Easy To Use Patents Search & Patent Lawyer Directory

At Patents you can conduct a Patent Search, File a Patent Application, find a Patent Attorney, or search available technology through our Patent Exchange. Patents are available using simple keyword or date criteria. If you are looking to hire a patent attorney, you've come to the right place. Protect your idea and hire a patent lawyer.


Search All Patents:



  This Patent May Be For Sale or Lease. Contact Us

  Is This Your Patent? Claim This Patent Now.



Register or Login To Download This Patent As A PDF




United States Patent 8,442,693
Mirza ,   et al. May 14, 2013

System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network

Abstract

The disclosure provides systems and methods of use of an HVAC graphical interface dashboard. In various embodiments, the dashboard includes a weather tab, wherein invoking the weather tab advances to a weather screen. The dashboard also includes an indoor humidity tab, wherein invoking the indoor humidity tab advances to a humidity screen which displays at least a current indoor humidity, wherein the humidity screen interprets a percentage of humidity for a user. A programs tab and a home tab are also provided. At least one attribute of a presentation of the home screen is selectable by a user.


Inventors: Mirza; Muhammad Ali (Farmers Branch, TX), Thorson; Timothy H. (McKinney, TX)
Applicant:
Name City State Country Type

Mirza; Muhammad Ali
Thorson; Timothy H.

Farmers Branch
McKinney

TX
TX

US
US
Assignee: Lennox Industries, Inc. (Richardson, TX)
Appl. No.: 12/603,488
Filed: October 21, 2009


Related U.S. Patent Documents

Application NumberFiling DatePatent NumberIssue Date
12258659Oct., 2008
61167135Apr., 2009

Current U.S. Class: 700/276 ; 345/581; 345/589; 345/593; 345/619; 345/671; 345/902; 700/277; 700/278; 700/295; 715/779
Current International Class: G05D 3/12 (20060101); G09G 5/00 (20060101); G06F 3/048 (20060101)
Field of Search: 700/276-278,295 715/779 345/581,593,589,619,661,671,689,902

References Cited

U.S. Patent Documents
4048491 September 1977 Wessman
4262736 April 1981 Gilkeson et al.
4296464 October 1981 Woods et al.
4381549 April 1983 Stamp et al.
4464543 August 1984 Kline et al.
4482785 November 1984 Finnegan et al.
4501125 February 1985 Han
4606042 August 1986 Kahn et al.
4616325 October 1986 Heckenbach et al.
4694394 September 1987 Costantini
4698628 October 1987 Herkert et al.
4703325 October 1987 Chamberlin et al.
4706247 November 1987 Yoshioka
4723239 February 1988 Schwartz
4829447 May 1989 Parker et al.
4841450 June 1989 Fredriksson
4843084 June 1989 Parker et al.
4873649 October 1989 Grald et al.
4884214 November 1989 Parker et al.
4887262 December 1989 van Veldhuizen
4888728 December 1989 Shirakawa et al.
4889280 December 1989 Grald et al.
4931948 June 1990 Parker et al.
4941143 July 1990 Twitty et al.
4942613 July 1990 Lynch
4947484 August 1990 Twitty et al.
4947928 August 1990 Parker et al.
4953083 August 1990 Takata et al.
4955018 September 1990 Twitty et al.
4967567 November 1990 Proctor et al.
4978896 December 1990 Shah
4991770 February 1991 Bird et al.
4996513 February 1991 Mak et al.
5006827 April 1991 Brueton et al.
5018138 May 1991 Twitty et al.
5039980 August 1991 Aggers et al.
5042997 August 1991 Rhodes
5058388 October 1991 Shaw et al.
5061916 October 1991 French et al.
5065813 November 1991 Berkeley et al.
5086385 February 1992 Launey et al.
5103896 April 1992 Saga
5105366 April 1992 Beckey
5115967 May 1992 Wedekind
5128855 July 1992 Hilber et al.
5165465 November 1992 Kenet
5170935 December 1992 Federspiel et al.
5180102 January 1993 Gilbert et al.
5181653 January 1993 Foster et al.
5184122 February 1993 Decious et al.
5191643 March 1993 Alsenz
5195327 March 1993 Kim
5197666 March 1993 Wedekind
5197668 March 1993 Ratz et al.
5203497 April 1993 Ratz et al.
5220260 June 1993 Schuler
5230482 July 1993 Ratz et al.
5259553 November 1993 Shyu
5274571 December 1993 Hessee et al.
5276630 January 1994 Baldwin et al.
5277036 January 1994 Dieckmann et al.
5278957 January 1994 Chan
5279458 January 1994 DeWolf et al.
5297143 March 1994 Fridrich et al.
5314004 May 1994 Strand et al.
5323385 June 1994 Jurewicz et al.
5323619 June 1994 Kim
5327426 July 1994 Dolin, Jr. et al.
5329991 July 1994 Mehta et al.
5337952 August 1994 Thompson
5341988 August 1994 Rein et al.
5355323 October 1994 Bae
5361982 November 1994 Liebi et al.
5374200 December 1994 Giroux
5383116 January 1995 Lennartsson
5384697 January 1995 Pascucci
5414337 May 1995 Schuler
5417368 May 1995 Jeffery et al.
5420572 May 1995 Dolin, Jr. et al.
5434965 July 1995 Matheny et al.
5440895 August 1995 Bahel et al.
5444626 August 1995 Schenk
5444851 August 1995 Woest
5448180 September 1995 Kienzler et al.
5448561 September 1995 Kaiser et al.
5449047 September 1995 Schivley, Jr.
5450570 September 1995 Richek et al.
5452201 September 1995 Pieronek et al.
5460327 October 1995 Hill et al.
5463735 October 1995 Pascucci et al.
5469150 November 1995 Sitte
5475364 December 1995 Kenet
5481481 January 1996 Frey et al.
5481661 January 1996 Kobayashi
5488834 February 1996 Schwarz
5491649 February 1996 Friday, Jr. et al.
5502818 March 1996 Lamberg
5511188 April 1996 Pascucci et al.
5513324 April 1996 Dolin, Jr. et al.
5515267 May 1996 Alsenz
5520328 May 1996 Bujak, Jr.
5522044 May 1996 Pascucci et al.
5530643 June 1996 Hodorowski
5537339 July 1996 Naganuma et al.
5539778 July 1996 Kienzler et al.
5544036 August 1996 Brown et al.
5544809 August 1996 Keating et al.
5550980 August 1996 Pascucci et al.
5551053 August 1996 Nadolski et al.
5555269 September 1996 Friday, Jr. et al.
5555509 September 1996 Dolan et al.
5559407 September 1996 Dudley et al.
5559412 September 1996 Schuler
5566879 October 1996 Longtin
5572658 November 1996 Mohr et al.
5574848 November 1996 Thomson
5579221 November 1996 Mun
5581478 December 1996 Cruse et al.
5592058 January 1997 Archer et al.
5592059 January 1997 Archer
5592628 January 1997 Ueno et al.
5596437 January 1997 Heins
5598566 January 1997 Pascucci et al.
5600782 February 1997 Thomson
5613369 March 1997 Sato et al.
5617282 April 1997 Rall et al.
5621662 April 1997 Humphries et al.
5628201 May 1997 Bahel et al.
5630325 May 1997 Bahel et al.
5631825 May 1997 van Weele et al.
5634590 June 1997 Gorski et al.
5675756 October 1997 Benton et al.
5675830 October 1997 Satula
5684463 November 1997 Diercks et al.
5684717 November 1997 Beilfuss et al.
5699243 December 1997 Eckel et al.
5706190 January 1998 Russ et al.
5711480 January 1998 Zepke et al.
5720604 February 1998 Kelly et al.
5722822 March 1998 Wilson et al.
5726900 March 1998 Walter et al.
5729442 March 1998 Frantz
5737529 April 1998 Dolin, Jr. et al.
5748923 May 1998 Eitrich
5751572 May 1998 Maciulewicz
5751948 May 1998 Dolan et al.
5754779 May 1998 Dolin, Jr. et al.
5761083 June 1998 Brown, Jr. et al.
5764146 June 1998 Baldwin et al.
5772326 June 1998 Batko et al.
5772732 June 1998 James et al.
5774322 June 1998 Walter et al.
5774492 June 1998 Orlowsik, Jr. et al.
5774493 June 1998 Ross
5777837 July 1998 Eckel et al.
5782296 July 1998 Mehta
5784647 July 1998 Sugimoto
5786993 July 1998 Frutiger et al.
5787027 July 1998 Dolan et al.
5791332 August 1998 Thompson et al.
5793646 August 1998 Hibberd et al.
5801942 September 1998 Nixon et al.
5802485 September 1998 Koelle et al.
5803357 September 1998 Lakin
5809063 September 1998 Ashe et al.
5809556 September 1998 Fujisawa et al.
5816492 October 1998 Charles et al.
5818347 October 1998 Dolan et al.
5819845 October 1998 Ryu et al.
5822512 October 1998 Goodrum et al.
5826038 October 1998 Nakazumi
5829674 November 1998 Vanostrand et al.
5841654 November 1998 Verissimo et al.
5848887 December 1998 Zabielski et al.
5854744 December 1998 Zeng et al.
5856972 January 1999 Riley et al.
5860411 January 1999 Thompson et al.
5860473 January 1999 Seiden
5862052 January 1999 Nixon et al.
5862411 January 1999 Kay et al.
5864581 January 1999 Alger-Meunier et al.
5873519 February 1999 Beilfuss
5878236 March 1999 Kleineberg et al.
5883627 March 1999 Pleyer
5884072 March 1999 Rasmussen
5892690 April 1999 Boatman et al.
5896304 April 1999 Tiemann et al.
5900674 May 1999 Wojnarowski et al.
5903454 May 1999 Hoffberg et al.
5912877 June 1999 Shirai et al.
5914453 June 1999 James et al.
5915101 June 1999 Kleineberg et al.
5924486 July 1999 Ehlers et al.
5927398 July 1999 Maciulewicz
5930249 July 1999 Stademann et al.
5933655 August 1999 Vrabec et al.
5934554 August 1999 Charles et al.
5937942 August 1999 Bias et al.
5946209 August 1999 Eckel et al.
5971597 October 1999 Baldwin et al.
5973594 October 1999 Baldwin et al.
5983353 November 1999 McHann, Jr.
5983646 November 1999 Grothe et al.
5993195 November 1999 Thompson
6006142 December 1999 Seem et al.
6011821 January 2000 Sauer et al.
6021252 February 2000 Faris et al.
6028864 February 2000 Marttinen et al.
6032178 February 2000 Bacigalupo et al.
6035024 March 2000 Stumer
6046410 April 2000 Wojnarowski et al.
6049817 April 2000 Schoen et al.
6052525 April 2000 Carlson et al.
6053416 April 2000 Specht et al.
6061600 May 2000 Ying
6061603 May 2000 Papadopoulos et al.
6078660 June 2000 Burgess
6082894 July 2000 Batko et al.
6092280 July 2000 Wojnarowski
6095674 August 2000 Verissimo et al.
6098116 August 2000 Nixon et al.
6101824 August 2000 Meyer et al.
6110260 August 2000 Kubokawa
6115713 September 2000 Pascucci et al.
6138227 October 2000 Thewes et al.
6141595 October 2000 Gloudeman et al.
6145501 November 2000 Manohar et al.
6145751 November 2000 Ahmed
6147601 November 2000 Sandelman et al.
6151298 November 2000 Bernhardsson et al.
6151529 November 2000 Batko
6151625 November 2000 Swales et al.
6151650 November 2000 Birzer
6155341 December 2000 Thompson et al.
6160477 December 2000 Sandelman et al.
6160484 December 2000 Spahl et al.
6160795 December 2000 Hosemann
6167338 December 2000 De Wille et al.
6169937 January 2001 Peterson
6169964 January 2001 Alsa et al.
6170044 January 2001 McLaughlin et al.
6177945 January 2001 Pleyer
6179213 January 2001 Gibino et al.
6182130 January 2001 Dolin, Jr. et al.
6188642 February 2001 Schoniger et al.
6190442 February 2001 Redner
6208905 March 2001 Giddings et al.
6208924 March 2001 Bauer
6211782 April 2001 Sandelman et al.
6216066 April 2001 Goebel et al.
6227191 May 2001 Garloch
6232604 May 2001 McDaniel et al.
6237113 May 2001 Daiber
6240326 May 2001 Gloudeman et al.
6241156 June 2001 Kline et al.
6252890 June 2001 Alger-Meunier et al.
6254009 July 2001 Proffitt et al.
6266205 July 2001 Schreck et al.
6269127 July 2001 Richards
6271845 August 2001 Richardson
6282454 August 2001 Papadopoulos et al.
6285912 September 2001 Ellison et al.
6292518 September 2001 Grabb et al.
6298376 October 2001 Rosner et al.
6298454 October 2001 Schleiss et al.
6298551 October 2001 Wojnarowski et al.
6304557 October 2001 Nakazumi
6307331 October 2001 Bonasia et al.
6324008 November 2001 Baldwin et al.
6324854 December 2001 Jayanth
6336065 January 2002 Gibson et al.
6343236 January 2002 Gibson et al.
6349306 February 2002 Malik et al.
6349883 February 2002 Simmons et al.
6353775 March 2002 Nichols
6359220 March 2002 Schiedegger et al.
6370037 April 2002 Schoenfish
6374373 April 2002 Helm et al.
6377283 April 2002 Thomas
6385510 May 2002 Hoog et al.
6390806 May 2002 Dempsey et al.
6393023 May 2002 Shimizu et al.
6400996 June 2002 Hoffberg et al.
6405104 June 2002 Dougherty
6408228 June 2002 Seem et al.
6411701 June 2002 Stademann
6411857 June 2002 Flood
6412435 July 2002 Timmons, Jr.
6415395 July 2002 Varma et al.
6418507 July 2002 Fackler
6423118 July 2002 Becerra et al.
6424872 July 2002 Glanzer et al.
6424874 July 2002 Cofer
6427454 August 2002 West
6429845 August 2002 Unseld et al.
6430953 August 2002 Roh
6434715 August 2002 Andersen
6435418 August 2002 Toth et al.
6437691 August 2002 Sandelman et al.
6437805 August 2002 Sojoodi et al.
6441723 August 2002 Mansfield et al.
6442952 September 2002 Roh et al.
6448896 September 2002 Bankus et al.
6449315 September 2002 Richards
6450409 September 2002 Rowlette et al.
6453374 September 2002 Kovalan et al.
6454177 September 2002 Sasao et al.
6462654 October 2002 Sandelman et al.
6478084 November 2002 Kumar et al.
6493661 December 2002 White et al.
6497570 December 2002 Sears et al.
6498844 December 2002 Stademann
6501995 December 2002 Kinney et al.
6504338 January 2003 Eichorn
6505087 January 2003 Lucas et al.
6508407 January 2003 Lefkowitz et al.
6526122 February 2003 Matsushita et al.
6535123 March 2003 Sandelman et al.
6535138 March 2003 Dolan et al.
6539489 March 2003 Reinert
6540148 April 2003 Salsbury et al.
6542462 April 2003 Sohraby et al.
6543007 April 2003 Bliley et al.
6545660 April 2003 Shen et al.
6546008 April 2003 Wehrend
6552647 April 2003 Thiessen et al.
6554198 April 2003 Hull et al.
6560976 May 2003 Jayanth
6564348 May 2003 Barenys et al.
6567476 May 2003 Kohl et al.
6572363 June 2003 Virgil, Jr. et al.
6574215 June 2003 Hummel
6574234 June 2003 Myer et al.
6574581 June 2003 Bohrer et al.
6575233 June 2003 Krumnow
6580950 June 2003 Johnson et al.
6587039 July 2003 Woestemeyer et al.
6587739 July 2003 Abrams et al.
6587884 July 2003 Papadopoulos et al.
6594272 July 2003 Ketcham et al.
6595430 July 2003 Shah
6600923 July 2003 Dzuban
6608560 August 2003 Abrams
6609127 August 2003 Lee et al.
6615088 September 2003 Myer et al.
6615594 September 2003 Jayanth et al.
6618394 September 2003 Hilleary
6619555 September 2003 Rosen
6621507 September 2003 Shah
6622926 September 2003 Sartain et al.
6628993 September 2003 Bauer
6633781 October 2003 Lee et al.
6636771 October 2003 Varma et al.
6640145 October 2003 Hoffberg et al.
6640890 November 2003 Dage et al.
6643689 November 2003 Rode et al.
6644557 November 2003 Jacobs
6647317 November 2003 Takai et al.
6650949 November 2003 Fera et al.
6651034 November 2003 Pander et al.
6658373 December 2003 Rossi et al.
RE38406 January 2004 Faris et al.
6681215 January 2004 Jammu
6688387 February 2004 Wellington et al.
6704688 March 2004 Aslam et al.
6708239 March 2004 Ellerbrock et al.
6715120 March 2004 Hladik et al.
6715302 April 2004 Ferragut, II
6715690 April 2004 Hull et al.
6717513 April 2004 Sandelman et al.
6717919 April 2004 Ketcham et al.
6718384 April 2004 Linzy
6722143 April 2004 Moon et al.
6725180 April 2004 Mayer et al.
6725398 April 2004 Varma et al.
6728369 April 2004 Burgess
6732191 May 2004 Baker et al.
6735196 May 2004 Manzardo
6735282 May 2004 Matsushita et al.
6735965 May 2004 Moon et al.
6738676 May 2004 Hirayama
6741915 May 2004 Poth
6744771 June 2004 Barber et al.
6745106 June 2004 Howard et al.
6747888 June 2004 Klein
6758050 July 2004 Jayanth et al.
6758051 July 2004 Jayanth et al.
6763040 July 2004 Hite et al.
6763272 July 2004 Knepper
6765993 July 2004 Cueman
6768732 July 2004 Neuhaus
6774786 August 2004 Havekost et al.
6779176 August 2004 Chambers, II et al.
6783079 August 2004 Carey et al.
6789739 September 2004 Rosen
6791530 September 2004 Vernier et al.
6795935 September 2004 Unkle et al.
6798341 September 2004 Eckel et al.
6801524 October 2004 Eteminan
6804564 October 2004 Crispin et al.
6810333 October 2004 Adedeji et al.
6814299 November 2004 Carey
6814660 November 2004 Cavett
6816071 November 2004 Conti
6817757 November 2004 Wallace
6819802 November 2004 Higgs et al.
6822202 November 2004 Atlas
6823680 November 2004 Jayanth
6824069 November 2004 Rosen
6826454 November 2004 Sulfstede
6826590 November 2004 Glanzer et al.
6832118 December 2004 Heberlein et al.
6833787 December 2004 Levi
6833844 December 2004 Shiota et al.
6840052 January 2005 Smith et al.
6842117 January 2005 Keown
6842808 January 2005 Weigl et al.
6845918 January 2005 Rotondo
6850992 February 2005 Heinrich et al.
6851948 February 2005 Dempsey et al.
6853291 February 2005 Aisa
6854444 February 2005 Plagge et al.
6865449 March 2005 Dudley
6865596 March 2005 Barber et al.
6865898 March 2005 Yamanashi et al.
6866375 March 2005 Phillips et al.
6868292 March 2005 Ficco et al.
6868900 March 2005 Dage et al.
6874693 April 2005 Readio et al.
6876891 April 2005 Schuler et al.
6879881 April 2005 Attridge, Jr.
6888441 May 2005 Carey
6892121 May 2005 Schmidt
6894703 May 2005 Vernier et al.
6900808 May 2005 Lassiter et al.
6901316 May 2005 Jensen et al.
6901439 May 2005 Bonasia et al.
6907329 June 2005 Junger et al.
6909948 June 2005 Mollmann et al.
6914893 July 2005 Petite
6918064 July 2005 Mueller et al.
6920318 July 2005 Brooking et al.
6925360 August 2005 Yoon et al.
6931645 August 2005 Murching et al.
6938106 August 2005 Ellerbrock et al.
6941193 September 2005 Frecska et al.
6944785 September 2005 Gadir et al.
6954680 October 2005 Kreidler et al.
6955060 October 2005 Homan et al.
6955302 October 2005 Erdman, Jr.
6956424 October 2005 Hohnel
6957696 October 2005 Krumnow
6963288 November 2005 Sokol et al.
6963922 November 2005 Papadopoulos et al.
6965802 November 2005 Sexton
6967565 November 2005 Lingemann
6968295 November 2005 Carr
6973366 December 2005 Komai
6975219 December 2005 Eryurek et al.
6975913 December 2005 Kreidler et al.
6975958 December 2005 Bohrer et al.
6980796 December 2005 Cuellar et al.
6981266 December 2005 An et al.
6983271 January 2006 Morrow et al.
6983889 January 2006 Alles
6988011 January 2006 Varma et al.
6988671 January 2006 DeLuca
6990381 January 2006 Nomura et al.
6990540 January 2006 Dalakuras et al.
6993414 January 2006 Shah
RE38985 February 2006 Boatman et al.
6994620 February 2006 Mills
6999473 February 2006 Windecker
6999824 February 2006 Glanzer et al.
7000849 February 2006 Ashworth et al.
7002462 February 2006 Welch
7003378 February 2006 Poth
7006460 February 2006 Vollmer et al.
7006881 February 2006 Hoffberg et al.
7013239 March 2006 Hedlund et al.
7017827 March 2006 Shah et al.
7020798 March 2006 Meng et al.
7022008 April 2006 Crocker
7024282 April 2006 Coogan et al.
7024283 April 2006 Bicknell
7025281 April 2006 DeLuca
7027808 April 2006 Wesby
7029391 April 2006 Nagaya et al.
7031880 April 2006 Seem et al.
7032018 April 2006 Lee et al.
7035719 April 2006 Howard et al.
7035898 April 2006 Baker
7036743 May 2006 Shah
7043339 May 2006 Maeda et al.
7044397 May 2006 Bartlett et al.
7047092 May 2006 Wimsatt
7051282 May 2006 Marcjan
7055759 June 2006 Wacker et al.
7058459 June 2006 Weiberle et al.
7058477 June 2006 Rosen
7058693 June 2006 Baker, Jr.
7058737 June 2006 Ellerbrock et al.
7062927 June 2006 Kwon et al.
7068612 June 2006 Berkcan et al.
7076962 July 2006 He et al.
7082339 July 2006 Murray et al.
7082352 July 2006 Lim
7083109 August 2006 Pouchak
7085626 August 2006 Harrod et al.
7085814 August 2006 Gandhi et al.
7089087 August 2006 Dudley
7089088 August 2006 Terry et al.
7089530 August 2006 Dardinski et al.
7092768 August 2006 Labuda
7092772 August 2006 Murray et al.
7092794 August 2006 Hill et al.
7096078 August 2006 Burr et al.
7096285 August 2006 Ellerbrock et al.
7096465 August 2006 Dardinski et al.
7099965 August 2006 Ellerbrock et al.
7100382 September 2006 Butler et al.
7103000 September 2006 Rode et al.
7103016 September 2006 Duffy et al.
7103420 September 2006 Brown et al.
7110835 September 2006 Blevins et al.
7114088 September 2006 Horbelt
7114554 October 2006 Bergman et al.
7117050 October 2006 Sasaki et al.
7117051 October 2006 Landry et al.
7117395 October 2006 Opaterny
7120036 October 2006 Kyono
7123428 October 2006 Yeo et al.
7123774 October 2006 Dhavala et al.
7127305 October 2006 Palmon
7127327 October 2006 O'Donnell
7130409 October 2006 Beyda
7130719 October 2006 Ehlers et al.
7133407 November 2006 Jinzaki et al.
7133748 November 2006 Robinson
7133749 November 2006 Goldberg et al.
7135982 November 2006 Lee
7139550 November 2006 Cuellar et al.
7142948 November 2006 Metz
7146230 December 2006 Glanzer et al.
7146231 December 2006 Schleiss et al.
7146253 December 2006 Hoog et al.
7150408 December 2006 DeLuca
7155318 December 2006 Sharma et al.
7155499 December 2006 Soemo et al.
7156316 January 2007 Kates
7162512 January 2007 Amit et al.
7162883 January 2007 Jayanth et al.
7163156 January 2007 Kates
7163158 January 2007 Rossi et al.
7167762 January 2007 Glanzer et al.
7168627 January 2007 Kates
7171579 January 2007 Weigl et al.
7172132 February 2007 Proffitt et al.
7172160 February 2007 Piel et al.
7174239 February 2007 Butler et al.
7174728 February 2007 Jayanth
7175086 February 2007 Gascoyne et al.
7175098 February 2007 DeLuca
7177926 February 2007 Kramer
7181317 February 2007 Amundson et al.
7185262 February 2007 Barthel et al.
7186290 March 2007 Sheehan et al.
7187354 March 2007 Min et al.
7187986 March 2007 Johnson et al.
7188002 March 2007 Chapman, Jr. et al.
7188207 March 2007 Mitter
7188482 March 2007 Sadegh et al.
7188779 March 2007 Alles
7191028 March 2007 Nomura et al.
7194663 March 2007 Fletcher et al.
7195211 March 2007 Kande et al.
7197717 March 2007 Anderson et al.
7200450 April 2007 Boyer et al.
7203165 April 2007 Kowalewski
7203575 April 2007 Maturana et al.
7203776 April 2007 Junger et al.
7206646 April 2007 Nixon et al.
7206647 April 2007 Kumar
7209485 April 2007 Guse
7209748 April 2007 Wong et al.
7212825 May 2007 Wong et al.
7213044 May 2007 Tjong et al.
7216016 May 2007 Van Ostrand et al.
7216017 May 2007 Kwon et al.
7216497 May 2007 Hull et al.
7218589 May 2007 Wisnudel et al.
7218996 May 2007 Beitelmal et al.
7219141 May 2007 Bonasia et al.
7222111 May 2007 Budke, Jr.
7222152 May 2007 Thompson et al.
7222493 May 2007 Jayanth et al.
7222494 May 2007 Peterson et al.
7224366 May 2007 Kessler et al.
7225054 May 2007 Amundson et al.
7225356 May 2007 Monitzer
7228187 June 2007 Ticky et al.
7232058 June 2007 Lee
7233229 June 2007 Stroupe et al.
7239623 July 2007 Burghardt et al.
7242988 July 2007 Hoffberg et al.
7243004 July 2007 Shah et al.
7244294 July 2007 Kates
7246753 July 2007 Hull et al.
7248576 July 2007 Hoffmann
7251534 July 2007 Walls et al.
7257813 August 2007 Mayer et al.
7259666 August 2007 Hermsmeyer et al.
7260084 August 2007 Saller
7260451 August 2007 Takai et al.
7260609 August 2007 Fuehrer et al.
7260948 August 2007 Jayanth et al.
7261241 August 2007 Eoga
7261243 August 2007 Butler et al.
7261762 August 2007 Kang et al.
7266775 September 2007 Patitucci
7266960 September 2007 Shah
7269962 September 2007 Bachmann
7272154 September 2007 Loebig
7272452 September 2007 Coogan et al.
7272457 September 2007 Glanzer et al.
7274972 September 2007 Amundson et al.
7274973 September 2007 Nichols et al.
7277280 October 2007 Peng
7277970 October 2007 Ellerbrock et al.
7278103 October 2007 Clark et al.
7281697 October 2007 Reggiani
7287062 October 2007 Im et al.
7287708 October 2007 Lucas et al.
7287709 October 2007 Proffitt et al.
7289458 October 2007 Gila et al.
7292900 November 2007 Kreidler et al.
7293422 November 2007 Parachini et al.
7295099 November 2007 Lee et al.
7296426 November 2007 Butler et al.
7299279 November 2007 Sadaghiany
7299996 November 2007 Garrett et al.
7301699 November 2007 Kanamori et al.
7302642 November 2007 Smith et al.
7305495 December 2007 Carter
7306165 December 2007 Shah
7310559 December 2007 Walko, Jr.
7313465 December 2007 O'Donnell
7313716 December 2007 Weigl et al.
7313923 January 2008 Jayanth et al.
7315768 January 2008 Dang et al.
7317970 January 2008 Pienta et al.
7318089 January 2008 Stachura et al.
7320110 January 2008 Shah
7324874 January 2008 Jung
7327376 February 2008 Shen et al.
7327815 February 2008 Jurisch
7330512 February 2008 Frank et al.
7331191 February 2008 He et al.
7334161 February 2008 Williams et al.
7336650 February 2008 Franz et al.
7337369 February 2008 Barthel et al.
7337619 March 2008 Hsieh et al.
7343226 March 2008 Ehlers et al.
7346404 March 2008 Eryurek et al.
7346433 March 2008 Budike, Jr.
7346835 March 2008 Lobinger et al.
7349761 March 2008 Cruse
7354005 April 2008 Carey et al.
7356050 April 2008 Reindl et al.
7359335 April 2008 Knop et al.
7359345 April 2008 Chang et al.
7360002 April 2008 Brueckner et al.
7360370 April 2008 Shah et al.
7360717 April 2008 Shah
7364093 April 2008 Garozzo
7365812 April 2008 Lee
7366498 April 2008 Ko et al.
7366944 April 2008 Oshins et al.
7370074 May 2008 Alexander et al.
7377450 May 2008 Van Ostrand et al.
7379791 May 2008 Tamarkin et al.
7379997 May 2008 Ehlers et al.
7383158 June 2008 Krocker et al.
7389150 June 2008 Inoue et al.
7389204 June 2008 Eryurek et al.
RE40437 July 2008 Rosen et al.
7392661 July 2008 Alles
7395122 July 2008 Kreidler et al.
7395137 July 2008 Robinson
7403128 July 2008 Scuka et al.
7412839 August 2008 Jayanth
7412842 August 2008 Pham
7418428 August 2008 Ehlers et al.
7424345 September 2008 Norbeck
D578026 October 2008 Roher et al.
7433740 October 2008 Hesse et al.
7434744 October 2008 Garozzo et al.
7436292 October 2008 Rourke et al.
7436293 October 2008 Rourke et al.
7436296 October 2008 Rourke et al.
7436400 October 2008 Cheng
7437198 October 2008 Iwaki
7439862 October 2008 Quan
7441094 October 2008 Stephens
7446660 November 2008 Posamentier
7448435 November 2008 Garozzo
7451937 November 2008 Flood et al.
7454269 November 2008 Dushane et al.
7455240 November 2008 Chapman, Jr. et al.
7457853 November 2008 Chari et al.
7460933 December 2008 Chapman, Jr. et al.
7476988 January 2009 Mulhouse et al.
7516106 April 2009 Ehlers et al.
7526364 April 2009 Rule et al.
7567844 July 2009 Thomas et al.
7571195 August 2009 Billingsley et al.
7571355 August 2009 Shabalin
7574871 August 2009 Bloemer et al.
7584897 September 2009 Schultz et al.
7587459 September 2009 Wewalaarachchi
7593124 September 2009 Sheng et al.
7593787 September 2009 Feingold et al.
7604046 October 2009 Bergman et al.
7624931 December 2009 Chapman et al.
7641126 January 2010 Schultz et al.
7650323 January 2010 Hesse et al.
D610475 February 2010 Beers et al.
7693583 April 2010 Wolff et al.
7693591 April 2010 Hoglund et al.
7706923 April 2010 Amundson et al.
7730223 June 2010 Bavor et al.
7734572 June 2010 Wiemeyer et al.
7743124 June 2010 Holdaway et al.
7747757 June 2010 Garglulo et al.
7752289 July 2010 Kikkawa et al.
7761563 July 2010 Shike et al.
7774102 August 2010 Butler et al.
7797349 September 2010 Kosaka
7809472 October 2010 Silva et al.
7827963 November 2010 Li et al.
7847790 December 2010 Bewley et al.
7861941 January 2011 Schultz et al.
7870080 January 2011 Budike, Jr.
7886166 February 2011 Shnekendorf et al.
7904209 March 2011 Podgorny et al.
7934504 May 2011 Lowe et al.
7949615 May 2011 Ehlers et al.
7963454 June 2011 Sullivan et al.
D642081 July 2011 Kashimoto
7979164 July 2011 Garozzo et al.
8005576 August 2011 Rodgers
8024054 September 2011 Mairs et al.
8032254 October 2011 Amundson et al.
8042049 October 2011 Killian et al.
D648641 November 2011 Wallaert
D648642 November 2011 Wallaert
8050801 November 2011 Richards et al.
8082068 December 2011 Rodgers
8083154 December 2011 Schultz et al.
8087593 January 2012 Leen
8091796 January 2012 Amundson et al.
8099178 January 2012 Mairs et al.
8103390 January 2012 Rodgers
8112181 February 2012 Remsburg
8116917 February 2012 Rodgers
8122110 February 2012 Wilbur et al.
8127060 February 2012 Doll et al.
8167216 May 2012 Schultz et al.
8183995 May 2012 Wang et al.
8219249 July 2012 Harrod et al.
8224491 July 2012 Koster et al.
8239066 August 2012 Jennings et al.
8239073 August 2012 Fausak et al.
8244383 August 2012 Bergman et al.
8255090 August 2012 Frader-Thompson
2001/0025349 September 2001 Sharood et al.
2001/0034586 October 2001 Ewert et al.
2001/0048376 December 2001 Maeda et al.
2001/0055311 December 2001 Trachewsky et al.
2002/0002425 January 2002 Dossey et al.
2002/0013897 January 2002 McTernan et al.
2002/0016639 February 2002 Smith et al.
2002/0022894 February 2002 Eryurek et al.
2002/0026476 February 2002 Miyazaki et al.
2002/0033252 March 2002 Sasao et al.
2002/0048194 April 2002 Klein
2002/0072814 June 2002 Schuler et al.
2002/0091784 July 2002 Baker et al.
2002/0104323 August 2002 Rash et al.
2002/0116550 August 2002 Hansen
2002/0123896 September 2002 Diez et al.
2002/0124211 September 2002 Gray et al.
2002/0143523 October 2002 Balaji et al.
2002/0152298 October 2002 Kikta et al.
2002/0157054 October 2002 Shin et al.
2002/0163427 November 2002 Eryurek et al.
2002/0178288 November 2002 McLeod
2002/0190242 December 2002 Iillie et al.
2002/0191026 December 2002 Rodden et al.
2002/0191603 December 2002 Shin et al.
2003/0058863 March 2003 Oost
2003/0061340 March 2003 Sun et al.
2003/0078677 April 2003 Hull et al.
2003/0088338 May 2003 Phillips et al.
2003/0097482 May 2003 DeHart et al.
2003/0108064 June 2003 Bilke et al.
2003/0115177 June 2003 Takanabe et al.
2003/0116637 June 2003 Ellingham
2003/0154355 August 2003 Fernandez
2003/0193481 October 2003 Sokolsky
2003/0206100 November 2003 Richman et al.
2003/0229784 December 2003 Cuellar et al.
2004/0001478 January 2004 Wong
2004/0003051 January 2004 Kryzanowski et al.
2004/0003415 January 2004 Ng
2004/0025089 February 2004 Haswarey et al.
2004/0039478 February 2004 Kiesel et al.
2004/0059815 March 2004 Buckingham et al.
2004/0066788 April 2004 Lin et al.
2004/0088069 May 2004 Singh
2004/0095237 May 2004 Chen et al.
2004/0104942 June 2004 Weigel
2004/0107717 June 2004 Yoon et al.
2004/0111186 June 2004 Rossi et al.
2004/0111254 June 2004 Gogel et al.
2004/0117330 June 2004 Ehlers et al.
2004/0133314 July 2004 Ehlers et al.
2004/0133704 July 2004 Kryzyanowski
2004/0138981 July 2004 Ehlers et al.
2004/0139038 July 2004 Ehlers et al.
2004/0143360 July 2004 Kiesel et al.
2004/0146008 July 2004 Conradt et al.
2004/0148482 July 2004 Grundy et al.
2004/0156360 August 2004 Sexton et al.
2004/0159112 August 2004 Jayanth et al.
2004/0189590 September 2004 Mehaffey et al.
2004/0204775 October 2004 Keyes et al.
2004/0205781 October 2004 Hill et al.
2004/0206096 October 2004 Jayanth
2004/0210348 October 2004 Imhof et al.
2004/0218591 November 2004 Ogawa et al.
2004/0222307 November 2004 DeLuca
2004/0236471 November 2004 Poth
2004/0245352 December 2004 Smith et al.
2004/0260427 December 2004 Wimsatt
2004/0266491 December 2004 Howard et al.
2004/0267385 December 2004 Lingemann
2004/0267395 December 2004 Discenzo et al.
2004/0267790 December 2004 Pak et al.
2005/0005249 January 2005 Hill et al.
2005/0007249 January 2005 Eryurek et al.
2005/0010759 January 2005 Wakiyama
2005/0033707 February 2005 Ehlers et al.
2005/0034023 February 2005 Maturana et al.
2005/0040247 February 2005 Pouchak
2005/0040250 February 2005 Wruck
2005/0041033 February 2005 Hilts et al.
2005/0041633 February 2005 Roeser et al.
2005/0046584 March 2005 Breed
2005/0051168 March 2005 DeVries et al.
2005/0054381 March 2005 Lee et al.
2005/0055427 March 2005 Frutiger et al.
2005/0068978 March 2005 Sexton et al.
2005/0073789 April 2005 Tanis
2005/0076150 April 2005 Lee et al.
2005/0080879 April 2005 Kim et al.
2005/0081156 April 2005 Clark et al.
2005/0081157 April 2005 Clark et al.
2005/0090915 April 2005 Gelwtiz
2005/0096872 May 2005 Blevins et al.
2005/0097478 May 2005 Killian et al.
2005/0103874 May 2005 Erdman
2005/0109048 May 2005 Lee
2005/0116023 June 2005 Amundson et al.
2005/0118996 June 2005 Lee et al.
2005/0119765 June 2005 Bergman
2005/0119766 June 2005 Amundson et al.
2005/0119771 June 2005 Amundson et al.
2005/0119793 June 2005 Amundson et al.
2005/0119794 June 2005 Amundson et al.
2005/0120012 June 2005 Poth et al.
2005/0125495 June 2005 Tjong et al.
2005/0143138 June 2005 Lee et al.
2005/0145705 July 2005 Shah et al.
2005/0150967 July 2005 Chapman et al.
2005/0154494 July 2005 Ahmed
2005/0159848 July 2005 Shah et al.
2005/0159924 July 2005 Shah et al.
2005/0161517 July 2005 Helt et al.
2005/0166610 August 2005 Jayanth
2005/0176410 August 2005 Brooking et al.
2005/0182498 August 2005 Landou et al.
2005/0192727 September 2005 Shostak et al.
2005/0193155 September 2005 Fujita
2005/0198040 September 2005 Cohen et al.
2005/0223339 October 2005 Lee
2005/0229610 October 2005 Park et al.
2005/0235661 October 2005 Pham
2005/0235662 October 2005 Pham
2005/0235663 October 2005 Pham
2005/0240312 October 2005 Terry et al.
2005/0252673 November 2005 Kregle et al.
2005/0256591 November 2005 Rule et al.
2005/0256935 November 2005 Overstreet et al.
2005/0258257 November 2005 Thurman et al.
2005/0270151 December 2005 Winick
2005/0278071 December 2005 Durham, III
2005/0280364 December 2005 Omura et al.
2005/0281368 December 2005 Droba et al.
2005/0288823 December 2005 Hesse et al.
2006/0006244 January 2006 Morrow et al.
2006/0009861 January 2006 Bonasla
2006/0009863 January 2006 Lingemann
2006/0021358 February 2006 Nallapa
2006/0021359 February 2006 Hur et al.
2006/0030954 February 2006 Bergman et al.
2006/0036350 February 2006 Bohrer et al.
2006/0036952 February 2006 Yang
2006/0041898 February 2006 Potyrailo et al.
2006/0045107 March 2006 Kucenas et al.
2006/0048064 March 2006 Vronay
2006/0058924 March 2006 Shah
2006/0063523 March 2006 McFarland et al.
2006/0090142 April 2006 Glasgow et al.
2006/0090483 May 2006 Kim et al.
2006/0091227 May 2006 Attridge, Jr.
2006/0092977 May 2006 Bai et al.
2006/0106791 May 2006 Morrow et al.
2006/0108432 May 2006 Mattheis
2006/0111816 May 2006 Spalink et al.
2006/0130497 June 2006 Kang et al.
2006/0144055 July 2006 Ahn
2006/0144232 July 2006 Kang et al.
2006/0149414 July 2006 Archacki, Jr. et al.
2006/0150027 July 2006 Paden
2006/0153247 July 2006 Stumer
2006/0155398 July 2006 Hoffberg et al.
2006/0158051 July 2006 Bartlett et al.
2006/0159007 July 2006 Frutiger et al.
2006/0168522 July 2006 Bala
2006/0185818 August 2006 Garozzo
2006/0186214 August 2006 Simon et al.
2006/0190138 August 2006 Stone et al.
2006/0192021 August 2006 Schultz et al.
2006/0192022 August 2006 Barton et al.
2006/0196953 September 2006 Simon et al.
2006/0200253 September 2006 Hoffberg et al.
2006/0200258 September 2006 Hoffberg et al.
2006/0200259 September 2006 Hoffberg et al.
2006/0200260 September 2006 Hoffberg et al.
2006/0202978 September 2006 Lee et al.
2006/0206220 September 2006 Amundson
2006/0209208 September 2006 Kim et al.
2006/0212194 September 2006 Breed
2006/0219799 October 2006 Schultz et al.
2006/0229090 October 2006 LaDue
2006/0235548 October 2006 Gaudette
2006/0236351 October 2006 Ellerbrock et al.
2006/0239296 October 2006 Jinzaki et al.
2006/0248233 November 2006 Park et al.
2006/0250578 November 2006 Pohl et al.
2006/0250979 November 2006 Gauweller et al.
2006/0267756 November 2006 Kates
2006/0276917 December 2006 Li et al.
2007/0005191 January 2007 Sloup et al.
2007/0008116 January 2007 Bergman et al.
2007/0012052 January 2007 Butler et al.
2007/0013534 January 2007 DiMaggio
2007/0014233 January 2007 Oguro et al.
2007/0016311 January 2007 Bergman et al.
2007/0016476 January 2007 Hoffberg et al.
2007/0019683 January 2007 Kryzyanowski
2007/0025368 February 2007 Ha et al.
2007/0032909 February 2007 Tolbert, Jr. et al.
2007/0033310 February 2007 Kweon
2007/0035255 February 2007 Shuster et al.
2007/0040040 February 2007 Mueller
2007/0043477 February 2007 Ehlers et al.
2007/0043478 February 2007 Ehlers et al.
2007/0045429 March 2007 Chapman, Jr. et al.
2007/0045431 March 2007 Chapman, Jr. et al.
2007/0045442 March 2007 Chapman, Jr. et al.
2007/0051818 March 2007 Atlas
2007/0053513 March 2007 Hoffberg
2007/0055407 March 2007 Goldberg et al.
2007/0055757 March 2007 Mairs et al.
2007/0067062 March 2007 Mairs et al.
2007/0067496 March 2007 Deiretsbacher et al.
2007/0073973 March 2007 Hazay
2007/0080235 April 2007 Fulton, Jr.
2007/0083721 April 2007 Grinspan
2007/0084937 April 2007 Ahmed
2007/0088883 April 2007 Wakabayashi
2007/0089090 April 2007 Riedl et al.
2007/0090199 April 2007 Hull et al.
2007/0093226 April 2007 Foltyn et al.
2007/0097993 May 2007 Bojahra et al.
2007/0102149 May 2007 Kates
2007/0109114 May 2007 Farley et al.
2007/0109975 May 2007 Reckamp et al.
2007/0113247 May 2007 Kwak
2007/0114291 May 2007 Pouchak
2007/0119957 May 2007 Kates
2007/0119958 May 2007 Kates
2007/0129820 June 2007 Glanzer et al.
2007/0129825 June 2007 Kargenian
2007/0129826 June 2007 Kreidler et al.
2007/0129917 June 2007 Blevins et al.
2007/0130834 June 2007 Kande et al.
2007/0130969 June 2007 Peterson et al.
2007/0131784 June 2007 Garozzo et al.
2007/0135692 June 2007 Hwang et al.
2007/0135946 June 2007 Sugiyama et al.
2007/0136669 June 2007 Kwon et al.
2007/0136687 June 2007 Pak
2007/0138307 June 2007 Khoo
2007/0138308 June 2007 Schultz et al.
2007/0143704 June 2007 Laird-McConnell
2007/0143707 June 2007 Yun et al.
2007/0157016 July 2007 Dayan et al.
2007/0158442 July 2007 Chapman, Jr. et al.
2007/0168887 July 2007 Lee
2007/0177505 August 2007 Charrua et al.
2007/0191024 August 2007 Kim et al.
2007/0192731 August 2007 Townsend et al.
2007/0204637 September 2007 Fujii et al.
2007/0205297 September 2007 Finkam et al.
2007/0205916 September 2007 Blom et al.
2007/0208461 September 2007 Chase
2007/0208549 September 2007 Blevins et al.
2007/0213853 September 2007 Glanzer et al.
2007/0219645 September 2007 Thomas et al.
2007/0220301 September 2007 Brundridge et al.
2007/0220907 September 2007 Ehlers
2007/0223500 September 2007 Lee et al.
2007/0225868 September 2007 Terlson et al.
2007/0225869 September 2007 Amundson et al.
2007/0233323 October 2007 Wiemeyer et al.
2007/0236156 October 2007 Lys et al.
2007/0237032 October 2007 Rhee et al.
2007/0238413 October 2007 Coutts
2007/0239658 October 2007 Cunningham et al.
2007/0240226 October 2007 Song et al.
2007/0241203 October 2007 Wagner et al.
2007/0242058 October 2007 Yamada
2007/0245306 October 2007 Dameshek et al.
2007/0257120 November 2007 Chapman, Jr. et al.
2007/0260782 November 2007 Shaikli
2007/0260978 November 2007 Oh et al.
2007/0266329 November 2007 Gaudette
2007/0271521 November 2007 Harriger et al.
2007/0274093 November 2007 Haim et al.
2007/0277013 November 2007 Rexha et al.
2007/0278320 December 2007 Lunacek et al.
2007/0284452 December 2007 Butler et al.
2007/0299857 December 2007 Gwozdz et al.
2007/0300064 December 2007 Isaacs et al.
2008/0003845 January 2008 Hong et al.
2008/0004727 January 2008 Glanzer et al.
2008/0005428 January 2008 Maul et al.
2008/0006709 January 2008 Ashworth et al.
2008/0013259 January 2008 Barton et al.
2008/0029610 February 2008 Nichols
2008/0031147 February 2008 Fieremans et al.
2008/0040351 February 2008 Jin et al.
2008/0048045 February 2008 Butler et al.
2008/0048046 February 2008 Wagner et al.
2008/0054082 March 2008 Evans et al.
2008/0055190 March 2008 Lee
2008/0056722 March 2008 Hendrix et al.
2008/0057872 March 2008 McFarland et al.
2008/0057931 March 2008 Nass et al.
2008/0058996 March 2008 Sachdev et al.
2008/0059682 March 2008 Cooley et al.
2008/0062892 March 2008 Dodgen et al.
2008/0063006 March 2008 Nichols
2008/0065926 March 2008 Poth et al.
2008/0072704 March 2008 Clark et al.
2008/0073440 March 2008 Butler et al.
2008/0077884 March 2008 Patitucci
2008/0077886 March 2008 Eichner
2008/0082767 April 2008 Nulkar et al.
2008/0083009 April 2008 Kaler et al.
2008/0083834 April 2008 Krebs et al.
2008/0097651 April 2008 Shah et al.
2008/0104189 May 2008 Baker et al.
2008/0114500 May 2008 Hull et al.
2008/0120335 May 2008 Dolgoff
2008/0121729 May 2008 Gray
2008/0128523 June 2008 Hoglund et al.
2008/0129475 June 2008 Breed et al.
2008/0133033 June 2008 Wolff et al.
2008/0133060 June 2008 Hoglund et al.
2008/0133061 June 2008 Hoglund et al.
2008/0134087 June 2008 Hoglund et al.
2008/0134098 June 2008 Hoglund et al.
2008/0144302 June 2008 Rosenblatt
2008/0148098 June 2008 Chen
2008/0161977 July 2008 Takach et al.
2008/0161978 July 2008 Shah
2008/0168255 July 2008 Abou-Emara et al.
2008/0168356 July 2008 Eryurek et al.
2008/0183335 July 2008 Poth et al.
2008/0184059 July 2008 Chen
2008/0185976 August 2008 Dickey et al.
2008/0186160 August 2008 Kim et al.
2008/0192649 August 2008 Pyeon et al.
2008/0195254 August 2008 Jung et al.
2008/0195581 August 2008 Ashmore et al.
2008/0195687 August 2008 Jung et al.
2008/0198036 August 2008 Songkakul et al.
2008/0215987 September 2008 Alexander et al.
2008/0217418 September 2008 Helt et al.
2008/0217419 September 2008 Ehlers et al.
2008/0223944 September 2008 Helt et al.
2008/0235611 September 2008 Fraley et al.
2008/0256475 October 2008 Amundson et al.
2008/0264085 October 2008 Perry et al.
2008/0272934 November 2008 Wang et al.
2008/0281472 November 2008 Podgorny et al.
2008/0294274 November 2008 Laberge et al.
2008/0294932 November 2008 Oshins et al.
2009/0001180 January 2009 Siddaramanna et al.
2009/0001182 January 2009 Siddaramanna et al.
2009/0049847 February 2009 Butler et al.
2009/0052105 February 2009 Soleimani et al.
2009/0057424 March 2009 Sullivan et al.
2009/0057425 March 2009 Sullivan et al.
2009/0065597 March 2009 Garozzo et al.
2009/0094506 April 2009 Lakkis
2009/0105846 April 2009 Hesse et al.
2009/0113037 April 2009 Pouchak
2009/0119092 May 2009 Balasubramanyan
2009/0132091 May 2009 Chambers et al.
2009/0140056 June 2009 Leen
2009/0140057 June 2009 Leen
2009/0140058 June 2009 Koster et al.
2009/0140061 June 2009 Schultz et al.
2009/0140062 June 2009 Amundson et al.
2009/0140063 June 2009 Koster et al.
2009/0140064 June 2009 Schultz et al.
2009/0143879 June 2009 Amundson et al.
2009/0143880 June 2009 Amundson et al.
2009/0143916 June 2009 Boll et al.
2009/0143918 June 2009 Amundson et al.
2009/0157529 June 2009 Ehlers et al.
2009/0195349 August 2009 Frader-Thompson
2009/0198810 August 2009 Bayer et al.
2009/0245278 October 2009 Kee
2009/0257431 October 2009 Ramanathan et al.
2009/0259785 October 2009 Perry et al.
2009/0261174 October 2009 Butler et al.
2009/0261767 October 2009 Butler et al.
2009/0266904 October 2009 Cohen
2009/0267540 October 2009 Chemel et al.
2009/0271336 October 2009 Franks
2009/0287736 November 2009 Shike et al.
2010/0011437 January 2010 Courtney
2010/0023865 January 2010 Fulker et al.
2010/0050075 February 2010 Thorson et al.
2010/0050108 February 2010 Mirza
2010/0070086 March 2010 Harrod et al.
2010/0070089 March 2010 Harrod et al.
2010/0070093 March 2010 Harrod et al.
2010/0070907 March 2010 Harrod et al.
2010/0073159 March 2010 Schmickley et al.
2010/0076605 March 2010 Harrod et al.
2010/0100253 April 2010 Fausak et al.
2010/0101854 April 2010 Wallaert et al.
2010/0102136 April 2010 Hadzidedic et al.
2010/0102948 April 2010 Grohman et al.
2010/0102973 April 2010 Grohman et al.
2010/0106305 April 2010 Pavlak et al.
2010/0106307 April 2010 Grohman et al.
2010/0106308 April 2010 Filbeck et al.
2010/0106309 April 2010 Grohman et al.
2010/0106310 April 2010 Grohman
2010/0106311 April 2010 Wallaert
2010/0106312 April 2010 Grohman et al.
2010/0106313 April 2010 Grohman et al.
2010/0106314 April 2010 Grohman et al.
2010/0106315 April 2010 Grohman
2010/0106316 April 2010 Curry et al.
2010/0106317 April 2010 Grohman et al.
2010/0106318 April 2010 Grohman et al.
2010/0106319 April 2010 Grohman et al.
2010/0106320 April 2010 Grohman et al.
2010/0106321 April 2010 Hadzidedic
2010/0106322 April 2010 Grohman
2010/0106323 April 2010 Wallaert
2010/0106324 April 2010 Grohman
2010/0106325 April 2010 Grohman
2010/0106326 April 2010 Grohman
2010/0106327 April 2010 Grohman et al.
2010/0106329 April 2010 Grohman
2010/0106330 April 2010 Grohman
2010/0106333 April 2010 Grohman et al.
2010/0106334 April 2010 Grohman et al.
2010/0106787 April 2010 Grohman
2010/0106809 April 2010 Grohman
2010/0106810 April 2010 Grohman
2010/0106814 April 2010 Hadzidedic et al.
2010/0106815 April 2010 Grohman et al.
2010/0106925 April 2010 Grohman et al.
2010/0106957 April 2010 Grohman et al.
2010/0107007 April 2010 Grohman et al.
2010/0107070 April 2010 Devineni et al.
2010/0107071 April 2010 Pavlak et al.
2010/0107072 April 2010 Mirza et al.
2010/0107073 April 2010 Wallaert
2010/0107074 April 2010 Pavlak et al.
2010/0107076 April 2010 Grohman
2010/0107083 April 2010 Grohman
2010/0107103 April 2010 Wallaert
2010/0107109 April 2010 Filbeck
2010/0107110 April 2010 Mirza
2010/0107111 April 2010 Mirza
2010/0107112 April 2010 Jennings et al.
2010/0107232 April 2010 Grohman et al.
2010/0115364 May 2010 Grohman
2010/0142526 June 2010 Wong
2010/0145629 June 2010 Botich et al.
2010/0168924 July 2010 Tessier et al.
2010/0169419 July 2010 DeVilbiss et al.
2010/0179696 July 2010 Grohman et al.
2010/0211546 August 2010 Grohman et al.
2010/0241245 September 2010 Wiemeyer et al.
2010/0259931 October 2010 Chemel et al.
2010/0264846 October 2010 Chemel et al.
2010/0270933 October 2010 Chemel et al.
2010/0295474 November 2010 Chemel et al.
2010/0295475 November 2010 Chemel et al.
2010/0295482 November 2010 Chemel et al.
2010/0301768 December 2010 Chemel et al.
2010/0301769 December 2010 Chemel et al.
2010/0301770 December 2010 Chemel et al.
2010/0301771 December 2010 Chemel et al.
2010/0301772 December 2010 Chemel et al.
2010/0301773 December 2010 Chemel et al.
2010/0301774 December 2010 Chemel et al.
2010/0305761 December 2010 Remsburg
2010/0314458 December 2010 Votaw et al.
2010/0319362 December 2010 Hisaoka
2011/0001436 January 2011 Chemel et al.
2011/0001438 January 2011 Chemel et al.
2011/0004823 January 2011 Wallaert
2011/0004824 January 2011 Thorson et al.
2011/0007016 January 2011 Mirza et al.
2011/0007017 January 2011 Wallaert
2011/0010620 January 2011 Mirza et al.
2011/0010621 January 2011 Wallaert
2011/0010652 January 2011 Wallaert
2011/0010653 January 2011 Wallaert
2011/0010660 January 2011 Thorson et al.
2011/0032932 February 2011 Pyeon et al.
2011/0040785 February 2011 Steenberg et al.
2011/0061014 March 2011 Frader-Thompson et al.
2011/0063126 March 2011 Kennedy et al.
2012/0012662 January 2012 Leen et al.
2012/0046792 February 2012 Secor
2012/0065805 March 2012 Montalvo
2012/0116593 May 2012 Amundson et al.
2012/0181010 July 2012 Schultz et al.
Foreign Patent Documents
0980165 Feb., 2000 EP
1956311 Aug., 2008 EP
2241836 Oct., 2010 EP
2241837 Oct., 2010 EP
2117573 Oct., 1983 GB
02056540 Jul., 2002 WO
2008100641 Aug., 2008 WO

Other References

Checket-H., "Zoning Controls for Convenience's Sake", 2004, Air Conditioning, Heating & Refrigeration News, 3 pages. cited by examiner .
Leeb-G., "A User Interface for Home Net", 2002, IEEE, p. 897-902. cited by examiner .
Gallas, B., et al., "Embedded Pentium .RTM.Processor System Design for Windows CE," WESCON 1998, pp. 114-123. cited by applicant .
"iView-100 Series (iView/iView-100-40) Handheld Controller User's Manual," ICP DAS, Mar. 2006, Version 2.0, 187 pgs. cited by applicant .
"Spectre.TM. Commercial Zoning System, Engineering Data," Lennox, Bulletin No. 210366E, Oct. 2002, 33 pages. cited by applicant .
Sharma, A., "Design of Wireless Sensors Network for Building Management Systems," University of California-Berkley, 57 pages. cited by applicant .
"Linux Programmer's Manual," UNIX Man Pages: Login (1), http://unixhelp.ed.ac.uk/CGI/man-cgi?login, Util-linux 1.6, Nov. 4, 1996, 4 pages. cited by applicant .
Checket-Hanks, B., "Zoning Controls for Convenience's Sakes, High-End Residential Controls Move Into New Areas," Air Conditioning, Heating & Refrigeration News, ABI/Inform Global, Jun. 28, 2004, 3 pages. cited by applicant .
Leeb, G., "A User Interface for Home-Net," IEEE Transactions on Consumer Electronics, vol. 40, Issue 4, Nov. 1994, pp. 897-902. cited by applicant .
"IPMI-Intelligent Platform Management Interface Specification v1.5," Document Revision 1.1, Intel Hewlett-Packard NEC Dell, Feb. 20, 2002, 460 pages. cited by applicant .
Nash, H., "Fire Alarm Systems for Health Care Facilities," IEEE Transactions on Industry Applications, vol. 1A-19, No. 5, Sep./Oct. 1983, pp. 848-852. cited by applicant .
Bruggeman, E., et al., "A Multifunction Home Control System," IEEE Transactions on Consumer Electronics, CE-29, Issue 1, 10 pages. cited by applicant .
Fischer, H., et al., "Remote Building Management and DDc-Technology to Operate Distributed HVAC-Installations," The first International Telecommunications Energy Special Conference, TELESCON '94, Apr. 11-15, 1994, pp. 127-132. cited by applicant .
"Define Track at Dictionary.com ," http://dictionary.reference.com/browse/track, Mar. 12, 2013, 3 pages. cited by applicant .
"Definition of Track by Macmillan Dictionary," http://www.macmillandictionary.com/dictionary/british/track, Mar. 12, 2013, 4 pages. cited by applicant .
"Definition of track by the Free Online Dictionary, Thesaurus, and Encyclopedia," http://www.thefreedictionary.com/track, Mar. 12, 2013, 6 pages. cited by applicant.

Primary Examiner: Padmanabhan; Kavita
Assistant Examiner: Stevens; Thomas

Parent Case Text



CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 61/167,135, filed by Grohman, et al., on Apr. 6, 2009, entitled "Comprehensive HVAC Control System", and is a continuation-in-part application of application Ser. No. 12/258,659, filed by Grohman on Oct. 27, 2008, entitled "Apparatus and Method for Controlling an Environmental Conditioning Unit," both of which are commonly assigned with this application and incorporated herein by reference. This application is also related to the following U.S. patent applications, which are filed on even date herewith, commonly assigned with this application and incorporated herein by reference:

TABLE-US-00001 Serial No. Inventors Title 12/603,464 Grohman, "Alarm and Diagnostics System and et al. Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network" 12/603,534 Wallaert, "Flush Wall Mount Controller and In-Set et al. Mounting Plate for a Heating, Ventilation and Air Conditioning System" 12/603,449 Thorson, "System and Method of Use for a User et al. Interface Dashboard of a Heating, Ventilation and Air Conditioning Network" 12/603,382 Grohman "Device Abstraction System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network" 12/603,526 Grohman, "Communication Protocol System and et al. Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network" 12/603,527 Hadzidedic "Memory Recovery Scheme and Data Structure in a Heating, Ventilation and Air Conditioning Network" 12/603,490 Grohman "System Recovery in a Heating, Ventilation and Air Conditioning Network" 12/603,473 Grohman, "System and Method for Zoning a et al. Distributed-Architecture Heating, Ventilation and Air Conditioning Network" 12/603,525 Grohman, "Method of Controlling Equipment in a et al. Heating, Ventilation and Air Conditioning Network" 12/603,512 Grohman, "Programming and Configuration in a et al. Heating, Ventilation and Air Conditioning Network" 12/603,431 Mirza, "General Control Techniques in a et al. Heating, Ventilation and Air Conditioning Network"
Claims



What is claimed is:

1. An HVAC graphical interface dashboard, comprising: a weather tab, wherein invoking the weather tab advances to a weather screen; an indoor humidity tab, wherein invoking the indoor humidity tab advances to a humidity screen which displays at least a current indoor humidity; an alerts tab, wherein invoking the alerts tab advances to an alerts screen; a help tab, wherein invoking the help tab advances to a help screen that provides context sensitive help that presents at least one dialog box related to a function of a current screen; an indoor settings tab, wherein invoking the indoor settings tab advances to an indoor settings screen which includes a current indoor temperature; a programs tab, wherein invoking the programs tab advances to a programs screen which can program at least one of: a) a time; b) temperature setpoints; c) heating/cooling setpoints; wherein a program schedule of the program tab is divided into a plurality of time zones wherein, upon a time a time zone being invoked for a set period of time: a) a temperature setpoint for that time period is deactivated, b) a display of the deactivated setpoints of the deactivated time period appears dim relative to a display of the time period's setpoints before deactivation; and c) the deactivated time period's setpoints appear dimmer relative to an active time period's setpoints; and a home tab, wherein invoking the home tab advances to a home screen which provides a summary of indoor conditions wherein at least one attribute of a presentation of the home screen is selectable by a user, wherein at least one attribute of a presentation of the home screen is selectable by a user.

2. The dashboard of claim 1, wherein, in order to access an installer screen from the home screen, an installer is to press and hold an icon that is a logo with a finger for a given time period and then drag the finger across the HVAC graphical interface dashboard.

3. The dashboard of claim 1, wherein the attribute of the presentation includes at least one of: a) a choice of a black screen background; b) a choice of a white screen background; c) a choice of an enlargement of at least one font; and d) a choice of an enlargement of icon.

4. The dashboard of claim 1, wherein the dashboard has a screensaver that activates after a selected amount of inactivity from a user.

5. The dashboard of claim 1, further comprising a zone tab.

6. The dashboard of claim 1, wherein at least one tab is remotely invocable by a user.

7. The dashboard of claim 1, wherein the help screen displays settings depending upon a screen displayed before the help tab is activated.

8. An HVAC system including a graphical interface dashboard and at least one coupled device, comprising: a graphical interface dashboard, including: a weather tab, wherein invoking the weather tab advances to a weather screen; an indoor humidity tab, wherein invoking the indoor humidity tab advances to a humidity screen which displays at least a current indoor humidity; an alerts tab, wherein invoking the alerts tab advances to an alerts screen; a help tab, wherein invoking the help tab advances to a help screen that provides context sensitive help that presents at least one dialog box related to a function of a current screen; an indoor settings tab, wherein invoking the indoor settings tab advances a user to an indoor settings screen which includes a current indoor temperature; a programs tab, wherein pressing the programs tab invokes a programs screen which can program at least one of: i) a time; ii) temperature setpoints; iii) heating/cooling setpoints; wherein a program schedule of the program tab is divided into a plurality of time zones wherein, upon a time a time zone being invoked for a set period of time: a) a temperature setpoint for that time period is deactivated, b) a display of the deactivated setpoints of the deactivated time period appears dim relative to a display of the time period's setpoints before deactivation; and c) the deactivated time period's setpoints appear dimmer relative to an active time period's setpoints; and a home tab, wherein invoking the home tab advances a user to a home screen which provides a summary of indoor conditions; and the at least one coupled device selected from the group including: a) an air handler; b) a furnace; c) an evaporator coil; d) a condenser coil; and e) a compressor; wherein the at least one coupled device is viewable from at least one of the tabs, and wherein at least one attribute of a presentation of the home screen is selectable by a user.

9. The HVAC system of claim 8, wherein the attribute of the presentation includes at least one of: a) a choice of a black screen background; b) a choice of a white screen background; c) a choice of an enlargement of at least one font; and d) a choice of an enlargement of icon.

10. The HVAC system of claim 8, wherein the dashboard has a screensaver that activates after a selected amount of inactivity from a user.

11. The HVAC system of claim 8, further comprising a zone tab.

12. The HVAC system of claim 8, wherein at least one tab is remotely invocable by a user.

13. The HVAC system of claim 8, wherein, in order to access an installer screen from the home screen, an installer is to press and hold an icon that is a logo with a finger for a given time period and then drag the finger across the graphical interface dashboard.

14. The HVAC system of claim 8, wherein the help screen displays settings depending upon a screen displayed before the help tab is activated.
Description



TECHNICAL FIELD

This application is directed, in general, to HVAC systems and, more specifically, to a user interface dashboard and installer interface dashboard for a distributed-architecture heating, ventilation and air conditioning (HVAC) network, and methods of use thereof.

BACKGROUND

Climate control systems, also referred to as HVAC systems (the two terms will be used herein interchangeably), are employed to regulate the temperature, humidity and air quality of premises, such as a residence, office, store, warehouse, vehicle, trailer, or commercial or entertainment venue. The most basic climate control systems either move air (typically by means of an air handler, or more colloquially, a fan or blower), heat air (typically by means of a furnace) or cool air (typically by means of a compressor-driven refrigerant loop). A thermostat is typically included in the climate control systems to provide some level of automatic temperature control. In its simplest form, a thermostat turns the climate control system on or off as a function of a detected temperature. In a more complex form, a thermostat may take other factors, such as humidity or time, into consideration. Still, however, the operation of a thermostat remains turning the climate control system on or off in an attempt to maintain the temperature of the premises as close as possible to a desired setpoint temperature. Climate control systems as described above have been in wide use since the middle of the twentieth century.

SUMMARY

In a first aspect the disclosure provides an HVAC graphical interface dashboard. In an embodiment the dashboard includes a weather tab, wherein invoking the weather tab advances to a weather screen. The dashboard also includes an indoor humidity tab, wherein invoking the indoor humidity tab advances to a humidity screen which displays at least a current indoor humidity. The dashboard further includes an alerts tab, wherein invoking the alerts tab advances to an alerts screen. The dashboard also further includes a help tab, wherein invoking the help tab advances to a help screen that provides context sensitive help that presents at least one dialog box related to a function of a current screen. The dashboard yet also further includes an indoor settings tab, wherein invoking the indoor settings tab advances to an indoor settings screen which includes a current indoor temperature. The dashboard still further includes a programs tab, wherein invoking the programs tab advances to a programs screen wherein the programs screen includes a display of a plurality of pre-populated program schedule settings. The dashboard yet still further includes a home tab, wherein invoking the home tab advances to a home screen which provides a summary of indoor conditions.

In another aspect the disclosure provides a method for operating an HVAC interface having a plurality of tabs. In an embodiment the method includes: providing a weather tab, wherein invoking the weather tab advances to a weather screen. The method also includes providing an indoor humidity tab, wherein invoking the indoor humidity tab advances to a humidity screen which displays at least a current indoor humidity. The method further includes providing an alerts tab, wherein invoking the alerts tab advances to an alerts screen. The method yet further includes providing a help tab, wherein invoking the help tab advances to a help screen that provides context sensitive help that presents at least one dialog box related to a function of a current screen. The method yet still further includes providing an indoor settings tab, wherein invoking the indoor settings tab advances to an indoor settings screen which includes a current indoor temperature. The method also yet further includes providing a programs tab, wherein invoking the programs tab advances to a programs screen wherein the programs screen includes a display of a plurality of pre-populated program settings. The method also includes providing a home tab, wherein invoking the home tab advances to a home screen which provides a summary of indoor conditions. The method also yet still further includes invoking one of the screens.

A third aspect provides an HVAC system including a graphical interface dashboard and at least one coupled device. In an embodiment the dashboard includes a weather tab, wherein invoking the weather tab advances to a weather screen. The dashboard also includes an indoor humidity tab, wherein invoking the indoor humidity tab advances to a humidity screen which displays at least a current indoor humidity. The dashboard further includes an alerts tab, wherein invoking the alerts tab advances to an alerts screen. The dashboard further includes a help tab, wherein invoking the help tab advances to a help screen that provides context sensitive help that presents at least one dialog box related to a function of a current screen. The dashboard yet also further includes an indoor settings tab, wherein invoking the indoor settings tab advances to an indoor settings screen which includes a current indoor temperature. The dashboard still further includes a programs tab, wherein invoking the programs tab advances to a programs screen wherein the programs screen includes a display of a plurality of pre-populated program settings. The dashboard yet still further includes a home tab, wherein invoking the home tab advances to a home screen which provides a summary of indoor conditions. The second aspect further includes at least one coupled device selected from the group including: a) an air handler, b) a furnace, c) an evaporator coil, d) a condenser coil and e) a compressor, wherein at least one coupled device is viewable from at least one of the tabs.

BRIEF DESCRIPTION

Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a high-level block diagram of an HVAC system within which a device abstraction system and method may be contained or carried out;

FIG. 2 is a high-level block diagram of one embodiment of an HVAC data processing and communication network 200;

FIG. 3A is a diagram of a series of steps in an event sequence that depicts a device commissioning in an HVAC network having an active subnet controller;

FIG. 3B is a diagram of a series of steps that occur in relation to a commissioning of a subnet including an addressable unit;

FIG. 3C is a diagram of the above series of steps of FIG. 3B to be followed by a subnet controller to synchronize with a device of the HVAC system;

FIG. 3D is a high-level block diagram of one embodiment of a dashboard of a user interface for an HVAC system having a plurality of tabs, each tab configured to invoke one or more corresponding screens;

FIGS. 3E-1 and 3E-2 illustrate a table that discloses subject matter of screens correlated to tabs of FIG. 3D;

FIG. 4 is a high-level flow diagram of exemplary transitions, for both a user and an installer, between various screens corresponding to various tabs of the dashboard of FIG. 3 and various screens of an interface dashboard of FIGS. 7A and 7B, and an inter-relationship between FIG. 3D and FIGS. 7A and 7B;

FIG. 5 is an exemplary flow diagram of the user interface screens of FIG. 4, illustrated in more detail;

FIG. 5A illustrates one embodiment of exemplary screens that bold a selected item when that selected item is compared to other selected items in a list of a tab of the dashboard of FIG. 3D;

FIG. 5B illustrates, in one embodiment, a partial and complete locking of a screen of the dashboard of FIG. 3D;

FIG. 5C illustrates, in one embodiment, an employment of icons for various devices instead of text entries of the dashboard of FIG. 3D;

FIGS. 5D-1 through 5D-5 illustrate an employment of an embodiment of a motion detector for use with the dashboard of FIG. 3;

FIG. 5E illustrates a selection in an exemplary screen of the dashboard 350 of an item through an employment of a text item itself as a button to select the item to which the text item correlates;

FIG. 6A illustrates an exemplary employment of a humidity graphic to set humidity and de-humidity setpoints of a humidity screen of the humidity tab of FIG. 3D;

FIGS. 6B-1-6B-4 illustrates an exemplary employment of screen selectable settings for setting a humidity point in a humidity screen of FIG. 3D that is dependent upon equipment installed in the HVAC system of FIG. 1;

FIGS. 7Ai-7Aiv and 7Bi-7Biv illustrate an exemplary flow of various transitions of a help screen that arise as a result of a previous screen of FIG. 3D;

FIGS. 8A-8D illustrates exemplary screens of found equipment that appears in an indoor settings tab of FIG. 3D as dependent upon equipment being found in the HVAC system of FIG. 1;

FIG. 9A illustrates an exemplary plurality of program schedule setpoints displayed on one screen of a programs tab of FIG. 3;

FIGS. 9B-1 and 9B-2 illustrates an exemplary persistent color inversion for a selected button until a next button press within the programs screen of the programs tab of FIG. 3D;

FIG. 9C illustrates an exemplary deactivation of a time period within the programs screen of FIG. 3D;

FIGS. 9D-1 and 9D-2 illustrate embodiments of a virtual analog clock in a programs screen of FIG. 3D;

FIG. 9E illustrates one embodiment of a program screen that allows for a reset of at least one value related to the dashboard of FIG. 3D;

FIG. 9F illustrates one embodiment of a slider for setting a comfort point for a programs screen of FIG. 3D;

FIGS. 9Fi and 9Fii illustrate exemplary flows of a transition of a programs screen of the dashboard of FIG. 3D;

FIG. 10A illustrates an exemplary movement of a finger across a home screen to allow access to either an installer or a zone screen for an embodiment of the dashboard of FIG. 3D;

FIG. 10B illustrates an exemplary invocation of a plurality of dashboard tabs from a home screen of FIG. 3D;

FIGS. 11A-1 and 11A-2 illustrate embodiments of an installer dashboard that employs screens of FIG. 4;

FIG. 11B illustrates an exemplary display of minimum, maximum and default values for one embodiment of an installer screen of FIGS. 11A1 and 11A2 for a device connected to the HVAC system of FIG. 1;

FIG. 11C illustrates an exemplary underlining of default value for one embodiment of an installer screen of an installer screen of FIGS. 11A1 and 11A2;

FIGS. 11D-1 and 11D-2 illustrates an exemplary moving a device icon for an item to be diagnosed to a right side of a diagnostic screen of an embodiment of the installer dashboard of an installer screen of FIGS. 11A1 and 11A2;

FIG. 12 illustrates an exemplary method for providing an interface for an HVAC system of FIG. 1; and

FIGS. 13A and 13B illustrate a subnet controller teaching a user interface how to interpret data on a network within bounds earlier defined as a user interface screen.

DETAILED DESCRIPTION

As stated above, conventional climate control systems have been in wide use since the middle of the twentieth century and have, to date, generally provided adequate temperature management. However, it has been realized that more sophisticated control and data acquisition and processing techniques may be developed and employed to improve the installation, operation and maintenance of climate control systems.

Described herein are various embodiments of an improved climate control, or HVAC, system in which at least multiple components thereof communicate with one another via a data bus. The communication allows identity, capability, status and operational data to be shared among the components. In some embodiments, the communication also allows commands to be given. As a result, the climate control system may be more flexible in terms of the number of different premises in which it may be installed, may be easier for an installer to install and configure, may be easier for a user to operate, may provide superior temperature and/or relative humidity (RH) control, may be more energy efficient, may be easier to diagnose and perhaps able to repair itself, may require fewer, simpler repairs and may have a longer service life.

FIG. 1 is a high-level block diagram of an HVAC system, generally designated 100. The HVAC system may be referred to herein simply as "system 100" for brevity. In one embodiment, the system 100 is configured to provide ventilation and therefore includes one or more air handlers 110. In an alternative embodiment, the ventilation includes one or more dampers 115 to control air flow through air ducts (not shown.) Such control may be used in various embodiments in which the system 100 is a zoned system. In the context of a zoned system 100, the one or more dampers 115 may be referred to as zone controllers 115. In an alternative embodiment, the system 100 is configured to provide heating and, therefore, includes one or more furnaces 120, typically associated with the one or more air handlers 110. In an alternative embodiment, the system 100 is configured to provide cooling and, therefore, includes one or more refrigerant evaporator coils 130, typically associated with the one or more air handlers 110. Such embodiment of the system 100 also includes one or more compressors 140 and associated condenser coils 142, which are typically associated in one or more so-called "outdoor units" 144. The one or more compressors 140 and associated condenser coils 142 are typically connected to an associated evaporator coil 130 by a refrigerant line 146. In an alternative embodiment, the system 100 is configured to provide ventilation, heating and cooling, in which case the one or more air handlers 110, furnaces 120 and evaporator coils 130 are associated with one or more "indoor units" 148, e.g., basement or attic units.

For convenience in the following discussion, a demand unit 155, sometimes referred to as a unit 155, is representative of the various units exemplified by the air handler 110, furnace 120, and compressor 140, and more generally includes an HVAC component that provides a service in response to control by the control unit 150. The service may be, e.g., heating, cooling, or air circulation. The demand unit 155 may provide more than one service, and if so, one service may be a primary service, and another service may be an ancillary service. For example, for a cooling unit that also circulates air, the primary service may be cooling, and the ancillary service may be air circulation (e.g. by a blower).

The demand unit 155 may have a maximum service capacity associated therewith. For example, the furnace 120 may have a maximum heat output (often expressed in terms of British Thermal Units (BTU) or Joules), or a blower may have a maximum airflow capacity (often expressed in terms of cubic feet per minute (CFM) or cubic meters per minute (CMM)). In some cases, the demand unit 155 may be configured to provide a primary or ancillary service in staged portions. For example, blower may have two or more motor speeds, with a CFM value associated with each motor speed.

One or more control units 150 control one or more of the one or more air handlers 110, the one or more furnaces 120 and/or the one or more compressors 140 to regulate the temperature of the premises, at least approximately. In various embodiments to be described, the one or more displays 170 provide additional functions such as operational, diagnostic and status message display and an attractive, visual interface that allows an installer, user or repairman to perform actions with respect to the system 100 more intuitively. Herein, the term "operator" will be used to refer collectively to any of the installer, the user and the repairman unless clarity is served by greater specificity.

One or more separate comfort sensors 160 may be associated with the one or more control units 150 and may also optionally be associated with one or more displays 170. The one or more comfort sensors 160 provide environmental data, e.g. temperature and/or humidity, to the one or more control units 150. An individual comfort sensor 160 may be physically located within a same enclosure or housing as the control unit 150. In such cases, the commonly housed comfort sensor 160 may be addressed independently. However, the one or more comfort sensors 160 may be located separately and physically remote from the one or more control units 150. Also, an individual control unit 150 may be physically located within a same enclosure or housing as a display 170. In such embodiments, the commonly housed control unit 150 and display 170 may each be addressed independently. However, one or more of the displays 170 may be located within the system 100 separately from and/or physically remote to the control units 150. The one or more displays 170 may include a screen such as a liquid crystal display (not shown).

Although not shown in FIG. 1, the HVAC system 100 may include one or more heat pumps in lieu of or in addition to the one or more furnaces 120, and one or more compressors 140. One or more humidifiers or dehumidifiers may be employed to increase or decrease humidity. One or more dampers may be used to modulate air flow through ducts (not shown). Air cleaners and lights may be used to reduce air pollution. Air quality sensors may be used to determine overall air quality.

Finally, a data bus 180, which in the illustrated embodiment is a serial bus, couples the one or more air handlers 110, the one or more furnaces 120, the one or more evaporator coils 130, the one or more condenser coils 142 and compressors 140, the one or more control units 150, the one or more remote comfort sensors 160 and the one or more displays 170 such that data may be communicated therebetween or thereamong. As will be understood, the data bus 180 may be advantageously employed to convey one or more alarm messages or one or more diagnostic messages.

FIG. 2 is a high-level block diagram of one embodiment of an HVAC data processing and communication network 200 that may be employed in the HVAC system 100 of FIG. 1. One or more air handler controllers ("AHCs") 210 may be associated with the one or more air handlers 110 of FIG. 1. One or more integrated furnace controllers ("IFCs") 220 may be associated with the one or more furnaces 120. One or more damper controller modules 215, also referred to herein as a zone controller module 215, may be associated with the one or more dampers 114 that interface the one or more dampers to the data bus 180. One or more unitary controllers 225 may be associated with one or more evaporator coils 130 and one or more condenser coils 142 and compressors 140 of FIG. 1. The network 200 includes an active subnet controller ("aSC") 230a and an inactive subnet controller ("iSC") 230i. The aSC 230a is responsible for configuring and monitoring the system 100 and for implementation of heating, cooling, air quality, ventilation or any other functional algorithms therein. Two or more aSCs 230a may also be employed to divide the network 200 into subnetworks, or subnets, simplifying network configuration, communication and control. The iSC 230i is a subnet controller that does not actively control the network 200. In some embodiments, the iSC 230i listens to all messages passed over the data bus 180, and updates its internal memory to match that of the aSC 230a. In this manner, the iSC 230i may backup parameters stored by the aSC 230a, and may be used as an active subnet controller if the aSC 230a malfunctions. Typically there is only one aSC 230a in a subnet, but there may be multiple iSCs therein, or no iSC at all. Herein, where the distinction between an active or a passive SC is not germane, the subnet controller is referred to generally as an SC 230.

A user interface ("UI") 240 provides a means by which an operator may communicate with the remainder of the network 200. In an alternative embodiment, a user interface/gateway (UI/G) 250 provides a means by which a remote operator or remote equipment may communicate with the remainder of the network 200. Such a remote operator or equipment is referred to generally as a remote entity. A comfort sensor interface 260, referred to herein after simply as a comfort sensor, may provide an interface between the data bus 180 and each of the one or more comfort sensors 160.

Each of the components 210, 220, 225, 230a, 230i, 240, 250, 260 may include a general interface device configured to interface to the data bus 180, as described below. (For ease of description any of the networked components, e.g., the components 210, 220, 225, 230a, 230i, 240, 250, 260, may be referred to generally herein as a device 290. In other words, the device 290 of FIG. 2 is a proxy for any of a furnace, a heat pump, a subnet controller, etc, and that device's associated interface means.) The data bus 180 in some embodiments is implemented using the Bosch CAN (Controller Area Network) specification, revision 2, and may be synonymously referred to herein as a residential serial bus ("RSBus") 180. The data bus 180 provides communication between or among the aforementioned elements of the network 200. It should be understood that the use of the term "residential" is nonlimiting; the network 200 may be employed in any premises whatsoever, fixed or mobile. In wireless embodiments, the data bus 180 may be implemented, e.g., using Bluetooth.TM. or a similar wireless standard.

Generally, the network 200 allows for the remote comfort sensors 160, the control unit 150, and user display 170 and/or remote user displays 170 to operate independently as separate logical units, and can be located in separate locations within the network 200. This is unlike the prior art, wherein these functionalities were required to be located within a single physical and logical structure.

Turning now to FIG. 3A, illustrated is a diagram of a commissioning process 300 of a series of steps that occur in relation to a commissioning of the demand unit 155. The commissioning process 300 includes an enter state 301, a device commissioning state 303, and an exit state 305. The HVAC system 100 can be described as being partitioned into a plurality of subnets, each subnet controlled by its own active subnet controller 230.

Device commissioning can generally be defined as setting operational parameters for a device in the network of the HVAC system, including its installation parameters. Generally, the commissioning process 300 is used by the subnet controller 230 when it is active to: a) set operating "Installer Parameters" for a networked device, such as air handlers 110, (henceforth to be referred to collectively, for the sake of convenience, as the demand unit 155, although other devices are also contemplated), b) to load UI/Gs 240, 250 with names and settings of "Installer Parameters and Features" of the demand units 155, c) to configure replacement parts for the demand units 155, and d) to restore values of "Installer Parameters and Features" in the demand units 155 if those "Parameters and Features" were lost due to memory corruption or any other event. Device commissioning is a process used in the HVAC system 100, either in a "configuration" mode or in a "verification" mode.

In the "configuration" mode, the demand unit 155 shares its information with the active subnet controller 230a in an anticipation of being employable in the HVAC system 100, and an appropriate subnet. Generally, the commissioning process 300 provides a convenient way to change or restore functional parameters, both for the active subnet controller 230a and the demand unit 155.

In both the "verification" mode and the "configuration" mode, the demand unit 155 is checked for memory errors or other configuration or programming errors. There are differences in device 290 behavior between the "configuration" mode and in the "verification" mode, to be detailed below.

The "subnet startup" mode programs the subnet controller 230 to be active. The "subnet startup" mode enables subnet communications, (i.e., communication within a subnet), and also deactivates a "link" sub-mode. A "link" mode may be generally defined as a mode that allows a number of subnets to work together on the same HVAC network 200, and that assigns subnet numbers for each subnet to allow this communication.

The "installer test" mode is employed when an installer installs and tests aspects and demand units 155 of the HVAC system 100. The "normal operations" mode is an ongoing operation of devices 290 of the HVAC system 100 in a normal use.

More specifically, the device commissioning process 300 can be employed with: a) the "configuration" mode, which is invoked when transitioning to the commissioning state 303 from the "subnet startup mode" or "installer test" mode, or the "normal mode" (see below), or b) a "verification" mode. The "verification" mode is invoked when transitioning to the commissioning state 303 from the "subnet startup" mode.

The following describes an illustrative embodiment of a using the process 300 to commission the demand unit 155, first for a "commission" mode, and then for a "verification" mode. The process of commissioning differs from a "subnet startup," in that commissioning requires that the network configuration, including configuration and activation of subnet controllers 230, has already been completed before the commissioning process 300 for the device 290 can start. Please note that there can be more than one subnet controller 230 on a subnet, but only one subnet controller 230a is active at any one time.

In one embodiment, in order to enter into a state 320 of a state machine 310 (described in detail below with respect to FIG. 3B) in the "configuration" mode, the unit 155 receives either: a) an "aSC" (`active subnet controller`) Device Assignment message", having "Assigned State" bits set to "Commissioning"; or b) a receipt of an "aSC Change State" message, with "New aSC State" bits set to "Commissioning," from the active subnet controller 230. For both "configuration" and "verification" modes, an "aSC Device Assignment" message can be generally regarded as a message that assigns the unit 155 to a particular active subnet controller 230a. For both "configuration" and "verification" modes, an "aSC Change State" message can be generally regarded as a message that starts and ends employment of the commissioning process 300 for the devices 290.

In one embodiment, in the state 320 in the configuration mode, all units 155 respond to the "aSC Device Assignment" message with their respective "Device Status" messages, indicating that the units 155 are now in the commissioning process 300 due to their response to this previous message. For both "configuration" and "verification" modes, the "Device Status" message can be generally defined as a message that informs the active subnet controller 230a of what actions are being taken by the unit 155 at a given time.

However, alternatively in other embodiments, in the state 320 in the "configuration" mode, if the units 155 are instead busy, as indicated by "aSC Acknowledge" bits of the "Device Status" message sent to the active subnet controller 230a set as a "Control Busy," the active subnet controller 230a waits for the busy units 155 to clear their "aSC Acknowledge" bits before proceeding with further elements of the Commissioning process 300. The units 155 then resend their "Device Status" messages as soon as they are no longer busy.

From this point on, all units 155 send their "Device Status" messages periodically and on any status change, both during and after the commissioning process 300. If the unit 155 does not clear its "aSC Acknowledge" bits within a minute, the active subnet controller 230a sends an "Unresponsive Device2" alarm for each such unit 155. If in "configuration" mode, the active subnet controller 230a remains in the waiting mode indefinitely, until the unit 155 responds correctly, or the subnet is reset manually or after a timeout is reached. In "verification" mode the active subnet controller 230a proceeds further to exit the state.

In the "configuration" mode, each unit 155 remembers all of its optional sensors that are currently attached to it. Furthermore, each unit 155 may store a local copy in its non-volatile memory ("NVM") of any other unit features that it is dependent on. A unit 155 feature can be generally defined as any datum that is fixed and cannot be changed by the installer, serviceman or the home owner. Changing of a "Feature" value normally involves reprogramming of the unit's 155 firmware.

In at least some embodiments, a feature is something that is a fixed value, that is hard-wired into a device. In other words, no installer or home owner can change it. Features are programmed into the unit 155 during a manufacturing or an assembly process. Features can be recovered in a home, during a Data non-volatile memory ("NVM") recovery substate of Commissioning state only--the recovery substate happens automatically and without installer or user intervention. In a further embodiment, parameters can be changed by the installers only. In a yet further embodiment, the network 200 of the HVAC system 100 employs "variables"--those can be changed by the installers and also the home owners.

In some embodiments, a "Parameter List" is normally a Feature that contains a special list of specific parameters included in the unit 155. Parameter values can be changed, and their state can be changed also (from enabled to disabled and vice-versa), but their presence is set once and for all in a given firmware version. Therefore, a list of Parameters (not their values) is also fixed, and is thus treated as a "Feature."

However, although elements of the "configuration" mode commissioning and "verification" mode commissioning are similar, when the active subnet controller 230 is in "verification" mode instead of in "configuration" mode, the active subnet controller 230a can exit commissioning process 300 regardless of the value of the alarms of the units 155. However, alternatively, if the active subnet controller 230a is in "configuration" mode, the active subnet controller 230a will not exit from its commissioning process 300 for as long as at least one unit's 155 "aSC Acknowledge" flags are set to "Control Busy." In one embodiment of the "verification" mode, the active subnet controller 230a timeouts the installation and resets the subnet to default parameters.

In the "verification" mode, assuming the unit 155 operates with a non-corrupted (original or restored copy) NVM, each unit 155 checks any of its attached sensors to see if they match with the parameters that were present in a most recent configuration of the unit 155. In some embodiments, alarms are generated by the unit 155 for missing or malfunctioning sensors as soon as the faulty condition is detected, to be employed by the user interfaces and gateways present on the subnet to notify the installer or homeowner of the encountered problem. The unexpected absence of certain sensors may inhibit the operation of the unit 155 or the subnet. This is normally manifested by the signaling of the appropriate Service Bits in the Device Status message used by the active subnet controller 230a, to determine the operational viability or health of the subnet's systems.

In some embodiments, the device commissioning process 300 (via the state machine 310) then transitions into a link-mode startup state 330 (FIG. 3B), and then ends, upon either: a) the last unit 155 receiving all of unit 155 parameters that it is dependent on, when in "verification" mode; or b) upon a request by a user, when in "configuration" mode. The active subnet controller 230 then proceeds to ensure that no subnet unit 155 has its "aSC Acknowledge" flag set to a "Control Busy" state. The "aSC Acknowledge" flag not being set indicates that all of a non-volatile memory of a given unit 155 had been written to with the necessary parameters. If no "Control Busy" state is detected, the active subnet controller 230a then issues the "aSC Change State" message, which forces the unit 155 from a commissioning state to a non-commissioning state, in either a "configuration" or a "verification" mode.

In some embodiments, when the unit 155 in the process 300 fails its NVM data integrity check in an "NVM Check State," and the active subnet controller is unable to perform NVM Recovery, the unit 155 instead employs its default data stored in its non-volatile (Flash) memory and/or uses default calculations to initialize the data dependent on other devices in the system. The other device data to be used for commissioning could have been obtained in either the "verification" or "configuration" mode. For data or other parameters that were not transferred or generated as part of that session of the commissioning process 300, default values are used.

In one embodiment, upon a detection of a system configuration error, such as a missing device whose features or parameters the unit 155 depends upon, it uses the locally stored copy of the other device's features that it depends upon, and ignores any potential feature value conflicts. In another embodiment, the unit 155 uses the locally stored copy of other parameters of the unit 155 that it depends on and ignores any potential dependent parameter value conflicts. In other words, the unit 155 employs a first installed parameter as a template for a second installed parameter on a second device. In a third embodiment, the unit 155 will change its parameter or feature values only if explicitly instructed by the active subnet controller 230 or the UI/G 240, 250.

Turning now to FIG. 3B, illustrated is the HVAC device state machine 310 illustrated for a subnet, including the unit 155, in more detail. Solid lines indicate normal state transitions when the subnet is transitioning from one state to another state, dashed lines indicate a subroutine call and red lines, alternating dotted and dashed lines indicate unexpected yet valid transitions. All states other than a state 326 represent device states, and the state 326 represents a message handling routine.

As is illustrated in the present embodiment, a reset state 312 of a subnet advances to a NVR CRC check 316 for a given device (such as unit 155). If the device fails the test, the device advances to a device hard disable 314. If the device passes, however, then in the subnet startup state 320, various features and parameters of the unit 155 are shared with the subnet. Then, in substate 324, device commissioning as described in FIG. 3A occurs. This then leads to an installer test sub-mode 328. This, in turn, then leads to the link mode start-up 330, as described above. Finally, then in a step 334, normal system operation occurs, although the system can reset to state 312 or have error messages in the state 326.

In a further embodiment, during the NVM CRC check 316, the state machine 310 can advance to a NVM programming state 318. This can occur due to such factors as a failure of a non-volatile memory, or an initial programming of the NVM. In a yet further embodiment, each of these units 155 is programmed to deal with one form of a diagnostic message regarding system errors in the state 326, and from there to testing the device 290 itself in an OEM test mode 332.

Turning now to FIG. 3C, illustrated is a state flow diagram 340 for the active subnet controller 230a in relation to the unit 155. Generally, it is the responsibility of the active subnet controller 230a to implement proper state transitions. The other units 155 follow the explicit direction of the aSC 230a for all valid transactions. These state diagrams are included to help ensure that a state of the unit 155 is the same as the subnet controller. The aSC 230a is responsible for device synchronization. If the unit 155 is detected out of synch with the rest of the system, the aSC 230a, in some embodiments, immediately tries to bring the unit 155 to the current system state, if possible.

If an addressable unit 155 is detected in subnet startup 344, the active subnet controller 230a applies asynchronous startup rules, which generally pertain to how many parameters are to be passed between device 290 and the active subnet controller 230.

If an addressable unit 155 is detected in commissioning 345, installer test 346, link mode 347 or normal operation 348 substates, the unit 155, in some embodiments, is brought to the current state via a resend of an "aSC Change State" message, which involves transitioning from a first current aSC state to a second current aSC state.

In some embodiments, if a unit 155 is detected in the OEM Test mode 332 or a Soft Disabled state 322 (FIG. 3B), the unit 155 shall be reset by the active subnet controller 230a in the step 312. If a unit 155 is detected in "Hard Disabled" or "NVM Programming" state, the active subnet controller 230a assumes that it is not available on the subnet.

In a further embodiment, inactive subnet controllers 230i are required to keep the most up to date subnet and HVAC system configuration information. Inactive subnet controllers 230i listen to all UI/G and aSC messages and continuously update their non-volatile memory to attempt to be as consistent as possible with the settings stored in active subnet controller 230.

Aspects of Interface

FIG. 3D illustrates an exemplary HVAC user interface dashboard ("dashboard") 350 to the user interface 240 to both read and program the active subnet controllers 230a, 230i and other elements of the HVAC network 200 of the HVAC system 100. The dashboard 350 can be included within the displays 170.

In the illustrated embodiment, the dashboard 350 includes a weather tab 355, an indoor humidity tab 360, an alerts tab 365, a help tab 370, an indoor settings tab 375, a program schedule tab 380, sometimes referred to herein as a programs tab 380, a zones tab 385 and a home tab 390, each of which invokes its own corresponding user or installer interface screen or screens. There can be some redundancy of information or functionality between screens corresponding to the different tabs, but each tab includes screens that contain at least some information or functionality that is not found in any other single tab. Furthermore, each tab can be either invoked by a user, such as through touching a tab, or each tab can be invoked remotely, such as by an installer.

Reviewing FIG. 3D with aid of FIGS. 3E-1 and 3E-2, generally, pressing the weather tab 355 advances a user to an exemplary weather screen. The weather screen displays current outdoor weather if a current outdoor temperature and/or humidity is available.

Pressing the exemplary indoor humidity tab 360 advances a user to an indoor humidity screen. The humidity screen allows for the user to change a system dehumidify mode. Dehumidify mode selections include: humidify, dehumidify, humidify and dehumidify and off. A user can cycle through these selections.

The exemplary indoor humidity screen allows a user to view both absolute and relative humidity, and also to set "setpoints" for absolute and relative humidity (i.e., points at which a humidifier or dehumidifier is turned on and off). In one embodiment, relative humidity ("RH") can range from 15% to 45% RH and can be either programmed or humidification on demand. Similarly, dehumidification can be from 40-40% RH and can be either programmed dehumidification or demand.

An indoor humidity screen also allows a user to view humidification and dehumidification comfort zones. In this context, a comfort zone can be generally defined as a zone of a HVAC system that has separate setpoints for temperature and humidity, etc.

Pressing the exemplary alerts tab 365 advances a user to an alerts screen. The alerts screen allows a user to obtain dealer information about currently active alerts and set the dashboard 350 to remind a user later for service alerts. In some embodiments, a select button of the alerts screen of the alerts tab 365 allows the user to obtain a dealer's contact information. The select button allows the user to clear an active alert (all service alerts and specified critical alerts, and also allows the user to clear an active alert (service or critical)). In some embodiments, when a "new service/critical alert" occurs or "remind later" extension time expires, the dashboard 350 floods any current screen with an alert, in other words, the alert overlays any other screen.

An alarm message displays alerts visible to the user, whereas all alerts are visible to the installer. The installer can learn of these alerts either viewing the alerts tab 365 of the dashboard 350 in person or remotely through a message conveyed through the user interface/gateway 250.

Pressing the exemplary help tab 370 advances a user to a help screen. The help screen can include context sensitive help, an option to clear a screen and user system configuration. The context sensitive help presents dialog boxes relating to a current screen's functions, and user system configurations can provide access to all user local settings (i.e., any setting that does not require an installer to make a change, but can instead by made by a user.)

In some embodiments, there can be a time-based notification of consumables in the help screen, either for the user or for an installer. These consumables can include, in some embodiments: media filters, UV bulbs and humidifier pads. All information concerning consumables can be accessible by both the installer as well as the user via the help screen. In some embodiments, a user and installer can enable and manually change the time settings for any timer of the HVAC system 100 through the help screen. Similarly, a maintenance reminder can be accessible by the installer, as well as the user, via the help screen.

Pressing the exemplary indoor settings tab 375 advances a user to an indoor settings screen. In one embodiment, the indoor settings screen display indoor temperature measurement and temperature settings. The indoor settings also display the system mode settings and fan mode settings. In one embodiment, system mode selections include: heat, cool, heat and cool, off and emergency heat. Fan mode selections include: automatic, on and circulate. The dashboard 350 allows the user to change the system mode and the fan mode through cycling through various choices.

In one embodiment, equipment employed within the system mode dictates which system modes (heat, cool, heat & cool, emergency heat) are visible. For example, a "Heat & Cool" selection of the system mode is visible only when both heating equipment and cooling equipment are present in the system. Typically, the system mode selection of "Off" is always visible.

The indoor temperature settings screen also allows a user to change current temperature setpoints, (i.e., points at which a heater or air conditioner is turned on and off) unless this would override a programmed setting, in which case, a hold occurs until an end of the programmed time occurs and the new setpoints become the operating values of the HVAC system 100.

The exemplary dashboard 350 also allows its system mode settings and fan mode settings to be obtained and changed via RSBus devices (e.g. User Interface/Gateway 250 coupled to the bus 180) remotely. If the dashboard 350 is requested, remotely or locally, to change the system mode to an invalid setting, the system mode is not changed.

Furthermore, the indoor settings tab 375 allows for a user/installer to view all system information and comfort settings (i.e., temperature and humidity) and allow editing of all current settings, as well as fan mode settings. The indoor settings tab 375 allows the fan mode (on, auto, circulate) to be obtained and changed via the RSBus (e.g., via bus 180 and user interface/gateway 250.)

Pressing the exemplary programs tab 380 advances a user to a programs schedule screen. The programs schedule screen allows for viewing/editing/enabling future program schedule events (e.g., temperature setpoints, system modes and fan modes) in the HVAC system 100. The programs screen allows a programming of event times, temperature setpoints and fan mode for each pre-defined period. A program schedule does not run when the system mode is set to "off."

In one embodiment, the programs screen is seven-day programmable with the ability to select multiple days for programming. In one embodiment, the programs screen is capable of programming up to four (4) events per 24-hour period. In one embodiment, program schedules for temperature setpoints are programmed for a seven day schedule, up to four periods per day and are stored in non-volatile memory. In one embodiment, program schedule events can be set in 15-minute increments of time. The scheduled events execute in order based on time of day. In one embodiment, the user interface 240 provides the capability to enable/disable any period of any given day by pressing the corresponding time button for two seconds.

Generally, if a mode changes, such as a fan mode change, is made within the program schedule screen is made while a program schedule of the programs tab 380 is actively executing, a program schedule "hold" mode is invoked until a next program schedule event, at which time the new setpoint is acted upon. If a temperature setpoint change is made while the program schedule of the programs tab 380 is not active, the dashboard 350 updates the display with the new setpoint and acts upon this new setpoint.

Generally, the exemplary dashboard 350 allows its programmed temperature setpoints (heat, cool) and modes to be obtained/changed via RSBus devices (e.g. User Interface/Gateway 250 over the bus 180) remotely. If the dashboard 350 is requested (remotely or locally) to change either setpoint, either temperature or humidity, to a setting beyond the setpoint limits, the setpoint is not changed. If the dashboard 350 is requested remotely or locally to change the fan mode or system mode to an invalid setting, the fan mode or system mode is not changed.

In some embodiments, the cooling setpoint is shown only when cooling equipment is present in the system. Likewise, the heating setpoint is shown only when heating equipment is present in the system. The dashboard 350 may not allow two program scheduled events to begin at the same time. In other words, there can be only one setpoint for either a humidity or a temperature for a given time period--one for each.

In one embodiment, up and down arrows of a program screens of the programs tab 380 allows the user to edit a selected box information. A save button allows the user to save changes to the program schedule. A cancel button allows the user to quit the program schedule edit screen without saving changes. A back button returns the user to the program schedule day selection screen. (Not illustrated.)

In some embodiments, pressing the zones tab 385 advances a user to a zone screen which, in one embodiment, is accessible only by an installer with a proper key. Generally, the zone screen deals with information that is pertinent to programming HVAC equipment for various environmental "zones" within the HVAC system (e.g., living room, bedroom, kitchen, etc.) The zone screen therefore advises the user to contact the manufacture for more information regarding the zone screen. The zones tab 385 then either advances to a home screen of the programs tab 380 or back to the overall user dashboard 350.

Generally, the home screen of the home tab 390 includes a summary of indoor environmental conditions for a user. A home screen indicates a status of the program schedule (ON, OFF). The home screen indicates temperature control status (heating, cooling, off, waiting) as well as humidity control (humidifying, dehumidifying, waiting) of the HVAC system 100. In one embodiment, when a given system is set to "off," only "system is off" is displayed in the home screen.

In some embodiments, the dashboard 350 returns to the home screen after 30 seconds has elapsed since a last screen or tab press, including from any other tab of the dashboard 350. In some embodiments, after a 30 second period of inactivity, any changes made to a screen requiring an active "set" or "save" button press are lost. The dashboard 350 instead returns to the home screen. In some further embodiments, after a user-selectable time period of inactivity, an initial screen press, even upon a tab, causes only a backlight to activate with the home screen as the initial screen shown. The home tab 390 can include a series of screens that are navigable from the home screen via an icon press.

Although not illustrated in FIG. 3D, an installer dashboard including installer screens can also be accessed through the home screen by an installer with a proper key. Generally, the installer screens allow for an installation and configuration of various pieces of equipment in the HVAC system 100. The installer screens can also enable various default values as parameters of operation.

In some embodiments, when a button of a screen of the dashboard 350 is held, the dashboard 350 initially displays an update to the value being changed at a rate of change of 0.5 seconds. After a button hold of 3 seconds, the rate of change is increased to 0.25 seconds.

The user dashboard 350 can itself be a color and touch-screen. The dashboard 350 can include a dynamic full color dot matrix LCD display. A touch pad may be built into/over the dashboard 350. Typically, a maximum delay between any key press and display feedback (indication by selected button, screen change, etc.) is 0.2 seconds.

FIG. 4 illustrates a high-level flow diagram 400 of exemplary transitions, for both user and installer, between user interface screens corresponding to various tabs of the exemplary dashboard of FIG. 3D and various exemplary interface screens of an interface dashboard of FIGS. 11A1 and 11A2.

The exemplary flow 400 has an installer screen flow 401 and a user screen flow 451. The installer screen flow 401 of the dashboard 350 provides access to all installer screens (including subnet start up, configuration, commissioning, installer tests, alerts and diagnostics). The screens of the user screen flow 451 are accessible through the tabs 355-390 of FIG. 3D, with the exception of a new alert screen 452, which the dashboard 350 generates upon a new alert. In a further embodiment, the dashboard 350 allows each screen of the flow 400 to be invoked remotely by a user and/or installer via the User Interface/Gateway 250.

Upon power-up of the HVAC system 100, an installation tab 402 of the installer flow 401 appears. Unless an installer inputs a correct key code within a given time period, the flow 400 transitions to a home screen 450. However, if the installer inputs the correct key, an installer screen corresponding to the installer test tab 404 appears. The installer can then install and configure various devices in the HVAC system 100. After installation, the installer flow 401 then advances to the home screen 450.

In one embodiment, the installer flow 401 includes a series of screens that are accessible from the home screen 450 via both a) an icon press; and then b) a correct entry of a correct key sequence. In one embodiment, pressing a dealer logo, such as a "Lennox.TM." logo, on the home screen 450 for 5 seconds allows an installer to execute system startup processes, as well as view/edit the alerts and diagnostics via the installer configuration screens of the flow 401.

Generally, the home screen 450 provides a high level overview of the current indoor conditions. The home screen 450, in some embodiments, displays the indoor temperature, indoor relative humidity status, outdoor temperature and system status (e.g. heating, cooling, off, humidifying, dehumidifying, etc.) of the HVAC system 100.

From the home screen 450, a warning screen 412 for an installer can be generated by the dashboard 350. This warning screen 412 can be conveyed to an installer either directly when installer is present, or through a remote communication, such as over the bus 180 through gateway 250, and then perhaps through the Internet to the installer. The warning screen 412 generally states that there is a type of problem that should be addressed by an installer, but may not give all details. Once the warning screen 412 is acknowledged by an installer, an alerts tab 408 has a screen that is the default screen for the dashboard 350.

From the warning screen 412, the installer can also advance to either a diagnostics screen of a diagnostics tab 406, a contextual help screen of the installer help tab 414, the installer screen of the installation setup tab 402, or an installer screen of the installer test tab 404.

In some embodiments, for a user, from the home screen 450, the new alert screen 452 can arise upon a first detection by the HVAC system 100 of an alert. Similarly, the alerts tab 365 can be used to invoke and view an alerts screen. In one embodiment, the alerts tab 365 can be used to access every other tab in the dashboard 350.

In the illustrated exemplary flow 400, the home screen 450 transitions to either the alerts tab 365 if an active alert exists or the indoor settings tab 375. From the indoor settings tab 375, all other user tabs are also accessible. These include the weather tab 355, the indoor humidity tab 360, the alerts tab 365, the help tab 370, the programs tab 380 and the zones tab 385. Please note that, in some embodiments, the zones tab 385 can transition to the home screen 450, and the zones of the zones tab 385 are typically set by an installer of the HVAC system 100.

Regarding the alerts screen 452, in one embodiment, if the dashboard 350 is displaying a popup alert at the time when another alert (to be displayed to the user) occurs, the dashboard 350 continues to display the current alert screen 452. When a current alert has been addressed, the dashboard then overwrites the screen with the newest alert. If multiple popup alerts exist simultaneously, the dashboard 350 displays each (in order of occurrence--timestamp) one-by-one after the previous new alert is addressed. There is not a time-out for a new alert flooding the screen. The new alert remains on the screen of the dashboard 350 until addressed by the user/installer.

Turning briefly now to FIG. 5, illustrated are exemplary corresponding screens of the tabs of FIGS. 3D and 4 illustrated in more detail. The weather tab 355 can display weather info when available. The indoor humidity tab 360 enables a user to set humidity modes and setpoints. The alerts tab 365 can display alert info. The home screen 450 can interact with the other illustrated tabs. The indoor settings tab 375 can set display and set temperature conditions and settings (setpoints), overall system mode and fan mode. The programs tab 380 enables a user to program various times. The zones tab 385 forwards an admonition to the user to request more information from the manufacturer, and then transfers back to the home screen 450.

Generally, FIGS. 5A through 5D-2, to be discussed below, illustrate aspects of the present disclosure that are applicable to at least some, and can be to all, of the user screens of FIG. 3D and FIG. 4.

Turning now to FIG. 5A, illustrated is an embodiment of the screen 500 of the dashboard 350 that bolds a selected item 501, 503, 505, 507 relative to other selected items in a list in the dashboard 350. The user can highlight a selected item in white; the other selected items are in grey.

Turning now to FIG. 5B, illustrated is an embodiment of an unlocked screen mode 521, a partially locked screen mode 523, and a fully locked screen mode 525 of the dashboard 350. The partially locked screen mode 523 places a lock-pad icon 526 over a text 524 that states "press for more," and also deactivates all buttons except up-down arrows 529. Partially locked mode has a limited functionality.

In one embodiment, the fully locked mode 525 deactivates all buttons and removes the up/down arrows from a screen. To unlock the partially locked screen mode 523 or the fully locked screen mode 525, a user presses and holds the lock-pad icon 526 for a selected period of time, such as five seconds. In one embodiment, the fully locked screen mode 525 can also occur due to a passage of a pre-selected amount of time. The partially locked screen mode 523 or the fully locked screen mode 525 can display control parameters for an extended period of time.

Turning to FIG. 5C, illustrated is an exemplary screen 530 of the dashboard 350 illustrating a display of discovered equipment in the HVAC system 100. Generally, in prior art interfaces, a text list is used to inform a user/installer about found communicating devices in an HVAC system. However, in FIG. 5C, icons or pictures of equipment 531-535 are used instead to help a user/installer understand what devices and/or equipment is connected to the HVAC system 100. In the exemplary screen of FIG. 5C, each of the discovered devices or equipment 531-535 has a graphical user interface ("GUI") for employment by the installer, although other tabs of the dashboard 350 can also employ icons for found or discovered equipment.

Turning now to FIG. 5D-1, illustrated is an exemplary embodiment of a dashboard 350 having a lighting system 551 including a) a screen 555 that needs a backlight to display information to b) a backlight 557 and c) a motion detector 559, wherein the backlight is turned on by the motion detector 559 upon a detection of motion within a selected range. The screen 555 can be an LCD screen.

Generally, the lighting system 551 allows a user to view indoor settings, without having to touch a button on the dashboard 350, through employment of the sensor 559 and the backlight 557. With one embodiment of the system 551, a home owner can view indoor settings when passing by a dashboard 350, which activates the sensor 559 which then turns-on the backlight. This allows a viewer to view settings of the dashboard, although indoor, from a distance, as determined by the sensor 559. This can make for a convenient way for a user to view indoor settings when the backlight 557 is initially off, as it is switched on by the motion detector 559. Furthermore, the system 551 can conserve energy and screen 555 life when the backlight 557 is not on.

When the exemplary dashboard 350 is not being actively engaged by the user (i.e., not being touched through a touch-screen interface and no motion has been detected by the motion detector 559), the backlight 557 is off. The screen 555 is then perceived as substantially dark 560, and no information can be read by a user, as is illustrated in FIG. 5D-2.

In the system 551, the motion detector 559 detects movement within a specified distance of the dashboard 350 and commands the backlight 557 to turn on, but otherwise does not allow the backlight 557 to turn on if no motion is detected. For example, in FIG. 5D-3, the backlight is off because no movement, such as of a user 562, is detected within a movement detection zone 561, and the screen is dark 560.

However, once the movement is detected in the movement detection zone 561 by the motion detector 559, such as a movement of the user 562, then the dashboard 350 turns on the backlight 557 so that information can be read from the screen 555 of the dashboard 350, such as illustrated in FIG. 5D-4. The user 562 may, therefore, be able to read the dashboard 350 data on the screen 555 without having to walk up to the dashboard and touch the screen of the dashboard. This can also allow the user 562 to press the dashboard 350 one less time, which can prolong a touch-screen life of the dashboard 350. When the user 562 walks close enough to the motion detector 559 for the motion detector 559 to detect the user's movement within the movement detection zone 561, then the backlight 557 turns on and all buttons and tabs of the dashboard 350 are enabled. However, when the user 562 is out of range of the detection range 561, the system 551 again disables the backlight 557 and the various tabs, buttons, etc., and the screen is typically again dark 560, as illustrated in FIG. 5D-2.

Turning now to FIG. 5E, illustrated is an exemplary flow of screens 570 of the dashboard 350. In the exemplary flow, an installer selects an item of the screen 570 of an installer screen through an employment of text 563, which itself can be a button to select the text. In other flows, the text can be used in other screens of the dashboard 350.

In a further embodiment, the dashboard 350 has a screensaver that activates after a selected amount of inactivity from a user. In this embodiment, the dashboard 350 allows a user to download an image for the dashboard 350 to display when it is idle. Thus, the dashboard 350 can become an equivalent of a digital photo-frame when its controls are not active. In one embodiment, through pressing anywhere on a touch-screen of the dashboard 350 dismisses the screensaver image and re-displays the dashboard 350 controls.

Turning now to FIG. 6A, an exemplary humidity graphic 601 can be used to set humidify and de-humidify setpoints. In humidity screens 617, 619 of the humidity tab 360, a humidity status and RH humidity are both displayed on a same screen of the humidity tab 360. Generally, a user may not understand what XX % of humidity denotes on his or her dashboard 350. Therefore, this embodiment of the screens 617, 619 both displays the RH and also interprets the RH.

In a further embodiment, below 36% the humidity graphic 601 reads "INDOOR RH XX %--DRY," actual values can be between 35%-37%. Above 49%, the humidity graphic 601 reads "INDOOR RHXX %"--HUMID., actual value can be between 48% and 50%. Between 36% and 49% RH, the display reads "INDOOR RH XX %--NORMAL" or "INDOOR RH XX % OK", actual values can be between 35% and 50%.

An exemplary indoor humidity graphic shows a single bar 602 with relative humidity ("RH") being a calibrated item. A left side 603 of the bar 602 displays a current indoor RH level with the use of a triangle 605, and a right side 604 uses a triangle 607 to show a current humidify or dehumidify setpoint. Two up/down arrows 608 adjust a humidity setpoint, and a switch button 613 transitions the humidity graphic 601 to display either humidify comfort range setpoint or a de-humidify comfort range setpoint. In other words, the humidity graphic 601 can transition from the humidity screen 617 to a dehumidify screen 619.

Turning now to FIGS. 6B-1 through 6B-4, illustrated is an employment of one a plurality of exemplary screens 631 of a humidity tab 360 of FIG. 3D that is dependent upon equipment installed in the HVAC system 100 of FIG. 1. In other words, if a given piece of equipment is not installed in the HVAC system 100, an indicia of that piece of equipment is not illustrated on the humidity screen of the humidity tab 360.

For example, the indoor humidity tab 360 can be dependent on humidifiers and cooling equipment. Without cooling, equipment, de-humidification is not an option. Furthermore, the indoor settings tab 375 is dependent on heating and cooling equipment, and so is the programs tab 380. Therefore, the dashboard 350 removes modes, system setting options, and control setpoints (humidity and temperature) based upon which pieces of equipment to be discovered during an "installation and set-up process" are not actually discovered. Therefore, if a given piece of humidification or dehumidification equipment is not present, it may not be displayed in the screens 631.

For example, FIG. 6B-1 shows an indoor humidity screen 633a, an indoor setting screen 633b, a programs summary screen 633c and a programs input screen 633d with all options and services available. FIG. 6B-2 shows equivalent screens, here designated 635a-635d, based on only heating equipment and a humidifier being installed. FIG. 6B-3 shows equivalent screens, here designated 637a-637d, based on only cooling equipment being installed, without a humidifier. Finally, FIG. 6B-4 shows the indoor humidity screen, here designated 639, for which only heating equipment is installed, without a humidifier. As is illustrated, equipment that is not available is not illustrated. In further embodiments, interface screens correlating to indoor settings tab 375 and programs tab 380 do not display indicia of devices not installed in the HVAC system 100, either.

In a further embodiment, the humidity tab 360 allows users to have and configure different humidity levels during different periods of a day. These periods could be a wake, leave, return and sleep period, for example. For an exemplary instance of use, a user can have 40% humidity level in the morning, and 45% humidity level at night in the same day. Additionally, users can have different humidity levels for different days or group of days. Some parts of the country can have changes in its humidity level throughout the day, so therefore users who reside in these areas can maintain their comfort inside of their homes by using this feature.

Turning now to FIGS. 7Ai through 7Aiv and FIGS. 7Bi through 7Biv, illustrated are an exemplary flows of various transitions of a help screen having a help tab 370 of the dashboard 350 that are dependent upon or otherwise determined at least in part by a screen displayed before the help tab 370 is activated.

Generally, a purpose of interactive help for the HVAC system 100 is for a user or installer to navigate throughout the dashboard 350 without the user or installer having to go find a manual and look up a particular function or dashboard 350 screen shot. Discussed below are an exemplary flow 710 and a flow 750, both to help accomplish this goal of navigation.

FIGS. 7Ai through 7Aiv, collectively referred to as FIG. 7A corresponds to an example flow 710. FIGS. 7Bi though 7Biv, collectively referred to as FIG. 7B, corresponds to an example flow 750, Both the flows 710, 750 allow a user to get help on current dashboard screens without changing his or her current dashboard 350 settings. A help interface can therefore be located in the dashboard 350, and the user/installer does not necessarily have to find or use an independent manual.

An approach of the exemplary flow 710 of FIG. 7A is directed towards dependent settings for help screen sequences. The flow 710 illustrates help screens that progress in a predetermined sequence depending on the screen shown before the help tab 370 is pressed. Generally, help is supposed to teach a user and not confuse them more; therefore, help in the flow 710 does not display information about possible settings that were not displayed on the screen before the help tab was pressed.

For example, the exemplary flow 710 displays 3 different screens 711 (FIG. 7Ai), 712 (FIG. 7Aii), 713 (FIG. 7Aiii) that could be displayed to a user before a help tab 370 is pressed. After the help tab 370 is pressed, the screen transitions as follows: the screen 711 transitions to a screen 714 (FIG. 7Ai); the screen 712 transitions to a screen 715 (FIG. 7Aii); and the screen 713 transitions to a screen 716 (FIG. 7Aiii). Thus, each screen 711, 712, 713 progresses to its corresponding particular screen 714, 715, 716, respectively, that contains information specific to the screen transitioned from. The help screens 714, 715, 716 each contain a text box and arrows that give information about a particular area of the screen that was present before the help was invoked.

Pressing anywhere on a help screen 714, 715, 716 transitions the help screen to a screen 717 (FIG. 7Aiv). This particular screen 717 is used for all the screens 711, 712, 713, because the screen 717 row C provides information about a common item for all the screens 711, 712, 713.

Touching the screen 717 transitions to a screen 718, (FIG. 7Aiv). This is yet another screen that displays common information for all the screens 711, 712, 713. A screen 718 (FIG. 7Aiv) is the last screen in the help sequence 710. Pressing the screen 717 of the dashboard 350 transitions back to the screen displayed before the help tab 370 was pressed, via a step 720.

Turning now in a further embodiment to FIGS. 7Bi through 7Biv, collectively referred to as FIG. 7B, help screens of the help tab 370 allows a user to adjust settings on a help screen without saving changes to the settings to the HVAC system 100. Generally, once the user exits a help screen, all the settings or screen changes return to their previous state before the help tab 370 was pressed, which allows a user to experiment with settings of a screen without saving them to the HVAC system 100.

An exemplary screen 751 of the flow 750 of FIG. 7B is the screen displayed on the dashboard before a help tab 370 press. A screen 752 is the screen displayed immediately after a help tab 370 is pressed. A difference between screen 751 and 752 of flow 750 is a text box.

The text box on screen 752 gives a brief explanation about a current screen, and tells the user to touch an area of interest to get more information. Assuming that a user wants to know more about "current temp" and pressed in this area, for example, then the screen progresses to a screen 753 (FIG. 7Bii) with a new text box listing information about "current temp."

A screen 754 is shown after the "fan setting" area is touched. However, this area of the screen contains a select button. In one embodiment, pressing the select button changes the screen to a screen 755 (FIG. 7Biii) with a new text box listing information about the new setting. The transition from the screen 754 to the screen 755 not only shows a new text box, but it also changes the highlighted setting from "on" to "circulate." In one embodiment, the screen 755 transitions to a screen 756 (FIG. 7Biii) if the system setting area is pressed. In one embodiment the screen 756 transitions to a screen 757 (FIG. 7Biv) if the select button is pressed. However, the screen 757 transitions back to the screen 751 of FIG. 7Bi, the screen displayed on the dashboard before the help tab 370 press.

Turning now to FIGS. 8A-8D, illustrated are various views of a screen 831 dependent upon equipment being found in the HVAC system 100 of FIG. 1, as discussed regarding the screens 631 of FIGS. 6B-1 through 6B-4, above. In FIG. 8A-8C, a screen 83*a is an indoor humidity screen, a screen 83*b is an indoor settings screen, a screen 83*c is a program summary screen, and a screen 83*d is a program input screen.

Regarding FIG. 8A, screens 833a-833d show the screen 831 all options and services available. In FIG. 8B, screens 835a-835d illustrate the screen 831 for the case in which no cooling equipment is installed. In FIG. 8C, screens 837a-837d illustrate the screen 831 for the case in which no heating equipment is installed. And FIG. 8D illustrates an indoor humidity screen 839 reflecting the case in which heating equipment is installed but no humidifier is installed. As is illustrated, equipment that is not available is not shown in the screen 831.

Turning to FIG. 9A, illustrated is an exemplary programs screen 910 of the programs tab 380 that displays all program time periods and programmed temperature setpoints for the programs tab 380. In this embodiment, all program schedule setpoints 912, 914, 916, 918 are displayed on one programs screen 910. All time periods for a program schedule are displayed as well. In the illustrated embodiment of the screen 910 of the programs tab 380, time is listed first, then heat temperature, cool temperature, and fan settings are last. The screen 910 can be a 4.times.4 matrix with only one setpoint area/button being selectable at a time. In one embodiment, once a setpoint area is touched, the box turns an inverse of its current color. In the illustrated embodiment, up/down arrows 921 are used to adjust each setpoint/setting.

Turning now to FIGS. 9B-1 and 9B-2, illustrated is an exemplary flow 930 of programs screens. The screens of the programs tab 380 include buttons 933 that turn an inverse color as a selection and touch reaction. For example, FIG. 9B-1 illustrates a programs screen 932 with a particular button 933 not being touched. A programs screen 934 illustrates the case that a button 935 being touched, and turning an inverse color. In FIG. 9B-2, a screen 936 illustrates the button 935 staying an inverse color, and an arrow button 937 turning an inverse color. A screen 938 illustrates that the button 935 stays the inverse color, but an arrow button 939 reverts to its previous color.

In one embodiment, any touched button of the buttons 933 of the flow 930 turns an inverse color while being touched. If the button could be adjusted to another value, then the button/selection box remains inverted as to color even when the user is no longer touching the button, such as the button 935. However, if the button is an up/down arrow, for example the button 937, then the button only turns inverse while the user is touching that button. In other words, when the user releases the button, such as an up/down button, then the button returns to its normal color/state, as illustrated by the button 939. In other embodiments, the button color inverse can occur in other tabs, such as the home tab, the humidity tab, and so on.

Turning now to FIG. 9C, illustrated is a program schedule in a programs screen 940 of the programs tab 380 partitioned into a plurality of time zones wherein, upon a button corresponding to a time zone 941 being pressed for a set period of time: a) a temperature setpoint for that time period is deactivated, b) a display of the deactivated setpoints of the deactivated time period now appears dim relative to a display of the time period's setpoints before deactivation; and c) the deactivated time period's setpoints 943 appear dimmer relative to an active time period's setpoints.

In the illustrated embodiment of FIG. 9C, if one of the time zones 941 is pressed and held for approximately two seconds, then the setpoints for that time period 943 is deactivated. In one embodiment, the time period 943 is then controlled by the previous time period's setpoints.

Turning now to FIG. 9D-1, illustrated is an interface 950 for setting a system time for an HVAC system 100, such as through a programs screen of the programs tab 380. Setting a system time involves 6 boxes. Each box contains a particular aspect of time and date. Only one box can be changed by a user at a time. FIG. 9D-1 generally discloses an analog clock interface 950 with date and time selection boxes. The date and time selection boxes are as follows: hour box 961, minute box 962, AM/PM box 963, month box 964, day box 965 and year box 966.

Generally, in the clock interface 950, the hands 958, 959 of the clock interface 950 are moved by touching them and dragging them to a desired position, either through a touch screen or with a device such as a trackball. The hour hand 958 and the minute hand 959 are linked to their corresponding boxes 961, 962, and the boxes 961, 962 change if their corresponding hands are adjusted. For example, if the hour hand 958 is changed from "12" to "6," then the hour box 961 changes from "12" to "6." The up and down arrows 960 can also be used to adjust each interface box. Typically, in the interface 950, at least one value of at least one interface box is changed as a user drags at least one clock hand of the analog clock. Generally, in the interface 950, at least one value of at least one number itself is used as an input to a box, and the analog clock face maps to the changed value.

Turning now to the clock interface 965 of FIG. 9D-2, the clock face numbers themselves are used as buttons, a selection of any of which define where clock hands 973, 974 point and values in boxes 971, 972. Either the hour 971 or minute 972 box is selected, and then the desired number on the clock face is pressed, upon which both the hour hand 973 or minute hand 974 jump to that setting, and boxes 971, 972 fill in for that value. For example, if the hour box 971 is selected and the current setting is "5," and then the clock face number "10" is pressed, then both the hour hand 973 jumps to "10" and the hour box 971 adjusts to "10." The up and down arrows 960 can be used to adjust each box.

Turning now to FIG. 9E, illustrated is an embodiment of a programs screen of the programs tab 380 and a reset interface 975 for the same. Generally, the reset interface 975 of FIG. 9E can help a user reset to predetermined default setting, such as a factory setting 976 or another custom setting 977, when a user inadvertently changes one or more settings, or otherwise wishes to go back to these settings. Without the reset interface 975, a user might have to spend a considerable amount of time reviewing an owner manual and/or scrolling through a plurality of menus to locate the erroneous or unwanted settings, and may not know what the reset settings even are. As is illustrated, there are different selections for settings, temperature, clock, daylight savings time, display and backlight.

All buttons in FIG. 9E that are in grey represent an exemplary set of employed reset values or parameters as currently selected in the illustrated exemplary reset interface 975 upon an exit from the reset interface 975. These reset selections are employed by the HVAC system 100. These reset values over-ride whatever is currently being employed in the HVAC system 100. However, any reset value may be changed, as described below.

Generally, the reset interface 975 can select from a default value among the following values: a user can reset the dashboard 350 to the factory setting 976 or to another value, such as the custom value 977 programmed by an installer. For example, if programming or operating becomes confusing or other issues occur, the customer can reset the values to these prior settings. The reset screen 975 provides a reset unit of measurement in either the British unit (Fahrenheit) 978 or a S.I. 979 unit (Celsius).

The user may select a reset to a 12 hour 980 or 24 hour 981 clock. If users prefer the 24 hour clock rather than the "12" hour clock, he or she can do so via this change. The user can also adjust or correct the time, for any reason, including daylight savings times 982, 983.

A user may also set the default language: the consumer or dealer can reset to an exemplary preferred language 984-987 or change it, if needed. The customer can reset the backlight brightness, such as backlighting for high 991, medium 990, low 989, or off 988.

Generally, when the installer first installs the equipment, the installer will be able to set all parameters outlined above as part of the initial set up and commissioning of the dashboard and system. An installer or user can save the settings through a save button 992, or exit with an exit button 993. When the settings are saved, this over-rides any other programming or configuration in the HVAC system 100.

Turning now to FIG. 9F, illustrated is an exemplary programs screen that further includes a display of a plurality of pre-populated program schedule settings. The pre-populated program settings selection choices range from a maximum comfort 994 to a maximum energy savings 998 of the range. The settings employ a slider 992 between the maximum comfort setting 994 to the maximum energy savings 998 of the selection based upon a selector 999. Furthermore, based on a selection of a user, a program schedule of the programs tab 380 automatically populates temperature and humidity settings for each program scheduled event, to achieve a desired selection. This can occur in the programmed setpoints for both temperature and humidity, and further embodiments can include the activation or deactivation of pieces of various environmental equipment, such as heaters, coolers, fan blowers, humidifiers, dehumidifiers, etc.

Turning now to FIGS. 9Fi and 9Fii, illustrated are exemplary flows of programming screens that can be used with this embodiment. In flow 1000 of FIG. 9Fi, for a dashboard 350 that is running a program schedule, and flow 1006 of FIG. 9Fii, for an embodiment of the dashboard 350 that is not running a program schedule, instead of a user directly entering the necessary values, the user instead sets the slider 992 of FIG. 9F, and the values are entered into these screens by the slider 992. The flow 1000 has a screen 1001, 1002, 1003, 1004, and 1005. The flow 1006 has a screen 1007, 1008 and 1009.

In one embodiment, if a change of operating parameters is made in the programs screen of the programs tab 380 while a current program is running which employs previously entered parameters, a hold time can be programmed within the programs tab 380, wherein the hold time is entered as exactly what time the previous parameters are to stop taking effect.

In a further embodiment, the dashboard 350 has to set parameters/settings for all devices in the HVAC system 100. There are a few parameters, such as for a blower, that have large ranges that can be very time consuming to set with up and down arrows. Therefore, a coarse scroll bar and a fine scroll bar can be used to adjust such settings (not illustrated). First, the coarse bar is adjusted to get close to the desired range, and then the fine bar is adjusted to get to the exact and precise settings. This can be done by a dashboard 350 that is or includes a touch-screen.

Turning now to FIG. 10A, illustrated is an exemplary flow 1010 employing the home screen 450. In a first screen 1015, a particular icon 1017, such as the "Lennox".TM. icon, is placed on the home screen 450 to enable an access of an installer screen. In FIG. 10A, in order to access an installer screen from the home screen 450, an installer is to both a) press and hold the icon 1017 with a finger for at least five seconds; and then b) drag the finger across the interface, as illustrated in screen 1020. The button hold and drag is to be performed without lifting a finger for the installer screens to be accessible from the home screen. Otherwise, the screen 1015 generates a warning screen 1025.

In a further embodiment, the dashboard 350, such as in the home screen 450, has a single alert icon 1018 that gives a user an indication that there is at least one alert present. In one embodiment, the alert icon 1018 is one of three colors: a) a first color to indicate that the HVAC system 100 is currently running in an energy efficient mode; b) a second color to indicate that a filter of the HVAC system 100 needs to be replaced; and c) a third color to indicate that a piece of equipment is no longer working.

Pressing the alert icon 1018 directly navigates to a display page on the dashboard 350, such as found in the alerts tab 365, giving a user: a) more information about at the least one alert; b) the ability to clear the at least one alert; or c) to set a reminder time for a later date for the at least one alert.

Furthermore, a color of the alert icon 1018 can be changed to signal a different level of severity alert that is present. For example, a "green" alert icon 1018 could signal that the HVAC system 100 is currently running in an energy efficient mode. A "yellow" alert icon 1018 could signal that a filter needs to be replaced. A "red" alert icon 1018 could signal that a critical piece of equipment is no longer working.

Turning to FIG. 10B, illustrated is an exemplary flow 1030 that transitions from a home screen 450 to a tabbed interface 1040. In FIG. 10B, if a user touches anywhere that is not a button, such as an area 1035, a tabbed interface 1040 arises, each of the interfaces (humidity screen, help screen, etc.) accessible through its corresponding tab 355-390.

Generally, the flow 1030 gives a user a straightforward interface that can easily get indoor settings and system information. With a simple screen press, such as in an area 1035, a user can get the tabbed interface 1040, thereby allowing a change of a system or mode setting, or to otherwise get more detailed information about aspects of the HVAC system 100.

The home screen with the tabbed interface 1040 of FIG. 10B also allows the user to change a current temperature setpoint without necessarily having to deal with much further information. Therefore, all a user needs to do is press anywhere inside an "indoor conditions" area (that is not a button) and the home screen 450 transitions to the tabbed interface 1040 where all indoor settings can be changed in the indoor settings tab 375 and more detailed information can be obtained.

In a further embodiment, the home screen 450 can be a "default screen" for the dashboard 350 and gives the user general information about indoor conditions. In a still further embodiment, an icon of the home screen 450 is correlated to at least one HVAC system mode or fan mode. In this embodiment, for example, a fan icon can be used to represent a touch area for a user to press if the user wants to change a fan schedule in the dashboard 350. Similarly, in some embodiments, a "flame and flake" icon can be used to represent a system mode button that a user may wish to change.

In a yet further embodiment of the home screen 450, at least one attribute of a presentation of the home screen is selectable by a user. For example, differing presentations can be mode of comfort backgrounds. One example could be a black and white screen for a background of the home screen 450; another example could be use of a larger font size on the home screen 450, etc.

Turning now to FIGS. 11A-1 and 11A-2, illustrated are two exemplary embodiments of an installer dashboard 1030 to be used in conjugation with the installer flow 401 and its various tabs and screens. The installer dashboard 1030 can be considered a subset of the dashboard 350, and is contained within the dashboard 350, although both the dashboard 350 and the installer dashboard 1030 are accessible remotely.

Pressing the installation setup tab 402 can change the active tab to an installation setup screen of the installer screen flow 401. In some embodiments, when accessing the installer screens, the dashboard 350 defaults to showing the installation setup tab 402 as active.

Pressing the tests tab 404 can change the active tab to an installer tests screen of the installer screen flow 401. Pressing the installer help tab 414 provides "context sensitive" help that presents dialog boxes relating to current screen functions regarding installation of the installer screen flow 401. Pressing the alerts tab 408 changes the active tab to the (installer) alerts screen of the installer screen flow 401. The diagnostic tab 406 is only active once the HVAC system 100 has been configured. Pressing the diagnostic tab 406 changes the active tab to the diagnostics screen of the installer screen flow 401. Pressing the exit tab 1107 advances the installer to the home screen 450--leaving the installer screens. If available, pressing the start tab 1105 allows the HVAC system 100 to begin operating.

Turning now to FIG. 11B, illustrated is an installation and setup screen 1120 that displays minimum 1127, maximum 1129, current 1130 and default 1131 values on one screen for a device setting in an installation screen of the installer screen flow 401 for a particular device in the HVAC network 200 of the HVAC system 100. In one embodiment, the device to be installed sends a message to the dashboard 350 with the minimum, maximum and factory default values. In a further embodiment, the device to be installed can send increment values. The setup screen 1120 then displays all of this information to the installer. This gives the installer better information to set device parameters.

Turning now to FIG. 11C, illustrated is an exemplary installer screen 1140 illustrating an underlining 1141 of factory default settings for device parameters of the HVAC system 100. Generally, when multiple settings are displayed on one screen, under-lining 1141 one of the listings allows an installer to know what the factory default setting is, even when a separate entry 1142 is an option that is currently installed.

Turning now to FIGS. 11D-1 and 11D-2, illustrated is a flow 1155 wherein a device within the HVAC system 100 to be diagnosed in the installer screen 1140 is moved as text by a finger movement from a left part 1191 of the installer screen 1140 to a right part 1196 of the installer screen 1140.

In some embodiments, this approach does not need a select button or a remove button. Instead, an installer touches a desired item/device, such as item 1194 (FIG. 11D-1), and drags the text or icon to the right part 1196, creating an absence 1195, and then releases (FIG. 11D-2). Once the device is on the right part 1196, it is no longer on the left part 1191, and a start button 1197 appears, letting the installer know that the installer may proceed with diagnostics. To remove the selected item, simply drag it back to a list on the left part 1191.

Turning now to FIG. 12, illustrated is an exemplary method 1200 for operating and/or providing a visual interface for an HVAC network of an HVAC system, such as the HVAC network 200.

In a step 1210, a weather tab that invokes a weather screen is provided. In a step 1220, an indoor humidity tab that invokes an alert screen is provided, wherein invoking the indoor humidity tab advances to a humidity screen which displays at least a current indoor humidity. In step 1230, an alerts tab that invokes an alerts screen is provided. In a step 1240, a help tab that invokes a help screen is provided, wherein invoking the help tab advances to a help screen that provides context sensitive help that presents at least one dialog box related to a function of a current screen. In a step 1250, an indoor settings tab invokes an indoor setting screen which includes a current indoor temperature. In a step 1260, a programs tab that invokes a programs screen is provided which can program at least one of a) time b) temperature setpoints and c) heating/cooling setpoints. In a step 1270, a home tab provides a summary of indoor conditions. In a step 1280, at least one of the screens from the above steps is invoked.

In a further embodiment of the method 1200, step 1270 further provides wherein the home tab can advance to an installer dashboard that can be accessed only by an entry of a key, wherein the key is entered by an installer. In a further embodiment of method 1200, step 1260 further provides that, upon a time zone being pressed for a set period of time in the programs screen: a) a temperature setpoint for that time period is deactivated; b) a display of the deactivated setpoints of the deactivated time period appear dim relative to a display of the time period setpoints before deactivation; and c) the deactivated time period's setpoints appear dimmer relative to an active time periods setpoints. Step 1260 also still further provides a display of a plurality of pre-populated program schedule settings.

The method 1200 yet further includes a further embodiment of step 1240, wherein the help screen further displays settings dependent upon a screen displayed before the help screen is invoked. A still further embodiment of the method 1220 includes a further embodiment of step 1220, wherein the humidity screen allows users to program different humidity levels for different periods of a day. A yet still further embodiment of step 1250, wherein for a given piece of equipment to be offered to a user, a corresponding piece of equipment is installed in the HVAC dashboard.

Turning now to FIGS. 13A and 13B, illustrated is an exemplary flow diagram 1300 illustrating a subnet controller controlling a user interface display, which in some embodiments can be used in conjunction with or as a further embodiment of the method 1200.

Message(s) 1: subnet controller 1310 tells UI 1320 to display a specific screen and instructs it how to fill the data fields (TITLE, FIELDx, VALUEx, UNITx field as well as instructions on Buttons--how many there are, what their caption is). For example, to fill FIELD2 use UI string numbers 1234, to fill VALUE2 field, look at message with ID 12093 and starting bit 16 (3.sup.rd byte of the message) take 16 bits out and interpret them as unsigned int (16 bit), to fill UNIT2 field, use units of F/C (indicates temperature, for example.)

Message(s) 2: subnet controller 1310 tells device(s) 1330 to start operating--performing whatever test they are to perform.

Message(s) 3: device(s) 1330 broadcast their status and/or diagnostic messages and the UI 1320 interprets and displays the data, as it was taught by message(s) 1.

Message(s) 4: UI 1320 lets the subnet controller 1310 know which button was pressed, the subnet controller 1310 interprets this as either a SKIP TEST (go to the next one, or if on the last one, go to the results page), TEST PASSED or TEST FAILED, as appropriate. After this, the whole process repeats for all tests. An exemplary user interface screen shot after completion of a test can be seen in FIG. 13B.

Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments.

* * * * *

File A Patent Application

  • Protect your idea -- Don't let someone else file first. Learn more.

  • 3 Easy Steps -- Complete Form, application Review, and File. See our process.

  • Attorney Review -- Have your application reviewed by a Patent Attorney. See what's included.