Pro Pro Asp Gln Gln Pro Glu Arg Gly Ala Leu Leu 85 90 95 Pro Leu Arg Lys His Phe Lys Leu Phe Ser Asn Leu Arg Pro Ala Lys 100 105 110 Leu Tyr Gln Gly Leu Glu Ala Phe Cys Pro Leu Arg Ala Asp Ile Ala 115 120 125 Ala Asn Gly Phe Asp Ile Leu Cys Val Arg Glu Leu Thr Gly Gly Ile 130 135 140 Tyr Phe Gly Gln Pro Lys Gly Arg Glu Gly Ser Gly Gln Tyr Glu Lys 145 150 155 160 Ala Phe Asp Thr Glu Val Tyr His Arg Phe Glu Ile Glu Arg Ile Ala 165 170 175 Arg Ile Ala Phe Glu Ser Ala Arg Lys Arg Arg His Lys Val Thr Ser 180 185 190 Ile Asp Lys Ala Asn Val Leu Gln Ser Ser Ile Leu Trp Arg Glu Ile 195 200 205 Val Asn Glu Ile Ala Thr Glu Tyr Pro Asp Val Glu Leu Ala His Met 210 215 220 Tyr Ile Asp Asn Ala Thr Met Gln Leu Ile Lys Asp Pro Ser Gln Phe 225 230 235 240 Asp Val Leu Leu Cys Ser Asn Leu Phe Gly Asp Ile Leu Ser Asp Glu 245 250 255 Cys Ala Met Ile Thr Gly Ser Met Gly Met Leu Pro Ser Ala Ser Leu 260 265 270 Asn Glu Gln Gly Phe Gly Leu Tyr Glu Pro Ala Gly Gly Ser Ala Pro 275 280 285 Asp Ile Ala Gly Lys Asn Ile Ala Asn Pro Ile Ala Gln Ile Leu Ser 290 295 300 Leu Ala Leu Leu Leu Arg Tyr Ser Leu Asp Ala Asp Asp Ala Ala Cys 305 310 315 320 Ala Ile Glu Arg Ala Ile Asn Arg Ala Leu Glu Glu Gly Ile Arg Thr 325 330 335 Gly Asp Leu Ala Arg Gly Ala Ala Ala Val Ser Thr Asp Glu Met Gly 340 345 350 Asp Ile Ile Ala Arg Tyr Val Ala Glu Gly Val 355 360 <210> SEQ ID NO 32 <211> LENGTH: 536 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvB, AGY74359.1 <400> SEQUENCE: 32 Met Lys Ala Ala Glu Ala Val Ile Gln Cys Leu Lys Lys Glu Asn Val 1 5 10 15 Asn Met Val Phe Gly Tyr Pro Gly Ala Ala Val Val Pro Ile Tyr Glu 20 25 30 Ala Leu Arg Lys Ser Asp Val Lys His Ile Leu Val Arg Gln Glu Gln 35 40 45 Ala Ala Gly His Ser Ala Ser Gly Tyr Ala Arg Ser Thr Gly Glu Val 50 55 60 Gly Val Cys Ile Val Thr Ser Gly Pro Gly Ala Thr Asn Leu Ile Thr 65 70 75 80 Ala Ile Ala Ala Ala Tyr Met Asp Ser Ile Pro Leu Val Val Ile Thr 85 90 95 Gly Gln Val Lys Ser Thr Leu Ile Gly Arg Asp Val Phe Gln Glu Leu 100 105 110 Asp Ile Thr Gly Ala Thr Glu Ser Phe Thr Lys Tyr Asn Phe Leu Val 115 120 125 Arg Asp Ala Lys Ser Ile Pro Lys Thr Ile Lys Glu Ala Phe Tyr Ile 130 135 140 Ala Glu Thr Gly Arg Lys Gly Pro Val Leu Val Asp Ile Pro Met Asp 145 150 155 160 Ile Met Glu Glu Asp Ile Asp Phe Glu Tyr Pro Glu Ser Val Asn Ile 165 170 175 Arg Gly Tyr Lys Pro Thr Val Lys Gly His Ser Gly Gln Ile Lys Lys 180 185 190 Ile Ile Asp Arg Ile Lys Val Ser Lys Arg Pro Leu Ile Cys Ala Gly 195 200 205 Gly Gly Val Ile Leu Ala Asn Ala Gln Lys Glu Leu Glu Gln Phe Val 210 215 220 Lys Lys Ser His Ile Pro Val Val His Thr Leu Met Gly Lys Gly Cys 225 230 235 240 Ile Asn Glu Asn Ser Asp Tyr Tyr Val Gly Leu Ile Gly Thr His Gly 245 250 255 Phe Ala Tyr Ala Asn Lys Val Val Gln Asn Ala Asp Val Leu Ile Leu 260 265 270 Ile Gly Ala Arg Ala Ser Asp Arg Thr Val Ser Gly Val Lys Ser Phe 275 280 285 Ala Lys Asp Ala Asp Ile Ile His Ile Asp Ile Asp Pro Ala Glu Ile 290 295 300 Gly Lys Ile Leu Asn Thr Tyr Ile Pro Val Val Gly Asp Cys Gly Ser 305 310 315 320 Val Leu Ser Asp Leu Asn Lys Glu Ile Val Ala Pro Gln Thr Glu Lys 325 330 335 Trp Met Glu Glu Ile Lys Asn Trp Lys Lys Asp Leu Tyr Ile Glu Arg 340 345 350 Lys Pro Thr Asp Lys Val Asn Pro Lys Tyr Val Leu Lys Thr Val Ser 355 360 365 Asp Thr Leu Gly Glu Glu Val Ile Leu Thr Ala Asp Val Gly Gln Asn 370 375 380 Gln Leu Trp Cys Ala Arg Asn Phe Arg Met Thr Gly Asn Arg Lys Phe 385 390 395 400 Leu Thr Ser Gly Gly Leu Gly Thr Met Gly Tyr Ser Leu Pro Ala Ala 405 410 415 Ile Gly Ala Lys Ile Ala Cys Pro Asp Lys Gln Val Ile Ala Phe Ala 420 425 430 Gly Asp Gly Gly Phe Gln Met Ser Leu Phe Glu Leu Gly Thr Ile Ala 435 440 445 Glu Asn Asn Leu Asn Ile Ile Ile Val Leu Phe Asn Asn Ser Gly Leu 450 455 460 Gly Met Val Arg Glu Ile Gln Asp Asn Lys Tyr Ser Gly Glu Phe Gly 465 470 475 480 Val Asn Phe Arg Thr Asn Pro Asp Phe Val Lys Leu Ala Glu Ala Tyr 485 490 495 Gly Leu Lys Ala Lys Arg Val Glu Asn Asp Ser Glu Phe Asn Gly Val 500 505 510 Phe Arg Glu Ala Leu Asp Ser Ser Lys Ala Phe Leu Ile Glu Cys Ile 515 520 525 Val Asp Pro His Glu Arg Thr Phe 530 535 <210> SEQ ID NO 33 <211> LENGTH: 558 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvB, AGY74635.1 <400> SEQUENCE: 33 Met Lys Ile Lys Gly Ala Glu Val Leu Leu Lys Cys Met Met Glu Gln 1 5 10 15 Gly Val Asp Thr Val Phe Gly Tyr Pro Gly Gly Ala Val Leu Pro Ile 20 25 30 Tyr Asp Ala Leu Tyr Ala Ala Lys Gly Lys Ile Thr His Ile Ser Thr 35 40 45 Ser His Glu Gln Gly Ala Ala His Ala Ala Asp Gly Tyr Ala Arg Ser 50 55 60 Thr Gly Lys Val Gly Val Val Ile Ala Thr Ser Gly Pro Gly Ala Thr 65 70 75 80 Asn Thr Val Thr Ala Ile Ala Thr Ala Tyr Met Asp Ser Val Pro Ile 85 90 95 Val Val Phe Thr Gly Gln Val Ala Arg Ser Leu Leu Gly Lys Asp Ser 100 105 110 Phe Gln Glu Val Asn Ile Lys Asp Ile Thr Ala Ser Ile Thr Lys Lys 115 120 125 Ser Cys Ile Val Glu Lys Val Glu Asp Leu Ala Asp Thr Val Arg Glu 130 135 140 Ala Phe Gln Ile Ala Val Ser Gly Arg Pro Gly Pro Val Val Val Asp 145 150 155 160 Ile Pro Lys Asp Val Gln Ser Ala Glu Val Glu Tyr Glu Pro Phe Arg 165 170 175 Ser Lys Leu Ser Glu Ile Lys Glu Lys Lys Tyr Phe Asn Leu Asn Glu 180 185 190 Tyr Gly Asp Ser Leu Asn Lys Ala Ile Asp Met Ile Asn Arg Ser Glu 195 200 205 Arg Pro Val Ile Tyr Ser Gly Gly Gly Thr Val Thr Ser Gly Ala Gln 210 215 220 Asn Glu Leu Met Glu Leu Val Glu Lys Ile Asp Ser Pro Ile Thr Cys 225 230 235 240 Ser Leu Met Gly Ile Gly Ala Phe Pro Gly Asn Asn Glu Tyr Tyr Met 245 250 255 Gly Met Val Gly Met His Gly Ser Arg Cys Ser Asn Tyr Ala Val Ser 260 265 270 Asn Cys Asp Leu Leu Ile Ala Ile Gly Ala Arg Phe Ser Asp Arg Val 275 280 285 Ile Ser Lys Val Ser Ala Phe Ala Pro Lys Ala Arg Ile Ile His Ile 290 295 300 Asp Ile Asp Pro Lys Glu Phe Gly Lys Asn Val Asp Ile Asp Val Ala 305 310 315 320

Ile Lys Gly Asp Val Lys Glu Val Leu Gln Lys Ile Asn Cys Lys Leu 325 330 335 Glu Lys Ala Asp His Arg Asp Trp Met Glu Lys Ile Lys Gln Trp Lys 340 345 350 Ser Glu Gln Cys Glu Pro Phe Lys Glu Cys Lys Leu Ser Pro Lys Phe 355 360 365 Ile Met Asp Thr Leu Tyr Asn Leu Thr Gly Gly Glu Cys Ile Ile Thr 370 375 380 Thr Glu Val Gly Gln Asn Gln Ile Trp Thr Ala Gln Tyr Phe Lys Phe 385 390 395 400 Leu Lys Pro Arg Thr Phe Val Ser Ser Gly Gly Leu Gly Thr Met Gly 405 410 415 Phe Gly Leu Gly Ala Ser Ile Gly Ala Ser Met Gly Asn Pro Gly Lys 420 425 430 Lys Val Ile Asn Val Ala Gly Asp Gly Ser Phe Lys Met Asn Ser Thr 435 440 445 Glu Leu Ala Thr Val Ala Lys Tyr Lys Leu Pro Ile Val Gln Leu Leu 450 455 460 Leu Asn Asn Arg Ala Leu Gly Met Val Tyr Gln Trp Gln Asp Met Phe 465 470 475 480 Tyr Gly Lys Arg Phe Ser Asn Thr Glu Leu Gly Pro Asp Val Asp Phe 485 490 495 Met Lys Leu Gly Glu Ala Tyr Gly Ile Lys Thr Phe Lys Ile Glu Asp 500 505 510 Asn Ser Gln Val Glu Lys Cys Leu Lys Glu Ala Leu Asp Leu Asn Glu 515 520 525 Pro Val Ile Ile Glu Cys Asp Ile Asp Arg Lys Glu Lys Val Phe Pro 530 535 540 Ile Val Pro Pro Gly Ala Ala Ile Ser Asp Leu Val Glu Glu 545 550 555 <210> SEQ ID NO 34 <211> LENGTH: 158 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvN, AGY74360.1 <400> SEQUENCE: 34 Met Ser Val Leu Val Glu Asn His Ser Gly Val Leu Ser Lys Val Ala 1 5 10 15 Gly Leu Phe Ser Arg Arg Gly Tyr Asn Ile His Ser Leu Thr Val Gly 20 25 30 Val Thr Gly Asp Pro Glu Ile Ser Arg Met Thr Ile Val Ser Ile Gly 35 40 45 Asp Asp Tyr Met Phe Glu Gln Ile Ser Lys Gln Leu Asn Lys Leu Ile 50 55 60 Glu Val Ile Lys Val Ile Glu Leu Asn Pro Asp Ala Ser Val Tyr Arg 65 70 75 80 Glu Leu Ser Leu Ile Lys Val Ser Ala Glu Ser Asn Asn Lys Leu Leu 85 90 95 Ile Met Glu Ser Val Asn Thr Phe Arg Gly Lys Ile Val Asp Met Asn 100 105 110 Glu Lys Ser Met Ile Ile Glu Ile Thr Gly Asn Glu Lys Lys Ile Ser 115 120 125 Ala Phe Ile Glu Leu Met Lys Pro Tyr Gly Ile Lys Glu Ile Ile Arg 130 135 140 Thr Gly Leu Thr Ala Leu Gln Arg Gly Ser Lys Leu Glu Asp 145 150 155 <210> SEQ ID NO 35 <211> LENGTH: 562 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvB, NP_418127.1 <400> SEQUENCE: 35 Met Ala Ser Ser Gly Thr Thr Ser Thr Arg Lys Arg Phe Thr Gly Ala 1 5 10 15 Glu Phe Ile Val His Phe Leu Glu Gln Gln Gly Ile Lys Ile Val Thr 20 25 30 Gly Ile Pro Gly Gly Ser Ile Leu Pro Val Tyr Asp Ala Leu Ser Gln 35 40 45 Ser Thr Gln Ile Arg His Ile Leu Ala Arg His Glu Gln Gly Ala Gly 50 55 60 Phe Ile Ala Gln Gly Met Ala Arg Thr Asp Gly Lys Pro Ala Val Cys 65 70 75 80 Met Ala Cys Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Ala Ile Ala 85 90 95 Asp Ala Arg Leu Asp Ser Ile Pro Leu Ile Cys Ile Thr Gly Gln Val 100 105 110 Pro Ala Ser Met Ile Gly Thr Asp Ala Phe Gln Glu Val Asp Thr Tyr 115 120 125 Gly Ile Ser Ile Pro Ile Thr Lys His Asn Tyr Leu Val Arg His Ile 130 135 140 Glu Glu Leu Pro Gln Val Met Ser Asp Ala Phe Arg Ile Ala Gln Ser 145 150 155 160 Gly Arg Pro Gly Pro Val Trp Ile Asp Ile Pro Lys Asp Val Gln Thr 165 170 175 Ala Val Phe Glu Ile Glu Thr Gln Pro Ala Met Ala Glu Lys Ala Ala 180 185 190 Ala Pro Ala Phe Ser Glu Glu Ser Ile Arg Asp Ala Ala Ala Met Ile 195 200 205 Asn Ala Ala Lys Arg Pro Val Leu Tyr Leu Gly Gly Gly Val Ile Asn 210 215 220 Ala Pro Ala Arg Val Arg Glu Leu Ala Glu Lys Ala Gln Leu Pro Thr 225 230 235 240 Thr Met Thr Leu Met Ala Leu Gly Met Leu Pro Lys Ala His Pro Leu 245 250 255 Ser Leu Gly Met Leu Gly Met His Gly Val Arg Ser Thr Asn Tyr Ile 260 265 270 Leu Gln Glu Ala Asp Leu Leu Ile Val Leu Gly Ala Arg Phe Asp Asp 275 280 285 Arg Ala Ile Gly Lys Thr Glu Gln Phe Cys Pro Asn Ala Lys Ile Ile 290 295 300 His Val Asp Ile Asp Arg Ala Glu Leu Gly Lys Ile Lys Gln Pro His 305 310 315 320 Val Ala Ile Gln Ala Asp Val Asp Asp Val Leu Ala Gln Leu Ile Pro 325 330 335 Leu Val Glu Ala Gln Pro Arg Ala Glu Trp His Gln Leu Val Ala Asp 340 345 350 Leu Gln Arg Glu Phe Pro Cys Pro Ile Pro Lys Ala Cys Asp Pro Leu 355 360 365 Ser His Tyr Gly Leu Ile Asn Ala Val Ala Ala Cys Val Asp Asp Asn 370 375 380 Ala Ile Ile Thr Thr Asp Val Gly Gln His Gln Met Trp Thr Ala Gln 385 390 395 400 Ala Tyr Pro Leu Asn Arg Pro Arg Gln Trp Leu Thr Ser Gly Gly Leu 405 410 415 Gly Thr Met Gly Phe Gly Leu Pro Ala Ala Ile Gly Ala Ala Leu Ala 420 425 430 Asn Pro Asp Arg Lys Val Leu Cys Phe Ser Gly Asp Gly Ser Leu Met 435 440 445 Met Asn Ile Gln Glu Met Ala Thr Ala Ser Glu Asn Gln Leu Asp Val 450 455 460 Lys Ile Ile Leu Met Asn Asn Glu Ala Leu Gly Leu Val His Gln Gln 465 470 475 480 Gln Ser Leu Phe Tyr Glu Gln Gly Val Phe Ala Ala Thr Tyr Pro Gly 485 490 495 Lys Ile Asn Phe Met Gln Ile Ala Ala Gly Phe Gly Leu Glu Thr Cys 500 505 510 Asp Leu Asn Asn Glu Ala Asp Pro Gln Ala Ser Leu Gln Glu Ile Ile 515 520 525 Asn Arg Pro Gly Pro Ala Leu Ile His Val Arg Ile Asp Ala Glu Glu 530 535 540 Lys Val Tyr Pro Met Val Pro Pro Gly Ala Ala Asn Thr Glu Met Val 545 550 555 560 Gly Glu <210> SEQ ID NO 36 <211> LENGTH: 96 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvN, NP_418126.1 <400> SEQUENCE: 36 Met Gln Asn Thr Thr His Asp Asn Val Ile Leu Glu Leu Thr Val Arg 1 5 10 15 Asn His Pro Gly Val Met Thr His Val Cys Gly Leu Phe Ala Arg Arg 20 25 30 Ala Phe Asn Val Glu Gly Ile Leu Cys Leu Pro Ile Gln Asp Ser Asp 35 40 45 Lys Ser His Ile Trp Leu Leu Val Asn Asp Asp Gln Arg Leu Glu Gln 50 55 60 Met Ile Ser Gln Ile Asp Lys Leu Glu Asp Val Val Lys Val Gln Arg 65 70 75 80 Asn Gln Ser Asp Pro Thr Met Phe Asn Lys Ile Ala Val Phe Phe Gln 85 90 95 <210> SEQ ID NO 37 <211> LENGTH: 337 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvC, WP_013238693.1 <400> SEQUENCE: 37 Met Glu Lys Leu Lys Val Tyr Tyr Asp Glu Asp Ala Asp Leu Asn Leu 1 5 10 15 Leu Lys Gly Lys Lys Ile Ala Ile Leu Gly Phe Gly Ser Gln Gly His 20 25 30

Ala His Ala Leu Asn Leu Lys Glu Ser Gly Leu Asp Val Ile Val Gly 35 40 45 Leu Tyr Lys Gly Ser Lys Ser Trp Lys Lys Ala Glu Asp Tyr Gly Phe 50 55 60 Lys Val Tyr Glu Ile Ala Glu Ala Val Lys Gln Ala Asp Ile Ile Thr 65 70 75 80 Val Leu Leu Pro Asp Glu Lys Gln Lys Gln Ile Tyr Asp Glu Ser Ile 85 90 95 Lys Asp Asn Leu Ser Glu Gly Asn Ala Leu Phe Phe Ala His Gly Phe 100 105 110 Asn Ile His Phe Asn Gln Ile Val Pro Pro Lys Phe Val Asp Val Leu 115 120 125 Met Ile Ala Pro Lys Gly Pro Gly His Ile Val Arg Arg Glu Tyr Thr 130 135 140 Leu Gly Asn Gly Val Pro Cys Leu Tyr Ala Val Tyr Gln Asp Tyr Ser 145 150 155 160 Gly Lys Gly Lys Glu Ile Ala Leu Ala Tyr Gly Lys Gly Ile Gly Gly 165 170 175 Thr Arg Ala Gly Val Met Thr Thr Thr Phe Lys Val Glu Thr Glu Thr 180 185 190 Asp Leu Phe Gly Glu Gln Val Val Leu Cys Gly Gly Val Ala Glu Leu 195 200 205 Ile Lys Ala Gly Phe Asp Thr Leu Val Glu Ala Gly Tyr Ala Pro Glu 210 215 220 Asn Ala Tyr Phe Glu Cys Leu His Glu Met Lys Leu Ile Val Asp Leu 225 230 235 240 Ile Tyr Glu Gly Gly Leu Ala Arg Met Arg Tyr Ser Val Ser Asp Thr 245 250 255 Ala Glu Tyr Gly Asp Tyr Lys Ile Gly Lys Arg Ile Ile Asn Asp Asn 260 265 270 Thr Arg Ala Glu Met Lys Lys Val Leu Thr Glu Ile Gln Asp Gly Thr 275 280 285 Phe Ala Arg Glu Trp Leu Leu Glu Asn Gln Thr Gly Arg Pro Gly Phe 290 295 300 Thr Ala Arg Arg Arg Met Glu Lys Asp Ala Pro Ile Glu Lys Val Gly 305 310 315 320 Lys Glu Leu Arg Ser Met Met Ser Trp Ile Asn Glu Asn Pro Asp Asn 325 330 335 Glu <210> SEQ ID NO 38 <211> LENGTH: 491 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvC, NP_418222.1 <400> SEQUENCE: 38 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 60 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 65 70 75 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Ser 100 105 110 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115 120 125 Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg 130 135 140 Lys Asp Ile Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160 Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala 165 170 175 Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys 180 185 190 Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser 195 200 205 Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile 210 215 220 Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu 225 230 235 240 Val Glu Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe 245 250 255 Gly Trp Glu Thr Ile Thr Glu Ala Leu Lys Gln Gly Gly Ile Thr Leu 260 265 270 Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu 275 280 285 Ser Glu Gln Leu Lys Glu Ile Met Ala Pro Leu Phe Gln Lys His Met 290 295 300 Asp Asp Ile Ile Ser Gly Glu Phe Ser Ser Gly Met Met Ala Asp Trp 305 310 315 320 Ala Asn Asp Asp Lys Lys Leu Leu Thr Trp Arg Glu Glu Thr Gly Lys 325 330 335 Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln 340 345 350 Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly 355 360 365 Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu 370 375 380 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 385 390 395 400 Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr 405 410 415 Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu 420 425 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile 435 440 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 450 455 460 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly 485 490 <210> SEQ ID NO 39 <211> LENGTH: 552 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvD, WP_013238694.1 <400> SEQUENCE: 39 Met Lys Ser Asp Ser Val Lys Lys Gly Ile Lys Ala Ala Pro Ala Arg 1 5 10 15 Ala Leu Met Tyr Gly Met Gly Tyr Thr Lys Glu Glu Ile Glu Arg Pro 20 25 30 Leu Ile Gly Ile Val Asn Ser Gln Asn Glu Ile Val Ala Gly His Met 35 40 45 His Leu Asp Glu Ile Ala Lys Ala Ala Lys Leu Gly Val Ala Met Ser 50 55 60 Gly Gly Thr Pro Ile Glu Phe Pro Ala Ile Ala Val Cys Asp Gly Ile 65 70 75 80 Ala Met Gly His Val Gly Met Lys Tyr Ser Leu Ala Ser Arg Glu Leu 85 90 95 Ile Ala Asp Ser Ile Glu Ala Met Ala Thr Ala His Gly Phe Asp Gly 100 105 110 Leu Val Leu Ile Pro Asn Cys Asp Lys Ile Val Pro Gly Met Leu Met 115 120 125 Ala Ala Ala Arg Leu Asn Ile Pro Ala Val Val Val Ser Gly Gly Pro 130 135 140 Met Arg Ala Gly Lys Leu Asn Asn Lys Ala Leu Asp Phe Ser Thr Cys 145 150 155 160 Ile Glu Lys Val Ala Ala Cys Ser Asp Gly Lys Val Thr Glu Glu Glu 165 170 175 Leu Glu Glu Glu Ala Lys Arg Ala Cys Pro Gly Cys Gly Ser Cys Ser 180 185 190 Gly Leu Phe Thr Ala Asn Ser Met Asn Ser Leu Thr Glu Val Leu Gly 195 200 205 Met Gly Leu Pro Leu Asn Gly Ser Ala Leu Ala Gln Thr Gly Glu Arg 210 215 220 Asn Gln Leu Ala Lys Tyr Ala Gly Met Tyr Val Met Asp Cys Val Lys 225 230 235 240 Asn Asp Arg Arg Pro Arg Asp Ile Leu Thr Leu Asp Ala Phe Lys Asn 245 250 255 Ala Ile Thr Val Asp Met Ala Met Ala Gly Ser Thr Asn Thr Val Leu 260 265 270 His Leu Pro Ala Ile Ala His Glu Ala Gly Ile Glu Leu Asn Leu Asp 275 280 285 Leu Phe His Glu Ile Ser Lys His Thr Pro Cys Leu Thr Lys Leu Ser 290 295 300 Pro Ser Gly Lys His His Met Glu Asp Leu His Leu Ala Gly Gly Ile 305 310 315 320 Pro Ala Leu Met Asn Glu Leu Ser Lys Lys Gly Leu Ile Asn Glu Asp 325 330 335 Ala Leu Thr Val Thr Gly Lys Thr Val Gly Glu Thr Ile Lys Asp Phe 340 345 350 Lys Val Leu Asp Tyr Glu Val Ile Arg Ser Val Asp Asn Ala Tyr Ser 355 360 365 Ser Glu Gly Gly Ile Ala Ile Leu Arg Gly Asn Leu Ala Pro Asp Gly 370 375 380 Ala Val Val Lys Glu Ser Ala Val Ser Lys Glu Met Met Val His Glu 385 390 395 400 Gly Pro Ala Arg Val Tyr Asn Ser Glu Glu Ala Ala Val Lys Ala Ile 405 410 415

Phe Gly Asn Glu Ile Asn Lys Gly Asp Val Ile Val Ile Arg Tyr Glu 420 425 430 Gly Pro Lys Gly Gly Pro Gly Met Arg Glu Met Leu Ser Pro Thr Ser 435 440 445 Ala Ile Ala Gly Met Gly Leu Asp Lys Asp Val Ala Leu Leu Thr Asp 450 455 460 Gly Arg Phe Ser Gly Ala Thr Arg Gly Ala Ser Ile Gly His Val Ser 465 470 475 480 Pro Glu Ala Met Glu Gly Gly Leu Ile Gly Leu Val Glu Glu Gly Asp 485 490 495 Thr Ile Phe Val Asp Ile Thr Asn Lys Lys Leu Glu Leu Lys Val Ser 500 505 510 Glu Glu Glu Leu Glu Lys Arg Arg Lys Asn Tyr Val Lys Pro Glu Pro 515 520 525 Lys Ile Lys Thr Gly Tyr Leu Ser Arg Tyr Ala Lys Leu Val Thr Ser 530 535 540 Ala Asn Thr Gly Ala Val Leu Lys 545 550 <210> SEQ ID NO 40 <211> LENGTH: 616 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: IlvD, YP_026248.1 <400> SEQUENCE: 40 Met Pro Lys Tyr Arg Ser Ala Thr Thr Thr His Gly Arg Asn Met Ala 1 5 10 15 Gly Ala Arg Ala Leu Trp Arg Ala Thr Gly Met Thr Asp Ala Asp Phe 20 25 30 Gly Lys Pro Ile Ile Ala Val Val Asn Ser Phe Thr Gln Phe Val Pro 35 40 45 Gly His Val His Leu Arg Asp Leu Gly Lys Leu Val Ala Glu Gln Ile 50 55 60 Glu Ala Ala Gly Gly Val Ala Lys Glu Phe Asn Thr Ile Ala Val Asp 65 70 75 80 Asp Gly Ile Ala Met Gly His Gly Gly Met Leu Tyr Ser Leu Pro Ser 85 90 95 Arg Glu Leu Ile Ala Asp Ser Val Glu Tyr Met Val Asn Ala His Cys 100 105 110 Ala Asp Ala Met Val Cys Ile Ser Asn Cys Asp Lys Ile Thr Pro Gly 115 120 125 Met Leu Met Ala Ser Leu Arg Leu Asn Ile Pro Val Ile Phe Val Ser 130 135 140 Gly Gly Pro Met Glu Ala Gly Lys Thr Lys Leu Ser Asp Gln Ile Ile 145 150 155 160 Lys Leu Asp Leu Val Asp Ala Met Ile Gln Gly Ala Asp Pro Lys Val 165 170 175 Ser Asp Ser Gln Ser Asp Gln Val Glu Arg Ser Ala Cys Pro Thr Cys 180 185 190 Gly Ser Cys Ser Gly Met Phe Thr Ala Asn Ser Met Asn Cys Leu Thr 195 200 205 Glu Ala Leu Gly Leu Ser Gln Pro Gly Asn Gly Ser Leu Leu Ala Thr 210 215 220 His Ala Asp Arg Lys Gln Leu Phe Leu Asn Ala Gly Lys Arg Ile Val 225 230 235 240 Glu Leu Thr Lys Arg Tyr Tyr Glu Gln Asn Asp Glu Ser Ala Leu Pro 245 250 255 Arg Asn Ile Ala Ser Lys Ala Ala Phe Glu Asn Ala Met Thr Leu Asp 260 265 270 Ile Ala Met Gly Gly Ser Thr Asn Thr Val Leu His Leu Leu Ala Ala 275 280 285 Ala Gln Glu Ala Glu Ile Asp Phe Thr Met Ser Asp Ile Asp Lys Leu 290 295 300 Ser Arg Lys Val Pro Gln Leu Cys Lys Val Ala Pro Ser Thr Gln Lys 305 310 315 320 Tyr His Met Glu Asp Val His Arg Ala Gly Gly Val Ile Gly Ile Leu 325 330 335 Gly Glu Leu Asp Arg Ala Gly Leu Leu Asn Arg Asp Val Lys Asn Val 340 345 350 Leu Gly Leu Thr Leu Pro Gln Thr Leu Glu Gln Tyr Asp Val Met Leu 355 360 365 Thr Gln Asp Asp Ala Val Lys Asn Met Phe Arg Ala Gly Pro Ala Gly 370 375 380 Ile Arg Thr Thr Gln Ala Phe Ser Gln Asp Cys Arg Trp Asp Thr Leu 385 390 395 400 Asp Asp Asp Arg Ala Asn Gly Cys Ile Arg Ser Leu Glu His Ala Tyr 405 410 415 Ser Lys Asp Gly Gly Leu Ala Val Leu Tyr Gly Asn Phe Ala Glu Asn 420 425 430 Gly Cys Ile Val Lys Thr Ala Gly Val Asp Asp Ser Ile Leu Lys Phe 435 440 445 Thr Gly Pro Ala Lys Val Tyr Glu Ser Gln Asp Asp Ala Val Glu Ala 450 455 460 Ile Leu Gly Gly Lys Val Val Ala Gly Asp Val Val Val Ile Arg Tyr 465 470 475 480 Glu Gly Pro Lys Gly Gly Pro Gly Met Gln Glu Met Leu Tyr Pro Thr 485 490 495 Ser Phe Leu Lys Ser Met Gly Leu Gly Lys Ala Cys Ala Leu Ile Thr 500 505 510 Asp Gly Arg Phe Ser Gly Gly Thr Ser Gly Leu Ser Ile Gly His Val 515 520 525 Ser Pro Glu Ala Ala Ser Gly Gly Ser Ile Gly Leu Ile Glu Asp Gly 530 535 540 Asp Leu Ile Ala Ile Asp Ile Pro Asn Arg Gly Ile Gln Leu Gln Val 545 550 555 560 Ser Asp Ala Glu Leu Ala Ala Arg Arg Glu Ala Gln Asp Ala Arg Gly 565 570 575 Asp Lys Ala Trp Thr Pro Lys Asn Arg Glu Arg Gln Val Ser Phe Ala 580 585 590 Leu Arg Ala Tyr Ala Ser Leu Ala Thr Ser Ala Asp Lys Gly Ala Val 595 600 605 Arg Asp Lys Ser Lys Leu Gly Gly 610 615 <210> SEQ ID NO 41 <211> LENGTH: 477 <212> TYPE: PRT <213> ORGANISM: Methanothermobacter thermautotrophicus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorA, WP_010876344.1 <400> SEQUENCE: 41 Met Thr Lys Lys Val Ile Arg Lys Pro Asp Ser Leu His Asp Val Phe 1 5 10 15 Glu Arg Lys Gly Gly Ser Ala Pro Thr Ala Thr His Tyr Cys Ala Gly 20 25 30 Cys Gly His Gly Ile Leu His Lys Leu Ile Gly Glu Ala Met Asp Glu 35 40 45 Leu Gly Ile Gln Glu Arg Ala Val Met Ile Ser Pro Val Gly Cys Ala 50 55 60 Val Phe Ala Tyr Tyr Tyr Phe Asp Cys Gly Asn Val Gln Val Ala His 65 70 75 80 Gly Arg Ala Pro Ala Val Gly Thr Gly Ile Ser Arg Ala Glu Asp Asp 85 90 95 Ala Val Val Ile Leu Tyr Gln Gly Asp Gly Asp Leu Ala Ser Ile Gly 100 105 110 Leu Asn Glu Thr Ile Gln Ala Ala Asn Arg Gly Glu Lys Leu Ala Val 115 120 125 Phe Phe Val Asn Asn Thr Val Tyr Gly Met Thr Gly Gly Gln Met Ala 130 135 140 Pro Thr Thr Leu Val Gly Glu Val Thr Val Thr Cys Pro Thr Gly Arg 145 150 155 160 Asp Pro Arg Tyr Ala Gly Tyr Pro Leu His Met Cys Glu Leu Leu Asp 165 170 175 Asn Leu Gln Ala Pro Val Phe Ile Glu Arg Val Ser Leu Ala Asp Pro 180 185 190 Lys Arg Ile Arg Arg Ala Arg Arg Ala Ile Lys Arg Ala Leu Glu Ile 195 200 205 Gln Arg Asp Gly Lys Gly Tyr Ala Phe Val Glu Val Leu Ser Pro Cys 210 215 220 Pro Thr Asn Leu Arg Gln Asp Ala Glu Gly Ala Glu Arg Phe Leu Lys 225 230 235 240 Glu Glu Met Glu Lys Glu Phe Pro Val Lys Asn Phe Arg Asp Arg Ser 245 250 255 Ala Glu Thr Glu Pro Leu Ile Arg Ser Glu Ser Asp Phe Ser Arg Glu 260 265 270 Ser Leu Asp Arg Ile Phe Gln Ile Arg Glu Asp Ser Val Pro Asp Pro 275 280 285 Val Asp Asp Pro Glu Phe Pro Glu Val Arg Val Lys Ile Ala Gly Phe 290 295 300 Gly Gly Gln Gly Val Leu Ser Met Gly Leu Thr Leu Ala Gln Ala Ala 305 310 315 320 Cys Ser Glu Gly Arg His Thr Ser Trp Tyr Pro Ala Tyr Gly Pro Glu 325 330 335 Gln Arg Gly Gly Thr Ser Ser Cys Gly Val Val Ile Ser Gly Glu Arg 340 345 350 Val Gly Ser Pro Ala Val Asp Thr Pro Asp Val Leu Val Ala Leu Asn 355 360 365 Gln Pro Ser Leu Asp Glu Phe Ala Asp Asp Val Ala Asp Gly Gly Ile 370 375 380 Ile Leu Tyr Asp Ser Thr Thr Ala Ser Phe Ser Gly Gly Ala Val Arg 385 390 395 400 Ala Met Gly Val Pro Ala Leu Glu Ile Ala Arg Lys His Gly Thr Ala 405 410 415 Arg Ala Ala Asn Thr Val Met Leu Gly Val Met Met Ala Leu Gly Leu 420 425 430 Thr Gly Leu Asp Glu Glu Ser Phe Arg Glu Ala Ile Lys Phe Thr Phe 435 440 445 Ala Gly Lys Glu Lys Ile Ile Asp Met Asn Leu Arg Ile Leu Glu Ala

450 455 460 Gly Ala Glu Trp Ala Arg Glu Asn Ile Glu Gly Glu Leu 465 470 475 <210> SEQ ID NO 42 <211> LENGTH: 352 <212> TYPE: PRT <213> ORGANISM: Methanothermobacter thermautotrophicus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorB, WP_010876343.1 <400> SEQUENCE: 42 Met Ala Thr Gln Met Val Lys Gly Asn Thr Ala Val Ile Ile Gly Ala 1 5 10 15 Met Tyr Ala Gly Cys Asp Cys Tyr Phe Gly Tyr Pro Ile Thr Pro Ala 20 25 30 Ser Glu Ile Leu His Glu Ala Ser Arg Tyr Phe Pro Met Val Gly Arg 35 40 45 Lys Phe Val Gln Ala Glu Ser Glu Glu Ala Ala Ile Asn Met Val Tyr 50 55 60 Gly Ala Ala Ala Ala Gly His Arg Val Met Thr Ala Ser Ser Gly Pro 65 70 75 80 Gly Ile Ser Leu Lys Gln Glu Gly Ile Ser Phe Leu Ala Gly Ala Glu 85 90 95 Leu Pro Ala Val Ile Val Asp Val Met Arg Ala Gly Pro Gly Leu Gly 100 105 110 Asn Ile Gly Pro Glu Gln Gly Asp Tyr Asn Gln Ile Val Lys Gly Gly 115 120 125 Gly His Gly Asn Tyr Arg Asn Met Val Leu Ala Pro Ser Ser Val Gln 130 135 140 Glu Met Cys Asp Leu Thr Met Glu Ala Phe Glu Leu Ala Asp Lys Tyr 145 150 155 160 Arg Asn Pro Val Val Val Leu Thr Asp Ala Val Leu Gly Gln Met Ala 165 170 175 Glu Pro Leu Arg Phe Pro Glu Glu Ala Val Glu His Arg Pro Asp Thr 180 185 190 Ser Trp Ala Val Cys Gly Asn Arg Glu Thr Met Lys Asn Leu Val Thr 195 200 205 Ser Ile Phe Leu Asp Phe Asp Glu Leu Glu Glu Phe Asn Phe Tyr Leu 210 215 220 Gln Glu Lys Tyr Ala Arg Ile Glu Glu Asn Glu Val Arg Tyr Glu Glu 225 230 235 240 Tyr Leu Val Asp Asp Ala Glu Ile Val Met Val Ala Tyr Gly Ile Ser 245 250 255 Ser Arg Val Ala Arg Ser Ala Val Glu Thr Ala Arg Ala Glu Gly Ile 260 265 270 Asn Val Gly Leu Leu Arg Pro Ile Thr Leu Phe Pro Phe Pro Ser Asp 275 280 285 Arg Ile Arg Glu Leu Ala Asp Gly Gly Cys Arg Phe Ile Ser Val Glu 290 295 300 Met Ser Ser Gly Gln Met Arg Glu Asp Ile Arg Met Ala Ser Gly Cys 305 310 315 320 Arg Asp Val Glu Leu Val Asn Arg Met Gly Gly Asn Leu Ile Glu Leu 325 330 335 Arg Asp Val Leu Glu Lys Ile Arg Glu Val Ala Gly Asp Ser Ser Asp 340 345 350 <210> SEQ ID NO 43 <211> LENGTH: 79 <212> TYPE: PRT <213> ORGANISM: Methanothermobacter thermautotrophicus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorC, WP_010876342.1 <400> SEQUENCE: 43 Met Lys Lys Ala Tyr Pro Val Ile Asn Ser Val Glu Cys Lys Ala Cys 1 5 10 15 Glu Arg Cys Ile Ile Ala Cys Pro Arg Lys Val Leu Gln Met Ser Ser 20 25 30 Lys Ile Asn Glu Arg Gly Tyr His Tyr Val Glu Tyr Arg Gly Glu Gly 35 40 45 Cys Asn Gly Cys Gly Asn Cys Tyr Tyr Thr Cys Pro Glu Ile Asn Ala 50 55 60 Ile Glu Val His Ile Glu Arg Cys Glu Asp Gly Asn Thr Asp Gly 65 70 75 <210> SEQ ID NO 44 <211> LENGTH: 124 <212> TYPE: PRT <213> ORGANISM: Methanothermobacter thermautotrophicus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorD, WP_010876341.1 <400> SEQUENCE: 44 Met Asp Glu Asp Gly Tyr Met Trp Phe Val Gly Arg Thr Asp Asp Ile 1 5 10 15 Ile Lys Ser Ser Gly Tyr Arg Ile Gly Pro Phe Glu Val Glu Ser Ala 20 25 30 Ile Ile Ser His Pro Ser Val Leu Glu Cys Ala Val Thr Gly Tyr Pro 35 40 45 Asp Pro Ile Arg Gly Gln Val Val Lys Ala Thr Ile Val Leu Ala Arg 50 55 60 Gly Tyr Glu Pro Ser Glu Glu Leu Lys Lys Glu Ile Gln Asp His Val 65 70 75 80 Lys Arg Val Thr Ala Pro Tyr Lys Tyr Pro Arg Ile Val Glu Phe Val 85 90 95 Asp Glu Leu Pro Lys Thr Ile Ser Gly Lys Ile Arg Arg Val Glu Ile 100 105 110 Arg Glu His Asp Leu Glu Gly Asp Gly Glu Asn Pro 115 120 <210> SEQ ID NO 45 <211> LENGTH: 394 <212> TYPE: PRT <213> ORGANISM: Pyrococcus furiosus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorA, WP_011012106.1 <400> SEQUENCE: 45 Met Glu Tyr Lys Pro Ile Arg Lys Val Val Ser Gly Asn Tyr Ala Ala 1 5 10 15 Ala Tyr Ala Ala Leu His Ala Arg Val Gln Val Val Ala Ala Tyr Pro 20 25 30 Ile Thr Pro Gln Thr Ser Ile Ile Glu Lys Ile Ala Glu Phe Ile Ala 35 40 45 Asn Gly Glu Ala Asp Ile Gln Tyr Ile Pro Val Glu Ser Glu His Ser 50 55 60 Ala Met Ala Ala Cys Ile Gly Ala Ser Ala Thr Gly Ala Arg Thr Phe 65 70 75 80 Thr Ala Thr Ser Ala Gln Gly Leu Ala Leu Met His Glu Met Leu His 85 90 95 Trp Ala Ala Gly Ala Arg Leu Pro Ile Val Met Val Asp Val Asn Arg 100 105 110 Ala Met Ala Pro Pro Trp Ser Val Trp Asp Asp Gln Thr Asp Ser Leu 115 120 125 Ser Gln Arg Asp Thr Gly Trp Met Gln Phe Tyr Ala Glu Asn Asn Gln 130 135 140 Glu Val Tyr Asp Gly Val Leu Met Ala Tyr Lys Val Ala Glu Thr Val 145 150 155 160 Asn Val Pro Ala Met Val Val Glu Ser Ala Phe Ile Leu Ser His Thr 165 170 175 Tyr Asp Val Val Glu Met Ile Pro Gln Glu Leu Val Asp Glu Phe Leu 180 185 190 Pro Pro Arg Lys Pro Leu Tyr Ser Leu Ala Asn Phe Asp Glu Pro Ile 195 200 205 Ala Val Gly Ala Leu Ala Thr Pro Asn Asp Tyr Tyr Glu Phe Arg Tyr 210 215 220 Lys Leu Ala Lys Ala His Glu Glu Ala Lys Lys Val Ile Lys Glu Val 225 230 235 240 Gly Lys Glu Phe Gly Glu Arg Phe Gly Arg Asp Tyr Ser Gln Met Ile 245 250 255 Glu Thr Gly Tyr Ile Asp Asp Ala Asp Phe Val Phe Met Gly Met Gly 260 265 270 Ser Leu Met Gly Thr Val Lys Glu Ala Val Asp Leu Leu Arg Lys Glu 275 280 285 Gly Tyr Lys Val Gly Tyr Ala Lys Val Arg Trp Phe Arg Pro Phe Pro 290 295 300 Lys Glu Glu Leu Val Glu Ile Ala Glu Ser Val Lys Gly Ile Ala Val 305 310 315 320 Leu Asp Arg Asn Phe Ser Phe Gly Gln Glu Gly Ile Leu Phe Thr Glu 325 330 335 Ser Lys Gly Ala Leu Tyr Asn Ser Ser Ala His Pro Leu Met Lys Asn 340 345 350 Tyr Ile Val Gly Leu Gly Gly Arg Asp Val Thr Val Lys Asp Ile Lys 355 360 365 Ala Ile Ala Asp Asp Met Lys Lys Val Ile Glu Ser Gly Lys Val Asp 370 375 380 Lys Glu Val Val Trp Tyr His Leu Lys Arg 385 390 <210> SEQ ID NO 46 <211> LENGTH: 311 <212> TYPE: PRT <213> ORGANISM: Pyrococcus furiosus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorB, WP_011012105.1 <400> SEQUENCE: 46 Met Glu Val Pro Glu Asn Ile Lys Lys Arg Val Thr Ile Pro Phe Glu 1 5 10 15 Glu His Phe Tyr Ala Gly His Thr Ala Cys Gln Gly Cys Gly Ala Ser 20 25 30 Leu Gly Leu Arg Tyr Val Leu Lys Ala Tyr Gly Lys Lys Thr Ile Leu 35 40 45 Val Ile Pro Ala Cys Cys Ser Thr Ile Ile Ala Gly Pro Trp Pro Tyr 50 55 60

Ser Ala Ile Asp Ala Asn Leu Phe His Thr Ala Phe Glu Thr Thr Gly 65 70 75 80 Ala Val Ile Ser Gly Ile Glu Ala Ala Leu Lys Ala Met Gly Tyr Lys 85 90 95 Val Lys Gly Glu Asp Gly Ile Met Val Val Gly Trp Ala Gly Asp Gly 100 105 110 Gly Thr Ala Asp Ile Gly Leu Gln Ala Leu Ser Gly Phe Leu Glu Arg 115 120 125 Gly His Asp Ala Val Tyr Ile Met Tyr Asp Asn Glu Ala Tyr Met Asn 130 135 140 Thr Gly Ile Gln Arg Ser Ser Ser Thr Pro Tyr Gly Ala Trp Thr Thr 145 150 155 160 Asn Thr Pro Gly Gly Arg Arg His Phe Leu Glu Lys Arg His Lys Lys 165 170 175 Lys Val Ile Asp Ile Val Ile Ala His Arg Ile Pro Tyr Ala Ala Thr 180 185 190 Ala Ser Ile Ala Tyr Pro Glu Asp Phe Ile Arg Lys Leu Lys Lys Ala 195 200 205 Gln Lys Ile Ser Gly Pro Ser Phe Ile Gln Leu Phe Ala Pro Cys Pro 210 215 220 Thr Gly Trp Arg Ala Pro Thr Asp Lys Ser Ile Glu Ile Ala Arg Leu 225 230 235 240 Ala Val Gln Thr Ala Tyr Phe Pro Leu Phe Glu Tyr Glu Asn Gly Lys 245 250 255 Tyr Lys Ile Asn Met Pro Asn Pro Lys Lys Glu Pro Lys Pro Ile Glu 260 265 270 Glu Phe Leu Lys Leu Gln Gly Arg Phe Lys Tyr Met Thr Lys Glu Asp 275 280 285 Ile Glu Thr Leu Gln Lys Trp Val Leu Glu Glu Trp Glu Arg Leu Lys 290 295 300 Lys Leu Ala Glu Val Phe Gly 305 310 <210> SEQ ID NO 47 <211> LENGTH: 185 <212> TYPE: PRT <213> ORGANISM: Pyrococcus furiosus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorC, WP_011012108.1 <400> SEQUENCE: 47 Met Ile Glu Val Arg Phe His Gly Arg Gly Gly Gln Gly Ala Val Thr 1 5 10 15 Ala Ala Asn Ile Leu Ala Glu Ala Ala Phe Leu Glu Gly Lys Tyr Val 20 25 30 Gln Ala Phe Pro Phe Phe Gly Val Glu Arg Arg Gly Ala Pro Val Thr 35 40 45 Ala Phe Thr Arg Ile Asp Asn Lys Pro Ile Arg Ile Lys Thr Gln Ile 50 55 60 Tyr Glu Pro Asp Val Val Val Val Leu Asp Pro Ser Leu Leu Asp Ala 65 70 75 80 Val Asp Val Thr Ala Gly Leu Lys Asp Glu Gly Ile Val Ile Val Asn 85 90 95 Thr Glu Lys Ser Lys Glu Glu Val Leu Glu Lys Leu Lys Lys Lys Pro 100 105 110 Lys Lys Leu Ala Ile Val Asp Ala Thr Thr Ile Ala Leu Glu Ile Leu 115 120 125 Gly Leu Pro Ile Thr Asn Thr Ala Ile Leu Gly Ala Val Ala Lys Ala 130 135 140 Thr Gly Leu Val Lys Ile Glu Ser Ile Glu Glu Ala Ile Lys Asp Thr 145 150 155 160 Phe Ser Gly Glu Leu Gly Glu Lys Asn Ala Arg Ala Ala Arg Glu Ala 165 170 175 Tyr Glu Lys Thr Glu Val Phe Glu Leu 180 185 <210> SEQ ID NO 48 <211> LENGTH: 105 <212> TYPE: PRT <213> ORGANISM: Pyrococcus furiosus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VorD, WP_011012107.1 <400> SEQUENCE: 48 Met Asn Thr Leu Phe Gly Lys Thr Lys Glu Glu Ala Lys Pro Ile Val 1 5 10 15 Leu Lys Ser Val Asp Glu Tyr Pro Glu Ala Pro Ile Ser Leu Gly Thr 20 25 30 Thr Leu Val Asn Pro Thr Gly Asp Trp Arg Thr Phe Lys Pro Val Val 35 40 45 Asn Glu Glu Lys Cys Val Lys Cys Tyr Ile Cys Trp Lys Tyr Cys Pro 50 55 60 Glu Pro Ala Ile Tyr Ile Lys Pro Asp Gly Tyr Val Ala Ile Asp Tyr 65 70 75 80 Asp Tyr Cys Lys Gly Cys Gly Ile Cys Ala Asn Glu Cys Pro Thr Lys 85 90 95 Ala Ile Thr Met Ile Lys Glu Glu Lys 100 105 <210> SEQ ID NO 49 <211> LENGTH: 386 <212> TYPE: PRT <213> ORGANISM: Streptomyces avermitilis <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AcdH, AAD44196.1 or BAB69160.1 <400> SEQUENCE: 49 Met Asp His Arg Leu Thr Pro Glu Leu Glu Glu Leu Arg Arg Thr Val 1 5 10 15 Glu Glu Phe Ala His Asp Val Val Ala Pro Lys Ile Gly Asp Phe Tyr 20 25 30 Glu Arg His Glu Phe Pro Tyr Glu Ile Val Arg Glu Met Gly Arg Met 35 40 45 Gly Leu Phe Gly Leu Pro Phe Pro Glu Glu Tyr Gly Gly Met Gly Gly 50 55 60 Asp Tyr Leu Ala Leu Gly Ile Ala Leu Glu Glu Leu Ala Arg Val Asp 65 70 75 80 Ser Ser Val Ala Ile Thr Leu Glu Ala Gly Val Ser Leu Gly Ala Met 85 90 95 Pro Ile His Leu Phe Gly Thr Asp Ala Gln Lys Ala Glu Trp Leu Pro 100 105 110 Arg Leu Cys Ser Gly Glu Ile Leu Gly Ala Phe Gly Leu Thr Glu Pro 115 120 125 Asp Gly Gly Ser Asp Ala Gly Ala Thr Arg Thr Thr Ala Arg Leu Asp 130 135 140 Glu Ser Thr Asn Glu Trp Val Ile Asn Gly Thr Lys Cys Phe Ile Thr 145 150 155 160 Asn Ser Gly Thr Asp Ile Thr Gly Leu Val Thr Val Thr Ala Val Thr 165 170 175 Gly Arg Lys Pro Asp Gly Lys Pro Leu Ile Ser Ser Ile Ile Val Pro 180 185 190 Ser Gly Thr Pro Gly Phe Thr Val Ala Ala Pro Tyr Ser Lys Val Gly 195 200 205 Trp Asn Ala Ser Asp Thr Arg Glu Leu Ser Phe Ala Asp Val Arg Val 210 215 220 Pro Ala Ala Asn Leu Leu Gly Glu Gln Gly Arg Gly Tyr Ala Gln Phe 225 230 235 240 Leu Arg Ile Leu Asp Glu Gly Arg Ile Ala Ile Ser Ala Leu Ala Thr 245 250 255 Gly Leu Ala Gln Gly Cys Val Asp Glu Ser Val Lys Tyr Ala Gly Glu 260 265 270 Arg His Ala Phe Gly Arg Asn Ile Gly Ala Tyr Gln Ala Ile Gln Phe 275 280 285 Lys Ile Ala Asp Met Glu Met Lys Ala His Met Ala Arg Val Gly Trp 290 295 300 Arg Asp Ala Ala Ser Arg Leu Val Ala Gly Glu Pro Phe Lys Lys Glu 305 310 315 320 Ala Ala Ile Ala Lys Leu Tyr Ser Ser Thr Val Ala Val Asp Asn Ala 325 330 335 Arg Glu Ala Thr Gln Ile His Gly Gly Tyr Gly Phe Met Asn Glu Tyr 340 345 350 Pro Val Ala Arg Met Trp Arg Asp Ser Lys Ile Leu Glu Ile Gly Glu 355 360 365 Gly Thr Ser Glu Val Gln Arg Met Leu Ile Ala Arg Glu Leu Gly Leu 370 375 380 Val Gly 385 <210> SEQ ID NO 50 <211> LENGTH: 386 <212> TYPE: PRT <213> ORGANISM: Streptomyces coelicolor <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AcdH, AAD44195.1 <400> SEQUENCE: 50 Met Asp His Lys Leu Ser Pro Glu Leu Glu Glu Leu Arg Arg Thr Val 1 5 10 15 Glu Gln Phe Ala His Asp Val Val Ala Pro Lys Ile Gly Asp Phe Tyr 20 25 30 Glu Arg His Glu Phe Pro Tyr Glu Ile Val Arg Glu Met Gly Arg Met 35 40 45 Gly Leu Phe Gly Leu Pro Phe Pro Glu Glu Tyr Gly Gly Met Gly Gly 50 55 60 Asp Tyr Phe Ala Leu Gly Val Ala Leu Glu Glu Leu Ala Arg Val Asp 65 70 75 80 Ser Ser Val Ala Ile Thr Leu Glu Ala Gly Val Ser Leu Gly Ala Met 85 90 95 Pro Leu His Leu Phe Gly Thr Glu Glu Gln Lys Arg Glu Trp Leu Pro 100 105 110 Arg Leu Cys Ser Gly Glu Ile Leu Gly Ala Phe Gly Leu Thr Glu Pro 115 120 125 Asp Gly Gly Ser Asp Ala Gly Ala Thr Arg Thr Thr Ala Arg Leu Asp 130 135 140

Glu Ala Thr Asn Glu Trp Val Ile Asn Gly Thr Lys Cys Phe Ile Thr 145 150 155 160 Asn Ser Gly Thr Asp Ile Thr Gly Leu Val Thr Val Thr Ala Val Thr 165 170 175 Gly Arg Lys Pro Asp Gly Arg Pro Leu Ile Ser Ser Ile Ile Val Pro 180 185 190 Ser Gly Thr Pro Gly Phe Thr Val Ala Ala Pro Tyr Ser Lys Val Gly 195 200 205 Trp Asn Ala Ser Asp Thr Arg Glu Leu Ser Phe Ala Asp Val Arg Val 210 215 220 Pro Ala Ala Asn Leu Leu Gly Glu Leu Gly Arg Gly Tyr Ala Gln Phe 225 230 235 240 Leu Arg Ile Leu Asp Glu Gly Arg Val Ala Ile Ala Ala Leu Gly Thr 245 250 255 Gly Leu Ala Gln Gly Cys Val Asp Glu Ser Val Ala Tyr Ala Lys Glu 260 265 270 Arg His Ala Phe Gly Arg Pro Ile Gly Ala Asn Gln Ala Ile Gln Phe 275 280 285 Lys Ile Ala Asp Met Glu Met Lys Ala His Thr Ala Arg Leu Ala Trp 290 295 300 Arg Asp Ala Ala Ser Arg Leu Val Ala Gly Glu Pro Phe Lys Lys Glu 305 310 315 320 Ala Ala Leu Ala Lys Leu Tyr Ser Ser Thr Val Ala Val Asp Asn Ala 325 330 335 Arg Asp Ala Thr Gln Val His Gly Gly Tyr Gly Phe Met Asn Glu Tyr 340 345 350 Pro Val Ala Arg Met Trp Arg Asp Ala Lys Ile Leu Glu Ile Gly Glu 355 360 365 Gly Thr Ser Glu Val Gln Arg Met Leu Ile Ala Arg Glu Leu Gly Leu 370 375 380 Val Gly 385 <210> SEQ ID NO 51 <211> LENGTH: 261 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Crt, ABR34202.1 <400> SEQUENCE: 51 Met Glu Leu Lys Asn Val Ile Leu Glu Lys Glu Gly His Leu Ala Ile 1 5 10 15 Val Thr Ile Asn Arg Pro Lys Ala Leu Asn Ala Leu Asn Ser Glu Thr 20 25 30 Leu Lys Asp Leu Asp Ala Val Leu Glu Asp Leu Glu Lys Asp Ser Asn 35 40 45 Met Tyr Thr Val Ile Val Thr Gly Ala Gly Glu Lys Ser Phe Val Ala 50 55 60 Gly Ala Asp Ile Ser Glu Met Lys Asp Leu Asn Glu Glu Gln Gly Lys 65 70 75 80 Glu Phe Gly Ile Leu Gly Asn Asn Val Phe Arg Arg Leu Glu Arg Leu 85 90 95 Asp Lys Pro Val Ile Ala Ala Ile Ser Gly Phe Ala Leu Gly Gly Gly 100 105 110 Cys Glu Leu Ala Met Ser Cys Asp Ile Arg Ile Ala Ser Val Lys Ala 115 120 125 Lys Phe Gly Gln Pro Glu Ala Gly Leu Gly Ile Thr Pro Gly Phe Gly 130 135 140 Gly Thr Gln Arg Leu Ala Arg Ile Val Gly Pro Gly Lys Ala Lys Glu 145 150 155 160 Leu Ile Tyr Thr Cys Asp Leu Ile Asn Ala Glu Glu Ala Tyr Arg Ile 165 170 175 Gly Leu Val Asn Lys Val Val Glu Leu Glu Lys Leu Met Glu Glu Ala 180 185 190 Lys Ala Met Ala Asn Lys Ile Ala Ala Asn Ala Pro Lys Ala Val Ala 195 200 205 Tyr Cys Lys Asp Ala Ile Asp Arg Gly Met Gln Val Asp Ile Asp Ala 210 215 220 Ala Ile Leu Ile Glu Ala Glu Asp Phe Gly Lys Cys Phe Ala Thr Glu 225 230 235 240 Asp Gln Thr Glu Gly Met Thr Ala Phe Leu Glu Arg Arg Ala Glu Lys 245 250 255 Asn Phe Gln Asn Lys 260 <210> SEQ ID NO 52 <211> LENGTH: 261 <212> TYPE: PRT <213> ORGANISM: Clostridium acetobutylicum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Crt, NP_349318.1 <400> SEQUENCE: 52 Met Glu Leu Asn Asn Val Ile Leu Glu Lys Glu Gly Lys Val Ala Val 1 5 10 15 Val Thr Ile Asn Arg Pro Lys Ala Leu Asn Ala Leu Asn Ser Asp Thr 20 25 30 Leu Lys Glu Met Asp Tyr Val Ile Gly Glu Ile Glu Asn Asp Ser Glu 35 40 45 Val Leu Ala Val Ile Leu Thr Gly Ala Gly Glu Lys Ser Phe Val Ala 50 55 60 Gly Ala Asp Ile Ser Glu Met Lys Glu Met Asn Thr Ile Glu Gly Arg 65 70 75 80 Lys Phe Gly Ile Leu Gly Asn Lys Val Phe Arg Arg Leu Glu Leu Leu 85 90 95 Glu Lys Pro Val Ile Ala Ala Val Asn Gly Phe Ala Leu Gly Gly Gly 100 105 110 Cys Glu Ile Ala Met Ser Cys Asp Ile Arg Ile Ala Ser Ser Asn Ala 115 120 125 Arg Phe Gly Gln Pro Glu Val Gly Leu Gly Ile Thr Pro Gly Phe Gly 130 135 140 Gly Thr Gln Arg Leu Ser Arg Leu Val Gly Met Gly Met Ala Lys Gln 145 150 155 160 Leu Ile Phe Thr Ala Gln Asn Ile Lys Ala Asp Glu Ala Leu Arg Ile 165 170 175 Gly Leu Val Asn Lys Val Val Glu Pro Ser Glu Leu Met Asn Thr Ala 180 185 190 Lys Glu Ile Ala Asn Lys Ile Val Ser Asn Ala Pro Val Ala Val Lys 195 200 205 Leu Ser Lys Gln Ala Ile Asn Arg Gly Met Gln Cys Asp Ile Asp Thr 210 215 220 Ala Leu Ala Phe Glu Ser Glu Ala Phe Gly Glu Cys Phe Ser Thr Glu 225 230 235 240 Asp Gln Lys Asp Ala Met Thr Ala Phe Ile Glu Lys Arg Lys Ile Glu 245 250 255 Gly Phe Lys Asn Arg 260 <210> SEQ ID NO 53 <211> LENGTH: 397 <212> TYPE: PRT <213> ORGANISM: Treponema denticola <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Ccr, NP_971211.1 <400> SEQUENCE: 53 Met Ile Val Lys Pro Met Val Arg Asn Asn Ile Cys Leu Asn Ala His 1 5 10 15 Pro Gln Gly Cys Lys Lys Gly Val Glu Asp Gln Ile Glu Tyr Thr Lys 20 25 30 Lys Arg Ile Thr Ala Glu Val Lys Ala Gly Ala Lys Ala Pro Lys Asn 35 40 45 Val Leu Val Leu Gly Cys Ser Asn Gly Tyr Gly Leu Ala Ser Arg Ile 50 55 60 Thr Ala Ala Phe Gly Tyr Gly Ala Ala Thr Ile Gly Val Ser Phe Glu 65 70 75 80 Lys Ala Gly Ser Glu Thr Lys Tyr Gly Thr Pro Gly Trp Tyr Asn Asn 85 90 95 Leu Ala Phe Asp Glu Ala Ala Lys Arg Glu Gly Leu Tyr Ser Val Thr 100 105 110 Ile Asp Gly Asp Ala Phe Ser Asp Glu Ile Lys Ala Gln Val Ile Glu 115 120 125 Glu Ala Lys Lys Lys Gly Ile Lys Phe Asp Leu Ile Val Tyr Ser Leu 130 135 140 Ala Ser Pro Val Arg Thr Asp Pro Asp Thr Gly Ile Met His Lys Ser 145 150 155 160 Val Leu Lys Pro Phe Gly Lys Thr Phe Thr Gly Lys Thr Val Asp Pro 165 170 175 Phe Thr Gly Glu Leu Lys Glu Ile Ser Ala Glu Pro Ala Asn Asp Glu 180 185 190 Glu Ala Ala Ala Thr Val Lys Val Met Gly Gly Glu Asp Trp Glu Arg 195 200 205 Trp Ile Lys Gln Leu Ser Lys Glu Gly Leu Leu Glu Glu Gly Cys Ile 210 215 220 Thr Leu Ala Tyr Ser Tyr Ile Gly Pro Glu Ala Thr Gln Ala Leu Tyr 225 230 235 240 Arg Lys Gly Thr Ile Gly Lys Ala Lys Glu His Leu Glu Ala Thr Ala 245 250 255 His Arg Leu Asn Lys Glu Asn Pro Ser Ile Arg Ala Phe Val Ser Val 260 265 270 Asn Lys Gly Leu Val Thr Arg Ala Ser Ala Val Ile Pro Val Ile Pro 275 280 285 Leu Tyr Leu Ala Ser Leu Phe Lys Val Met Lys Glu Lys Gly Asn His 290 295 300 Glu Gly Cys Ile Glu Gln Ile Thr Arg Leu Tyr Ala Glu Arg Leu Tyr 305 310 315 320 Arg Lys Asp Gly Thr Ile Pro Val Asp Glu Glu Asn Arg Ile Arg Ile 325 330 335 Asp Asp Trp Glu Leu Glu Glu Asp Val Gln Lys Ala Val Ser Ala Leu 340 345 350 Met Glu Lys Val Thr Gly Glu Asn Ala Glu Ser Leu Thr Asp Leu Ala 355 360 365

Gly Tyr Arg His Asp Phe Leu Ala Ser Asn Gly Phe Asp Val Glu Gly 370 375 380 Ile Asn Tyr Glu Ala Glu Val Glu Arg Phe Asp Arg Ile 385 390 395 <210> SEQ ID NO 54 <211> LENGTH: 539 <212> TYPE: PRT <213> ORGANISM: Euglena gracilis <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Ter, AAW66853.1 <400> SEQUENCE: 54 Met Ser Cys Pro Ala Ser Pro Ser Ala Ala Val Val Ser Ala Gly Ala 1 5 10 15 Leu Cys Leu Cys Val Ala Thr Val Leu Leu Ala Thr Gly Ser Asn Pro 20 25 30 Thr Ala Leu Ser Thr Ala Ser Thr Arg Ser Pro Thr Ser Leu Val Arg 35 40 45 Gly Val Asp Arg Gly Leu Met Arg Pro Thr Thr Ala Ala Ala Leu Thr 50 55 60 Thr Met Arg Glu Val Pro Gln Met Ala Glu Gly Phe Ser Gly Glu Ala 65 70 75 80 Thr Ser Ala Trp Ala Ala Ala Gly Pro Gln Trp Ala Ala Pro Leu Val 85 90 95 Ala Ala Ala Ser Ser Ala Leu Ala Leu Trp Trp Trp Ala Ala Arg Arg 100 105 110 Ser Val Arg Arg Pro Leu Ala Ala Leu Ala Glu Leu Pro Thr Ala Val 115 120 125 Thr His Leu Ala Pro Pro Met Ala Met Phe Thr Thr Thr Ala Lys Val 130 135 140 Ile Gln Pro Lys Ile Arg Gly Phe Ile Cys Thr Thr Thr His Pro Ile 145 150 155 160 Gly Cys Glu Lys Arg Val Gln Glu Glu Ile Ala Tyr Ala Arg Ala His 165 170 175 Pro Pro Thr Ser Pro Gly Pro Lys Arg Val Leu Val Ile Gly Cys Ser 180 185 190 Thr Gly Tyr Gly Leu Ser Thr Arg Ile Thr Ala Ala Phe Gly Tyr Gln 195 200 205 Ala Ala Thr Leu Gly Val Phe Leu Ala Gly Pro Pro Thr Lys Gly Arg 210 215 220 Pro Ala Ala Ala Gly Trp Tyr Asn Thr Val Ala Phe Glu Lys Ala Ala 225 230 235 240 Leu Glu Ala Gly Leu Tyr Ala Arg Ser Leu Asn Gly Asp Ala Phe Asp 245 250 255 Ser Thr Thr Lys Ala Arg Thr Val Glu Ala Ile Lys Arg Asp Leu Gly 260 265 270 Thr Val Asp Leu Val Val Tyr Ser Ile Ala Ala Pro Lys Arg Thr Asp 275 280 285 Pro Ala Thr Gly Val Leu His Lys Ala Cys Leu Lys Pro Ile Gly Ala 290 295 300 Thr Tyr Thr Asn Arg Thr Val Asn Thr Asp Lys Ala Glu Val Thr Asp 305 310 315 320 Val Ser Ile Glu Pro Ala Ser Pro Glu Glu Ile Ala Asp Thr Val Lys 325 330 335 Val Met Gly Gly Glu Asp Trp Glu Leu Trp Ile Gln Ala Leu Ser Glu 340 345 350 Ala Gly Val Leu Ala Glu Gly Ala Lys Thr Val Ala Tyr Ser Tyr Ile 355 360 365 Gly Pro Glu Met Thr Trp Pro Val Tyr Trp Ser Gly Thr Ile Gly Glu 370 375 380 Ala Lys Lys Asp Val Glu Lys Ala Ala Lys Arg Ile Thr Gln Gln Tyr 385 390 395 400 Gly Cys Pro Ala Tyr Pro Val Val Ala Lys Ala Leu Val Thr Gln Ala 405 410 415 Ser Ser Ala Ile Pro Val Val Pro Leu Tyr Ile Cys Leu Leu Tyr Arg 420 425 430 Val Met Lys Glu Lys Gly Thr His Glu Gly Cys Ile Glu Gln Met Val 435 440 445 Arg Leu Leu Thr Thr Lys Leu Tyr Pro Glu Asn Gly Ala Pro Ile Val 450 455 460 Asp Glu Ala Gly Arg Val Arg Val Asp Asp Trp Glu Met Ala Glu Asp 465 470 475 480 Val Gln Gln Ala Val Lys Asp Leu Trp Ser Gln Val Ser Thr Ala Asn 485 490 495 Leu Lys Asp Ile Ser Asp Phe Ala Gly Tyr Gln Thr Glu Phe Leu Arg 500 505 510 Leu Phe Gly Phe Gly Ile Asp Gly Val Asp Tyr Asp Gln Pro Val Asp 515 520 525 Val Glu Ala Asp Leu Pro Ser Ala Ala Gln Gln 530 535 <210> SEQ ID NO 55 <211> LENGTH: 282 <212> TYPE: PRT <213> ORGANISM: Clostridium beijerinckii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Hbd, WP_011967675.1 <400> SEQUENCE: 55 Met Lys Lys Ile Phe Val Leu Gly Ala Gly Thr Met Gly Ala Gly Ile 1 5 10 15 Val Gln Ala Phe Ala Gln Lys Gly Cys Glu Val Ile Val Arg Asp Ile 20 25 30 Lys Glu Glu Phe Val Asp Arg Gly Ile Ala Gly Ile Thr Lys Gly Leu 35 40 45 Glu Lys Gln Val Ala Lys Gly Lys Met Ser Glu Glu Asp Lys Glu Ala 50 55 60 Ile Leu Ser Arg Ile Ser Gly Thr Thr Asp Met Lys Leu Ala Ala Asp 65 70 75 80 Cys Asp Leu Val Val Glu Ala Ala Ile Glu Asn Met Lys Ile Lys Lys 85 90 95 Glu Ile Phe Ala Glu Leu Asp Gly Ile Cys Lys Pro Glu Ala Ile Leu 100 105 110 Ala Ser Asn Thr Ser Ser Leu Ser Ile Thr Glu Val Ala Ser Ala Thr 115 120 125 Lys Arg Pro Asp Lys Val Ile Gly Met His Phe Phe Asn Pro Ala Pro 130 135 140 Val Met Lys Leu Val Glu Ile Ile Lys Gly Ile Ala Thr Ser Gln Glu 145 150 155 160 Thr Phe Asp Ala Val Lys Glu Leu Ser Val Ala Ile Gly Lys Glu Pro 165 170 175 Val Glu Val Ala Glu Ala Pro Gly Phe Val Val Asn Arg Ile Leu Ile 180 185 190 Pro Met Ile Asn Glu Ala Ser Phe Ile Leu Gln Glu Gly Ile Ala Ser 195 200 205 Val Glu Asp Ile Asp Thr Ala Met Lys Tyr Gly Ala Asn His Pro Met 210 215 220 Gly Pro Leu Ala Leu Gly Asp Leu Ile Gly Leu Asp Val Cys Leu Ala 225 230 235 240 Ile Met Asp Val Leu Phe Thr Glu Thr Gly Asp Asn Lys Tyr Arg Ala 245 250 255 Ser Ser Ile Leu Arg Lys Tyr Val Arg Ala Gly Trp Leu Gly Arg Lys 260 265 270 Ser Gly Lys Gly Phe Tyr Asp Tyr Ser Lys 275 280 <210> SEQ ID NO 56 <211> LENGTH: 282 <212> TYPE: PRT <213> ORGANISM: Clostridium acetobutylicum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Hbd, NP_349314.1 <400> SEQUENCE: 56 Met Lys Lys Val Cys Val Ile Gly Ala Gly Thr Met Gly Ser Gly Ile 1 5 10 15 Ala Gln Ala Phe Ala Ala Lys Gly Phe Glu Val Val Leu Arg Asp Ile 20 25 30 Lys Asp Glu Phe Val Asp Arg Gly Leu Asp Phe Ile Asn Lys Asn Leu 35 40 45 Ser Lys Leu Val Lys Lys Gly Lys Ile Glu Glu Ala Thr Lys Val Glu 50 55 60 Ile Leu Thr Arg Ile Ser Gly Thr Val Asp Leu Asn Met Ala Ala Asp 65 70 75 80 Cys Asp Leu Val Ile Glu Ala Ala Val Glu Arg Met Asp Ile Lys Lys 85 90 95 Gln Ile Phe Ala Asp Leu Asp Asn Ile Cys Lys Pro Glu Thr Ile Leu 100 105 110 Ala Ser Asn Thr Ser Ser Leu Ser Ile Thr Glu Val Ala Ser Ala Thr 115 120 125 Lys Arg Pro Asp Lys Val Ile Gly Met His Phe Phe Asn Pro Ala Pro 130 135 140 Val Met Lys Leu Val Glu Val Ile Arg Gly Ile Ala Thr Ser Gln Glu 145 150 155 160 Thr Phe Asp Ala Val Lys Glu Thr Ser Ile Ala Ile Gly Lys Asp Pro 165 170 175 Val Glu Val Ala Glu Ala Pro Gly Phe Val Val Asn Arg Ile Leu Ile 180 185 190 Pro Met Ile Asn Glu Ala Val Gly Ile Leu Ala Glu Gly Ile Ala Ser 195 200 205 Val Glu Asp Ile Asp Lys Ala Met Lys Leu Gly Ala Asn His Pro Met 210 215 220 Gly Pro Leu Glu Leu Gly Asp Phe Ile Gly Leu Asp Ile Cys Leu Ala 225 230 235 240 Ile Met Asp Val Leu Tyr Ser Glu Thr Gly Asp Ser Lys Tyr Arg Pro 245 250 255 His Thr Leu Leu Lys Lys Tyr Val Arg Ala Gly Trp Leu Gly Arg Lys 260 265 270 Ser Gly Lys Gly Phe Tyr Asp Tyr Ser Lys 275 280

<210> SEQ ID NO 57 <211> LENGTH: 282 <212> TYPE: PRT <213> ORGANISM: Clostridium kluyveri <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Hbd1, WP_011989027.1 <400> SEQUENCE: 57 Met Ser Ile Lys Ser Val Ala Val Leu Gly Ser Gly Thr Met Ser Arg 1 5 10 15 Gly Ile Val Gln Ala Phe Ala Glu Ala Gly Ile Asp Val Ile Ile Arg 20 25 30 Gly Arg Thr Glu Gly Ser Ile Gly Lys Gly Leu Ala Ala Val Lys Lys 35 40 45 Ala Tyr Asp Lys Lys Val Ser Lys Gly Lys Ile Ser Gln Glu Asp Ala 50 55 60 Asp Lys Ile Val Gly Arg Val Ser Thr Thr Thr Glu Leu Glu Lys Leu 65 70 75 80 Ala Asp Cys Asp Leu Ile Ile Glu Ala Ala Ser Glu Asp Met Asn Ile 85 90 95 Lys Lys Asp Tyr Phe Gly Lys Leu Glu Glu Ile Cys Lys Pro Glu Thr 100 105 110 Ile Phe Ala Thr Asn Thr Ser Ser Leu Ser Ile Thr Glu Val Ala Thr 115 120 125 Ala Thr Lys Arg Pro Asp Lys Phe Ile Gly Met His Phe Phe Asn Pro 130 135 140 Ala Asn Val Met Lys Leu Val Glu Ile Ile Arg Gly Met Asn Thr Ser 145 150 155 160 Gln Glu Thr Phe Asp Ile Ile Lys Glu Ala Ser Ile Lys Ile Gly Lys 165 170 175 Thr Pro Val Glu Val Ala Glu Ala Pro Gly Phe Val Val Asn Lys Ile 180 185 190 Leu Val Pro Met Ile Asn Glu Ala Val Gly Ile Leu Ala Glu Gly Ile 195 200 205 Ala Ser Ala Glu Asp Ile Asp Thr Ala Met Lys Leu Gly Ala Asn His 210 215 220 Pro Met Gly Pro Leu Ala Leu Gly Asp Leu Ile Gly Leu Asp Val Val 225 230 235 240 Leu Ala Val Met Asp Val Leu Tyr Ser Glu Thr Gly Asp Ser Lys Tyr 245 250 255 Arg Ala His Thr Leu Leu Arg Lys Tyr Val Arg Ala Gly Trp Leu Gly 260 265 270 Arg Lys Ser Gly Lys Gly Phe Phe Ala Tyr 275 280 <210> SEQ ID NO 58 <211> LENGTH: 246 <212> TYPE: PRT <213> ORGANISM: Cupriavidus necator <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: PhaB, WP_010810131.1 <400> SEQUENCE: 58 Met Thr Gln Arg Ile Ala Tyr Val Thr Gly Gly Met Gly Gly Ile Gly 1 5 10 15 Thr Ala Ile Cys Gln Arg Leu Ala Lys Asp Gly Phe Arg Val Val Ala 20 25 30 Gly Cys Gly Pro Asn Ser Pro Arg Arg Glu Lys Trp Leu Glu Gln Gln 35 40 45 Lys Ala Leu Gly Phe Asp Phe Ile Ala Ser Glu Gly Asn Val Ala Asp 50 55 60 Trp Asp Ser Thr Lys Thr Ala Phe Asp Lys Val Lys Ser Glu Val Gly 65 70 75 80 Glu Val Asp Val Leu Ile Asn Asn Ala Gly Ile Thr Arg Asp Val Val 85 90 95 Phe Arg Lys Met Thr Arg Ala Asp Trp Asp Ala Val Ile Asp Thr Asn 100 105 110 Leu Thr Ser Leu Phe Asn Val Thr Lys Gln Val Ile Asp Gly Met Ala 115 120 125 Asp Arg Gly Trp Gly Arg Ile Val Asn Ile Ser Ser Val Asn Gly Gln 130 135 140 Lys Gly Gln Phe Gly Gln Thr Asn Tyr Ser Thr Ala Lys Ala Gly Leu 145 150 155 160 His Gly Phe Thr Met Ala Leu Ala Gln Glu Val Ala Thr Lys Gly Val 165 170 175 Thr Val Asn Thr Val Ser Pro Gly Tyr Ile Ala Thr Asp Met Val Lys 180 185 190 Ala Ile Arg Gln Asp Val Leu Asp Lys Ile Val Ala Thr Ile Pro Val 195 200 205 Lys Arg Leu Gly Leu Pro Glu Glu Ile Ala Ser Ile Cys Ala Trp Leu 210 215 220 Ser Ser Glu Glu Ser Gly Phe Ser Thr Gly Ala Asp Phe Ser Leu Asn 225 230 235 240 Gly Gly Leu His Met Gly 245 <210> SEQ ID NO 59 <211> LENGTH: 134 <212> TYPE: PRT <213> ORGANISM: Aeromonas caviae <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: PhaJ, O32472 <400> SEQUENCE: 59 Met Ser Ala Gln Ser Leu Glu Val Gly Gln Lys Ala Arg Leu Ser Lys 1 5 10 15 Arg Phe Gly Ala Ala Glu Val Ala Ala Phe Ala Ala Leu Ser Glu Asp 20 25 30 Phe Asn Pro Leu His Leu Asp Pro Ala Phe Ala Ala Thr Thr Ala Phe 35 40 45 Glu Arg Pro Ile Val His Gly Met Leu Leu Ala Ser Leu Phe Ser Gly 50 55 60 Leu Leu Gly Gln Gln Leu Pro Gly Lys Gly Ser Ile Tyr Leu Gly Gln 65 70 75 80 Ser Leu Ser Phe Lys Leu Pro Val Phe Val Gly Asp Glu Val Thr Ala 85 90 95 Glu Val Glu Val Thr Ala Leu Arg Glu Asp Lys Pro Ile Ala Thr Leu 100 105 110 Thr Thr Arg Ile Phe Thr Gln Gly Gly Ala Leu Ala Val Thr Gly Glu 115 120 125 Ala Val Val Lys Leu Pro 130 <210> SEQ ID NO 60 <211> LENGTH: 260 <212> TYPE: PRT <213> ORGANISM: Ralstonia pickettii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Bdh1, BAE72684.1 <400> SEQUENCE: 60 Met Gln Leu Lys Gly Lys Ser Ala Ile Val Thr Gly Ala Ala Ser Gly 1 5 10 15 Ile Gly Lys Ala Ile Ala Glu Leu Leu Ala Lys Glu Gly Ala Ala Val 20 25 30 Ala Ile Ala Asp Leu Asn Leu Glu Ala Ala Arg Ala Ala Ala Ala Gly 35 40 45 Ile Glu Ala Ala Gly Gly Lys Ala Ile Ala Val Ala Met Asp Val Thr 50 55 60 Ser Glu Ala Ser Val Asn Gln Ala Thr Asp Glu Val Ala Gln Ala Phe 65 70 75 80 Gly Asn Ile Asp Ile Leu Val Ser Asn Ala Gly Ile Gln Ile Val Asn 85 90 95 Pro Ile Gln Asn Tyr Ala Phe Ser Asp Trp Lys Lys Met Gln Ala Ile 100 105 110 His Val Asp Gly Ala Phe Leu Thr Thr Lys Ala Ala Leu Lys Tyr Met 115 120 125 Tyr Arg Asp Lys Arg Gly Gly Thr Val Ile Tyr Met Gly Ser Val His 130 135 140 Ser His Glu Ala Ser Pro Leu Lys Ser Ala Tyr Val Ala Ala Lys His 145 150 155 160 Ala Leu Leu Gly Leu Ala Arg Val Leu Ala Lys Glu Gly Ala Glu Phe 165 170 175 Asn Val Arg Ser His Val Ile Cys Pro Gly Phe Val Arg Thr Pro Leu 180 185 190 Val Asp Lys Gln Ile Pro Glu Gln Ala Lys Glu Leu Gly Ile Ser Glu 195 200 205 Glu Glu Val Val Arg Arg Val Met Leu Gly Gly Thr Val Asp Gly Val 210 215 220 Phe Thr Thr Val Asp Asp Val Ala Arg Thr Ala Leu Phe Leu Cys Ala 225 230 235 240 Phe Pro Ser Ala Ala Leu Thr Gly Gln Ser Phe Ile Val Ser His Gly 245 250 255 Trp Tyr Met Gln 260 <210> SEQ ID NO 61 <211> LENGTH: 256 <212> TYPE: PRT <213> ORGANISM: Ralstonia pickettii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Bdh2, BAE72685.1 <400> SEQUENCE: 61 Met Leu Gln Gly Lys Thr Ala Leu Val Thr Gly Ser Thr Cys Gly Ile 1 5 10 15 Gly Leu Gly Ile Ala Gln Ala Leu Ala Ala Gln Gly Ala Asn Ile Ile 20 25 30 Val Asn Gly Phe Arg Arg Ala Asp Gly Ala Arg Gln Gln Ile Ala Ala 35 40 45 Ala Gly Gln Val Ile Arg Leu Gly Tyr His Gly Ala Asp Met Ser Lys 50 55 60 Ala Ser Glu Ile Glu Asp Met Met Arg Tyr Ala Glu Ala Glu Phe Ala 65 70 75 80 Ala Asp Ile Leu Val Asn Asn Ala Gly Ile Gln His Val Ala Ser Ile 85 90 95

Glu Asp Phe Pro Pro Glu Arg Trp Asp Ala Ile Ile Ala Ile Asn Leu 100 105 110 Thr Ser Ala Phe His Thr Thr Arg Leu Ala Leu Pro Gly Met Arg Gln 115 120 125 Lys Asn Trp Gly Arg Val Ile Asn Ile Ala Ser Thr His Gly Leu Val 130 135 140 Ala Ser Ala Gln Lys Ser Ala Tyr Val Ala Ala Lys His Gly Ile Val 145 150 155 160 Gly Leu Thr Lys Val Thr Ala Leu Glu Thr Ala Gln Asn Arg Val Thr 165 170 175 Ala Asn Ala Ile Cys Pro Gly Trp Val Leu Thr Pro Leu Val Gln Lys 180 185 190 Gln Val Gln Ala Arg Pro Ala His Gly Ile Ser Val Glu Gln Ala Lys 195 200 205 Arg Glu Leu Val Ile Glu Lys Gln Pro Ser Gly Gln Phe Val Thr Pro 210 215 220 Asp Glu Leu Gly Ala Leu Ala Val Phe Leu Ala Ser Glu Ala Gly Arg 225 230 235 240 Gln Val Arg Gly Ala Ile Trp Asn Met Ala Gly Gly Trp Phe Ala Gln 245 250 255 <210> SEQ ID NO 62 <211> LENGTH: 254 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: Bdh, AGY75962 <400> SEQUENCE: 62 Met Arg Leu Glu Asn Lys Val Ala Ile Val Thr Gly Ser Ala Met Gly 1 5 10 15 Ile Gly Lys Ala Ile Val Arg Asp Phe Val Asn Glu Gly Ala Lys Val 20 25 30 Ile Ile Ser Asp Ile Leu Glu Ala Glu Gly Gln Ala Leu Glu Glu Glu 35 40 45 Leu Gln Lys Lys Gly His Ser Val Tyr Phe Phe Lys Thr Asp Val Ser 50 55 60 Ser Glu Lys Asn Ile Lys Glu Leu Val Lys Phe Thr Leu Glu Lys Phe 65 70 75 80 Gly Thr Ile Asn Ile Leu Cys Asn Asn Ala Ala Val Asn Ile Pro Gly 85 90 95 Ser Val Leu Glu Leu Thr Glu Asp Ile Trp Asn Lys Thr Met Asp Val 100 105 110 Asn Val Lys Ser His Phe Leu Val Ser Lys His Val Ile Pro Val Met 115 120 125 Gln Lys Ala Gly Gly Gly Ser Ile Val Asn Thr Ala Ser Ala Asn Ser 130 135 140 Phe Val Ala Glu Pro Arg Leu Ser Ala Tyr Val Ala Ser Lys Gly Ala 145 150 155 160 Ile Leu Met Leu Thr Arg Ala Met Ala Leu Asp Phe Ala Lys Asp Asn 165 170 175 Ile Arg Val Asn Cys Ile Cys Pro Gly Trp Val Asp Thr Thr Phe Asn 180 185 190 Asp Ala His Ala Glu Leu Phe Gly Gly Arg Glu Ala Val Leu Lys Asp 195 200 205 Leu Ala Ser Val Gln Pro Ile Gly Arg Pro Ile Ala Pro Met Glu Ile 210 215 220 Ala Lys Ile Ala Thr Phe Leu Ala Ser Asp Asp Ser Ser Cys Met Thr 225 230 235 240 Gly Ser Pro Val Ile Ala Asp Gly Gly Ile Thr Ala Gly Val 245 250 <210> SEQ ID NO 63 <211> LENGTH: 607 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AOR, WP_013238665.1 <400> SEQUENCE: 63 Met Tyr Gly Tyr Asp Gly Lys Val Leu Arg Ile Asn Leu Lys Glu Arg 1 5 10 15 Thr Cys Lys Ser Glu Asn Leu Asp Leu Asp Lys Ala Lys Lys Phe Ile 20 25 30 Gly Cys Arg Gly Leu Gly Val Lys Thr Leu Phe Asp Glu Ile Asp Pro 35 40 45 Lys Ile Asp Ala Leu Ser Pro Glu Asn Lys Phe Ile Ile Val Thr Gly 50 55 60 Pro Leu Thr Gly Ala Pro Val Pro Thr Ser Gly Arg Phe Met Val Val 65 70 75 80 Thr Lys Ala Pro Leu Thr Gly Thr Ile Gly Ile Ser Asn Ser Gly Gly 85 90 95 Lys Trp Gly Val Asp Leu Lys Lys Ala Gly Trp Asp Met Ile Ile Val 100 105 110 Glu Asp Lys Ala Asp Ser Pro Val Tyr Ile Glu Ile Val Asp Asp Lys 115 120 125 Val Glu Ile Lys Asp Ala Ser Gln Leu Trp Gly Lys Val Thr Ser Glu 130 135 140 Thr Thr Lys Glu Leu Glu Lys Ile Thr Glu Asn Lys Ser Lys Val Leu 145 150 155 160 Cys Ile Gly Pro Ala Gly Glu Arg Leu Ser Leu Met Ala Ala Val Met 165 170 175 Asn Asp Val Asp Arg Thr Ala Ala Arg Gly Gly Val Gly Ala Val Met 180 185 190 Gly Ser Lys Asn Leu Lys Ala Ile Thr Val Lys Gly Thr Gly Lys Ile 195 200 205 Ala Leu Ala Asp Lys Glu Lys Val Lys Lys Val Ser Val Glu Lys Ile 210 215 220 Thr Thr Leu Lys Asn Asp Pro Val Ala Gly Gln Gly Met Pro Thr Tyr 225 230 235 240 Gly Thr Ala Ile Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro 245 250 255 Val Lys Asn Phe Gln Glu Ser Tyr Thr Asn Gln Ala Asp Lys Ile Ser 260 265 270 Gly Glu Thr Leu Thr Ala Asn Gln Leu Val Arg Lys Asn Pro Cys Tyr 275 280 285 Ser Cys Pro Ile Gly Cys Gly Arg Trp Val Arg Leu Lys Asp Gly Thr 290 295 300 Glu Cys Gly Gly Pro Glu Tyr Glu Thr Leu Trp Cys Phe Gly Ser Asp 305 310 315 320 Cys Gly Ser Tyr Asp Leu Asp Ala Ile Asn Glu Ala Asn Met Leu Cys 325 330 335 Asn Glu Tyr Gly Ile Asp Thr Ile Thr Cys Gly Ala Thr Ile Ala Ala 340 345 350 Ala Met Glu Leu Tyr Gln Arg Gly Tyr Ile Lys Asp Glu Glu Ile Ala 355 360 365 Gly Asp Asn Leu Ser Leu Lys Trp Gly Asp Thr Glu Ser Met Ile Gly 370 375 380 Trp Ile Lys Arg Met Val Tyr Ser Glu Gly Phe Gly Ala Lys Met Thr 385 390 395 400 Asn Gly Ser Tyr Arg Leu Cys Glu Gly Tyr Gly Ala Pro Glu Tyr Ser 405 410 415 Met Thr Val Lys Lys Gln Glu Ile Pro Ala Tyr Asp Pro Arg Gly Ile 420 425 430 Gln Gly His Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His 435 440 445 Ile Lys Gly Tyr Met Ile Asn Pro Glu Ile Leu Gly Tyr Pro Glu Lys 450 455 460 Leu Asp Arg Phe Ala Leu Asp Gly Lys Ala Ala Tyr Ala Lys Leu Phe 465 470 475 480 His Asp Leu Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr 485 490 495 Thr Phe Gly Leu Gly Ile Gln Asp Tyr Val Asp Met Tyr Asn Ala Val 500 505 510 Val Gly Glu Ser Thr Tyr Asp Ala Asp Ser Leu Leu Glu Ala Gly Asp 515 520 525 Arg Ile Trp Thr Leu Glu Lys Leu Phe Asn Leu Ala Ala Gly Ile Asp 530 535 540 Ser Ser Gln Asp Thr Leu Pro Lys Arg Leu Leu Glu Glu Pro Ile Pro 545 550 555 560 Asp Gly Pro Ser Lys Gly Glu Val His Arg Leu Asp Val Leu Leu Pro 565 570 575 Glu Tyr Tyr Ser Val Arg Gly Trp Ser Lys Glu Gly Ile Pro Thr Glu 580 585 590 Glu Thr Leu Lys Lys Leu Gly Leu Asp Glu Tyr Ile Gly Lys Phe 595 600 605 <210> SEQ ID NO 64 <211> LENGTH: 607 <212> TYPE: PRT <213> ORGANISM: Clostridium autoethanogenum <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AOR, WP_013238675.1 <400> SEQUENCE: 64 Met Tyr Gly Tyr Lys Gly Lys Val Leu Arg Ile Asn Leu Ser Ser Lys 1 5 10 15 Thr Tyr Ile Val Glu Glu Leu Lys Ile Asp Lys Ala Lys Lys Phe Ile 20 25 30 Gly Ala Arg Gly Leu Gly Val Lys Thr Leu Phe Asp Glu Val Asp Pro 35 40 45 Lys Val Asp Pro Leu Ser Pro Asp Asn Lys Phe Ile Ile Ala Ala Gly 50 55 60 Pro Leu Thr Gly Ala Pro Val Pro Thr Ser Gly Arg Phe Met Val Val 65 70 75 80 Thr Lys Ser Pro Leu Thr Gly Thr Ile Ala Ile Ala Asn Ser Gly Gly 85 90 95 Lys Trp Gly Ala Glu Phe Lys Ala Ala Gly Tyr Asp Met Ile Ile Val 100 105 110 Glu Gly Lys Ser Asp Lys Glu Val Tyr Val Asn Ile Val Asp Asp Lys 115 120 125 Val Glu Phe Arg Asp Ala Ser His Val Trp Gly Lys Leu Thr Glu Glu

130 135 140 Thr Thr Lys Met Leu Gln Gln Glu Thr Asp Ser Arg Ala Lys Val Leu 145 150 155 160 Cys Ile Gly Pro Ala Gly Glu Lys Leu Ser Leu Met Ala Ala Val Met 165 170 175 Asn Asp Val Asp Arg Thr Ala Gly Arg Gly Gly Val Gly Ala Val Met 180 185 190 Gly Ser Lys Asn Leu Lys Ala Ile Val Val Lys Gly Ser Gly Lys Val 195 200 205 Lys Leu Phe Asp Glu Gln Lys Val Lys Glu Val Ala Leu Glu Lys Thr 210 215 220 Asn Ile Leu Arg Lys Asp Pro Val Ala Gly Gly Gly Leu Pro Thr Tyr 225 230 235 240 Gly Thr Ala Val Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro 245 250 255 Val Lys Asn Phe Gln Lys Ser Tyr Thr Asp Gln Ala Asp Lys Ile Ser 260 265 270 Gly Glu Thr Leu Thr Lys Asp Cys Leu Val Arg Lys Asn Pro Cys Tyr 275 280 285 Arg Cys Pro Ile Ala Cys Gly Arg Trp Val Lys Leu Asp Asp Gly Thr 290 295 300 Glu Cys Gly Gly Pro Glu Tyr Glu Thr Leu Trp Ser Phe Gly Ser Asp 305 310 315 320 Cys Asp Val Tyr Asp Ile Asn Ala Val Asn Thr Ala Asn Met Leu Cys 325 330 335 Asn Glu Tyr Gly Leu Asp Thr Ile Thr Ala Gly Cys Thr Ile Ala Ala 340 345 350 Ala Met Glu Leu Tyr Gln Arg Gly Tyr Ile Lys Asp Glu Glu Ile Ala 355 360 365 Ala Asp Gly Leu Ser Leu Asn Trp Gly Asp Ala Lys Ser Met Val Glu 370 375 380 Trp Val Lys Lys Met Gly Leu Arg Glu Gly Phe Gly Asp Lys Met Ala 385 390 395 400 Asp Gly Ser Tyr Arg Leu Cys Asp Ser Tyr Gly Val Pro Glu Tyr Ser 405 410 415 Met Thr Val Lys Lys Gln Glu Leu Pro Ala Tyr Asp Pro Arg Gly Ile 420 425 430 Gln Gly His Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His 435 440 445 Ile Lys Gly Tyr Met Val Ser Pro Glu Ile Leu Gly Tyr Pro Glu Lys 450 455 460 Leu Asp Arg Leu Ala Val Glu Gly Lys Ala Gly Tyr Ala Arg Val Phe 465 470 475 480 His Asp Leu Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr 485 490 495 Thr Phe Gly Leu Gly Ala Gln Asp Tyr Val Asp Met Tyr Asn Ala Val 500 505 510 Val Gly Gly Glu Leu His Asp Val Asn Ser Leu Met Leu Ala Gly Asp 515 520 525 Arg Ile Trp Thr Leu Glu Lys Ile Phe Asn Leu Lys Ala Gly Ile Asp 530 535 540 Ser Ser Gln Asp Thr Leu Pro Lys Arg Leu Leu Glu Glu Gln Ile Pro 545 550 555 560 Glu Gly Pro Ser Lys Gly Glu Val His Lys Leu Asp Val Leu Leu Pro 565 570 575 Glu Tyr Tyr Ser Val Arg Gly Trp Asp Lys Asn Gly Ile Pro Thr Glu 580 585 590 Glu Thr Leu Lys Lys Leu Gly Leu Asp Glu Tyr Val Gly Lys Leu 595 600 605 <210> SEQ ID NO 65 <211> LENGTH: 607 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AOR, ADK15073.1 <400> SEQUENCE: 65 Met Tyr Gly Tyr Asp Gly Lys Val Leu Arg Ile Asn Leu Lys Glu Arg 1 5 10 15 Thr Cys Lys Ser Glu Asn Leu Asp Leu Asp Lys Ala Lys Lys Phe Ile 20 25 30 Gly Cys Arg Gly Leu Gly Val Lys Thr Leu Phe Asp Glu Ile Asp Pro 35 40 45 Lys Ile Asp Ala Leu Ser Pro Glu Asn Lys Phe Ile Ile Val Thr Gly 50 55 60 Pro Leu Thr Gly Ala Pro Val Pro Thr Ser Gly Arg Phe Met Val Val 65 70 75 80 Thr Lys Ala Pro Leu Thr Gly Thr Ile Gly Ile Ser Asn Ser Gly Gly 85 90 95 Lys Trp Gly Val Asp Leu Lys Lys Ala Gly Trp Asp Met Ile Ile Val 100 105 110 Glu Asp Lys Ala Asp Ser Pro Val Tyr Ile Glu Ile Val Asp Asp Lys 115 120 125 Val Glu Ile Lys Asp Ala Ser Gln Leu Trp Gly Lys Val Thr Ser Glu 130 135 140 Thr Thr Lys Glu Leu Glu Lys Ile Thr Glu Asn Lys Ser Lys Val Leu 145 150 155 160 Cys Ile Gly Pro Ala Gly Glu Arg Leu Ser Leu Met Ala Ala Val Met 165 170 175 Asn Asp Val Asp Arg Thr Ala Ala Arg Gly Gly Val Gly Ala Val Met 180 185 190 Gly Ser Lys Asn Leu Lys Ala Ile Thr Val Lys Gly Thr Gly Lys Ile 195 200 205 Ala Leu Ala Asp Lys Glu Lys Val Lys Lys Val Ser Val Glu Lys Ile 210 215 220 Thr Thr Leu Lys Asn Asp Pro Val Ala Gly Gln Gly Met Pro Thr Tyr 225 230 235 240 Gly Thr Ala Ile Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro 245 250 255 Val Lys Asn Phe Gln Glu Ser Tyr Thr Asn Gln Ala Asp Lys Ile Ser 260 265 270 Gly Glu Thr Leu Thr Ala Asn Gln Leu Val Arg Lys Asn Pro Cys Tyr 275 280 285 Ser Cys Pro Ile Gly Cys Gly Arg Trp Val Arg Leu Lys Asp Gly Thr 290 295 300 Glu Cys Gly Gly Pro Glu Tyr Glu Thr Leu Trp Cys Phe Gly Ser Asp 305 310 315 320 Cys Gly Ser Tyr Asp Leu Asp Ala Ile Asn Glu Ala Asn Met Leu Cys 325 330 335 Asn Glu Tyr Gly Ile Asp Thr Ile Thr Cys Gly Ala Thr Ile Ala Ala 340 345 350 Ala Met Glu Leu Tyr Gln Arg Gly Tyr Ile Lys Asp Glu Glu Ile Ala 355 360 365 Gly Asp Asn Leu Ser Leu Lys Trp Gly Asp Thr Glu Ser Met Ile Gly 370 375 380 Trp Ile Lys Arg Met Val Tyr Ser Glu Gly Phe Gly Ala Lys Met Thr 385 390 395 400 Asn Gly Ser Tyr Arg Leu Cys Glu Gly Tyr Gly Ala Pro Glu Tyr Ser 405 410 415 Met Thr Val Lys Lys Gln Glu Ile Pro Ala Tyr Asp Pro Arg Gly Ile 420 425 430 Gln Gly His Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His 435 440 445 Ile Lys Gly Tyr Met Ile Asn Pro Glu Ile Leu Gly Tyr Pro Glu Lys 450 455 460 Leu Asp Arg Phe Ala Leu Asp Gly Lys Ala Ala Tyr Ala Lys Leu Phe 465 470 475 480 His Asp Leu Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr 485 490 495 Thr Phe Gly Leu Gly Ile Gln Asp Tyr Val Asp Met Tyr Asn Ala Val 500 505 510 Val Gly Glu Ser Thr Tyr Asp Ala Asp Ser Leu Leu Glu Ala Gly Asp 515 520 525 Arg Ile Trp Thr Leu Glu Lys Leu Phe Asn Leu Ala Ala Gly Ile Asp 530 535 540 Ser Ser Gln Asp Thr Leu Pro Lys Arg Leu Leu Glu Glu Pro Ile Pro 545 550 555 560 Asp Gly Pro Ser Lys Gly Glu Val His Arg Leu Asp Val Leu Leu Pro 565 570 575 Glu Tyr Tyr Ser Val Arg Gly Trp Ser Lys Glu Gly Ile Pro Thr Glu 580 585 590 Glu Thr Leu Lys Lys Leu Gly Leu Asp Glu Tyr Ile Gly Lys Phe 595 600 605 <210> SEQ ID NO 66 <211> LENGTH: 607 <212> TYPE: PRT <213> ORGANISM: Clostridium ljungdahlii <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: AOR, ADK15083.1 <400> SEQUENCE: 66 Met Tyr Gly Tyr Lys Gly Lys Val Leu Arg Ile Asn Leu Ser Ser Lys 1 5 10 15 Thr Tyr Ile Val Glu Glu Leu Lys Ile Asp Lys Ala Lys Lys Phe Ile 20 25 30 Gly Ala Arg Gly Leu Gly Val Lys Thr Leu Phe Asp Glu Val Asp Pro 35 40 45 Lys Val Asp Pro Leu Ser Pro Asp Asn Lys Phe Ile Ile Ala Ala Gly 50 55 60 Pro Leu Thr Gly Ala Pro Val Pro Thr Ser Gly Arg Phe Met Val Val 65 70 75 80 Thr Lys Ser Pro Leu Thr Gly Thr Ile Ala Ile Ala Asn Ser Gly Gly 85 90 95 Lys Trp Gly Ala Glu Phe Lys Ala Ala Gly Tyr Asp Met Ile Ile Val 100 105 110 Glu Gly Lys Ser Asp Lys Glu Val Tyr Val Asn Ile Val Asp Asp Lys 115 120 125 Val Glu Phe Arg Asp Ala Ser His Val Trp Gly Lys Leu Thr Glu Glu 130 135 140

Thr Thr Lys Met Leu Gln Gln Glu Thr Asp Ser Arg Ala Lys Val Leu 145 150 155 160 Cys Ile Gly Pro Ala Gly Glu Lys Leu Ser Leu Met Ala Ala Val Met 165 170 175 Asn Asp Val Asp Arg Thr Ala Gly Arg Gly Gly Val Gly Ala Val Met 180 185 190 Gly Ser Lys Asn Leu Lys Ala Ile Val Val Lys Gly Ser Gly Lys Val 195 200 205 Lys Leu Phe Asp Glu Gln Lys Val Lys Glu Val Ala Leu Glu Lys Thr 210 215 220 Asn Ile Leu Arg Lys Asp Pro Val Ala Gly Gly Gly Leu Pro Thr Tyr 225 230 235 240 Gly Thr Ala Val Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro 245 250 255 Val Lys Asn Phe Gln Lys Ser Tyr Thr Asp Gln Ala Asp Lys Ile Ser 260 265 270 Gly Glu Thr Leu Thr Lys Asp Cys Leu Val Arg Lys Asn Pro Cys Tyr 275 280 285 Arg Cys Pro Ile Ala Cys Gly Arg Trp Val Lys Leu Asp Asp Gly Thr 290 295 300 Glu Cys Gly Gly Pro Glu Tyr Glu Thr Leu Trp Ser Phe Gly Ser Asp 305 310 315 320 Cys Asp Val Tyr Asp Ile Asn Ala Val Asn Thr Ala Asn Met Leu Cys 325 330 335 Asn Glu Tyr Gly Leu Asp Thr Ile Thr Ala Gly Cys Thr Ile Ala Ala 340 345 350 Ala Met Glu Leu Tyr Gln Arg Gly Tyr Ile Lys Asp Glu Glu Ile Ala 355 360 365 Ala Asp Gly Leu Ser Leu Asn Trp Gly Asp Ala Lys Ser Met Val Glu 370 375 380 Trp Val Lys Lys Met Gly Leu Arg Glu Gly Phe Gly Asp Lys Met Ala 385 390 395 400 Asp Gly Ser Tyr Arg Leu Cys Asp Ser Tyr Gly Val Pro Glu Tyr Ser 405 410 415 Met Thr Val Lys Lys Gln Glu Leu Pro Ala Tyr Asp Pro Arg Gly Ile 420 425 430 Gln Gly His Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His 435 440 445 Ile Lys Gly Tyr Met Val Ser Pro Glu Ile Leu Gly Tyr Pro Glu Lys 450 455 460 Leu Asp Arg Leu Ala Val Glu Gly Lys Ala Gly Tyr Ala Arg Val Phe 465 470 475 480 His Asp Leu Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr 485 490 495 Thr Phe Gly Leu Gly Ala Gln Asp Tyr Val Asp Met Tyr Asn Ala Val 500 505 510 Val Gly Gly Glu Leu His Asp Val Asn Ser Leu Met Leu Ala Gly Asp 515 520 525 Arg Ile Trp Thr Leu Glu Lys Ile Phe Asn Leu Lys Ala Gly Ile Asp 530