Easy To Use Patents Search & Patent Lawyer Directory

At Patents you can conduct a Patent Search, File a Patent Application, find a Patent Attorney, or search available technology through our Patent Exchange. Patents are available using simple keyword or date criteria. If you are looking to hire a patent attorney, you've come to the right place. Protect your idea and hire a patent lawyer.


Search All Patents:



  This Patent May Be For Sale or Lease. Contact Us

  Is This Your Patent? Claim This Patent Now.



Register or Login To Download This Patent As A PDF




United States Patent Application 20180135071
Kind Code A9
VAN DAMME; Mireille Maria Augusta ;   et al. May 17, 2018

Disease Resistant Potato Plants

Abstract

The present invention relates to a plant, which is resistant to a pathogen of viral, bacterial, fungal or oomycete origin, wherein the plant has a reduced level, reduced activity or complete absence of DMR6 protein as compared to a plant that is not resistant to the said pathogen, in particular organisms of the Fungi or the phylum Oomycota. The invention further relates to a method for obtaining a plant, which is resistant to a pathogen of viral, bacterial, fungal or oomycete origin, comprising reducing the endogenous level or activity of DMR6 protein in the plant. In addition, the invention relates to the use of a DMR6 promotor for providing disease resistant plants.


Inventors: VAN DAMME; Mireille Maria Augusta; (Norwich, GB) ; VAN DE ACKERVEKEN; Augustinus Franciscus Johannes Maria; (Houten, NL) ; VAN SCHIE; Christianus Cornelis Nicolaas; (Amsterdam, NL) ; ZEILMAKER; Tieme; (Amersfoort, NL)
Applicant:
Name City State Country Type

Enza Zaden Beheer B.V.

Enkhuizen

NL
Prior Publication:
  Document IdentifierPublication Date
US 20160298130 A1October 13, 2016
Family ID: 1000003296234
Appl. No.: 15/191919
Filed: June 24, 2016


Related U.S. Patent Documents

Application NumberFiling DatePatent Number
14528707Oct 30, 20149546373
15191919
14250875Apr 11, 20149121029
14528707
12525236Dec 22, 20098742207
PCT/EP2008/000718Jan 30, 2008
14250875
15111285Jul 13, 2016
PCT/EP2014/050572Jan 14, 2014
12525236

Current U.S. Class: 1/1
Current CPC Class: C12N 15/8279 20130101; C12N 15/8218 20130101
International Class: C12N 15/82 20060101 C12N015/82

Foreign Application Data

DateCodeApplication Number
Feb 1, 2007EPPCT/EP2007/050976

Claims



1. An isolated potato plant which is resistant to Phytophthora infestans, wherein the potato plant has a reduced level or reduced activity of DMR6 protein as compared to a potato plant that is not resistant to Phytophthora infestans, wherein said potato plant has either: a non-natural mutation introduced into the dmr6 gene of SEQ ID NO: 113 and said plant has a reduced level or reduced activity of the DMR6 protein of SEQ ID NO: 112, or a non-natural mutation introduced into the dmr6 gene of SEQ ID NO: 115 and said plant has a reduced level or reduced activity of the DMR6 protein of SEQ ID NO: 114.

2. The potato plant as claimed in claim 1, wherein the mutation in the dmr6 gene leads to an amino acid substitution in the DMR6 protein.

3. The potato plant as claimed in claim 1, wherein the potato plant has a non-natural mutation introduced into the dmr6 gene of SEQ ID NO: 113 and said plant has a reduced level or reduced activity of the DMR6 protein of SEQ ID NO: 112.

4. The potato plant as claimed in claim 1, wherein the potato plant has a non-natural mutation introduced into the dmr6 gene of SEQ ID NO: 115 and said plant has a reduced level or reduced activity of the DMR6 protein of SEQ ID NO: 114.

5. A seed, tissue, or plant part of the potato plant according to claim 1, wherein the seed, tissue, or plant part comprises the mutation in the dmr6 gene of SEQ ID NO: 113 or SEQ ID NO: 115 and has a reduced level or reduced activity of the DMR6 protein of SEQ ID NO: 112 or SEQ ID NO: 114.

6. A method for obtaining a potato plant which is resistant to Phytophthora infestans, the method comprising reducing an endogenous level of the DMR6 protein of SEQ ID NO: 112 or SEQ ID NO: 114 in a potato plant by introducing a mutation into the dmr6 gene of SEQ ID NO: 113 or SEQ ID NO: 115 to produce a potato plant that is resistant to Phytophthora infestans.

7. The method of claim 6, wherein the method comprises reducing an endogenous level of the DMR6 protein of SEQ ID NO: 112 in a potato plant by introducing a mutation into the dmr6 gene of SEQ ID NO: 113 to produce a potato plant that is resistant to Phytophthora infestans.

8. The method of claim 6, wherein the method comprises reducing an endogenous level of the DMR6 protein of SEQ ID NO: 114 in a potato plant by introducing a mutation into the dmr6 gene of SEQ ID NO: 115 to produce a potato plant that is resistant to Phytophthora infestans.

9. The method of claim 6, wherein reducing the endogenous level of the DMR6 protein in the potato plant is achieved by reducing expression of the dmr6 gene of SEQ ID NO: 113 or SEQ ID NO: 115.

10. The method of claim 9, wherein reducing expression of the dmr6 gene of SEQ ID NO: 113 or SEQ ID NO: 115 is achieved by gene silencing or RNAi.

11. The method of claim 6, wherein the mutation results in one or more amino acid changes that leads to a reduced enzymatic activity of the DMR6 protein of SEQ ID NO: 112 or SEQ ID NO: 114.

12. The method of claim 6, wherein the mutation is effected by a mutagenic treatment of the potato plant.

13. The method according to claim 12, wherein the mutagenic treatment is effected with a mutagen or with radiation.

14. A potato plant produced from the method according to claim 6, wherein the plant comprises the mutation in the dmr6 gene of SEQ ID NO: 113 or SEQ ID NO: 115 and said potato plant has a reduced level or reduced activity of the DMR6 protein of SEQ ID NO: 112 or SEQ ID NO: 114.

15. A seed, tissue, or plant part of the potato plant according to claim 14, wherein the seed, tissue, or plant part comprises the mutation in the dmr6 gene of SEQ ID NO: 113 or SEQ ID NO: 115 and has a reduced level or reduced activity of the DMR6 protein of SEQ ID NO: 112 or SEQ ID NO: 114.
Description



[0001] This application is a continuation-in-part of co-pending U.S. patent application Ser. No. 14/528,707, filed Oct. 30, 2014, which is a divisional application of U.S. patent application Ser. No. 14/250,875, filed Apr. 11, 2014 and issued as U.S. Pat. No. 9,121,029, which is a divisional application of U.S. patent application Ser. No. 12/525,236, filed Dec. 22, 2009 and issued as U.S. Pat. No. 8,742,207, which is the U.S. national phase of PCT Application No. PCT/EP2008/000718, filed Jan. 30, 2008, which claims priority to PCT Application No. PCT/EP2007/050976, filed Feb. 1, 2007, each of which is incorporated herein by reference in their entirety.

[0002] The Sequence Listing associated with this application is filed in electronic format via EFS-Web and is hereby incorporated by reference into the specification in its entirety. The name of the text file containing the Sequence Listing is 1603150_5T25.txt. The size of the text file is 117,801 bytes, and the text file was created on Jun. 21, 2016.

BACKGROUND OF THE INVENTION

[0003] 1. Field of the Invention

[0004] The present invention relates to disease resistant plants, in particular plants resistant to organisms of the kingdom Fungi and the phylum Oomycota, the oomycetes. The invention further relates to plant genes conferring disease resistance and methods of obtaining such disease resistant plants for providing protection to Oomycota pathogens.

[0005] 2. Description of Related Art

[0006] Resistance of plants to fungal and oomycete pathogens has been extensively studied, for both pathogen specific and broad resistance. In many cases resistance is specified by dominant genes for resistance. Many of these race-specific or gene-for-gene resistance genes have been identified that mediate pathogen recognition by directly or indirectly interacting with avirulence gene products or other molecules from the pathogen. This recognition leads to the activation of a wide range of plant defense responses that arrest pathogen growth.

[0007] In plant breeding there is a constant struggle to identify new sources of mostly monogenic dominant resistance genes. In cultivars with newly introduced single resistance genes, protection from disease is often rapidly broken, because pathogens evolve and adapt at a high frequency and regain the ability to successfully infect the host plant. Therefore, the availability of new sources of disease resistance is highly needed.

[0008] Alternative resistance mechanisms act for example through the modulation of the defense response in plants, such as the resistance mediated by the recessive mlo gene in barley to the powdery mildew pathogen Blumeria graminis f sp. hordei. Plants carrying mutated alleles of the wildtype MLO gene exhibit almost complete resistance coinciding with the abortion of attempted fungal penetration of the cell wall of single attacked epidermal cells. The wild type MLO gene thus acts as a negative regulator of the pathogen response. This is described in WO9804586.

[0009] Other examples are the recessive powdery mildew resistance genes, found in a screen for loss of susceptibility to Erysiphe cichoracearum. Three genes have been cloned so far, named PMR6, which encodes a pectate lyase-like protein, PMR4 which encodes a callose synthase, and PMR5 which encodes a protein of unknown function. Both mlo and pmr genes appear to specifically confer resistance to powdery mildew and not to oomycetes such as downy mildews.

[0010] Broad pathogen resistance, or systemic forms of resistance such as SAR, has been obtained by two main ways. The first is by mutation of negative regulators of plant defense and cell death, such as in the cpr, lsd and acd mutants of Arabidopsis. The second is by transgenic overexpression of inducers or regulators of plant defense, such as in NPR1 overexpressing plants.

[0011] The disadvantage of these known resistance mechanisms is that, besides pathogen resistance, these plants often show detectable additional and undesirable phenotypes, such as stunted growth or the spontaneous formation of cell death.

SUMMARY OF THE INVENTION

[0012] It is an object of the present invention to provide a form of resistance that is broad, durable and not associated with undesirable phenotypes.

[0013] In the research that led to the present invention, an Arabidopsis thaliana mutant screen was performed for reduced susceptibility to the downy mildew pathogen Hyaloperonospora parasitica. EMS-mutants were generated in the highly susceptible Arabidopsis line Ler eds1-2. Eight downy mildew resistant (dmr) mutants were analyzed in detail, corresponding to 6 different loci. Microscopic analysis showed that in all mutants H. parasitica growth was severely reduced. Resistance of dmr3, dmr4 and dmr5 was associated with constitutive activation of plant defense. Furthermore, the dmr3 and dmr4, but not dmr5 mutants, were also resistant to Pseudomonas syringae and Golovinomyces orontii.

[0014] In contrast, enhanced activation of plant defense was not observed in the dmrl , dmr2, and dmr6 mutants. The results of this research have been described in Van Damme et al. (2005) Molecular Plant-Microbe Interactions 18(6) 583-592. This article does not disclose the identification and characterization of the DMR genes.

[0015] The dmr6 mutant was identified in a loss-of-susceptibility screen in the Arabidopsis Ler eds1-2 background. The DMR6 gene now has been cloned and characterized. Thus, it was found that DMR6 is the gene At5g24530, encoding for an oxidoreductase (DNA and amino acid sequence are depicted in FIG. 2). Oxidoreductases are enzymes that catalyze the transfer of electrons from one molecule, the oxidant, to another, the reductant. According to the present invention, it has been found that lack of a functional DMR6 protein results in downy mildew resistance.

[0016] The present invention thus provides a plant, which is resistant to a pathogen of viral, bacterial, fungal or oomycete origin, characterized in that the plant has a reduced level, reduced activity or complete absence of the DMR6 protein as compared to a plant that is not resistant to the said pathogen.

[0017] This form of resistance is in particular effective against pathogens of the phylum Oomycota, such as Albugo, Aphanomyces, Basidiophora, Bremia, Hyaloperonospora, Pachymetra, Paraperonospora, Perofascia, Peronophythora, Peronospora, Peronosclerospora, Phytium, Phytophthora, Plasmopara, Protobremia, Pseudoperonospora, Sclerospora, Viennotia species, as well as to pathogens belonging to the Fungi.

[0018] The resistance according to the invention is based on an altered, in particular a reduced level, reduced activity or complete absence of the DMR6 protein in planta. The term "DMR6 protein" in this respect relates to the DMR6 gene product, such as the protein encoded by the At5g24530 gene in Arabidopsis. Such alterations can be achieved in various ways.

[0019] In one embodiment of the invention, the reduced level of DMR6 protein is the result of a reduced endogenous DMR6 gene expression. Reducing the expression of the DMR6 gene can be achieved, either directly, such as by gene silencing, or indirectly by modifying the regulatory sequences thereof, or by stimulating repression of the gene.

[0020] Modulating the DMR6 gene to lower its activity or expression can be achieved at various levels. First, the endogenous gene can be directly mutated. This can be achieved by means of a mutagenic treatment. Alternatively, a modified DMR6 gene can be brought into the plant by means of transgenic techniques or by introgression, or the expression of DMR6 can be reduced at the regulatory level, for example by modifying the regulatory sequences or by gene silencing.

[0021] In another embodiment of the invention, the reduced level of DMR6 protein is the result of a mutation in the DMR6 gene resulting in a reduced DMR6 expression as compared to the wild-type DMR6 gene wherein no such mutation is present, or resulting in a reduced mRNA or protein stability. In a particular embodiment this is achieved by mutations in the DMR6 coding sequence that result in a non-functional DMR6 protein, i.e. without or with reduced enzymatic activity.

[0022] In another embodiment of the invention, reduced expression can be achieved by down-regulation of DMR6 gene expression either at the transcriptional or the translational level, e.g., by gene silencing or by mutations that affect the expression of the DMR6 gene.

[0023] This invention is based on research performed on resistance to Hyaloperonospora parasitica in Arabidopsis but is a general concept that can be more generally applied in plants, in particular in crop plants that are susceptible to infections with pathogens, such as Oomycota and Fungi.

[0024] The invention is suitable for a large number of plant diseases caused by oomycetes such as, but not limited to, Bremia lactucae on lettuce, Peronospora farinosa on spinach, Pseudoperonospora cubensis on members of the Cucurbitaceae family, e.g., cucumber and melon, Peronospora destructor on onion, Hyaloperonospora parasitica on members of the Brasicaceae family, e.g., cabbage, Plasmopara viticola on grape, Phytophthora infestans on tomato and potato, and Phytophthora sojae on soybean.

[0025] When the modification of DMR6 gene expression in a plant is to be achieved via genetic modification of the DMR6 gene or via the identification of mutations in the DMR6 gene, and the gene is not yet known it must first be identified. To generate pathogen-resistant plants, in particular crop plants, via genetic modification of the DMR6 gene or via the identification of mutations in the DMR6 gene, the orthologous DMR6 genes must be isolated from these plant species.

[0026] Various methods are available for the identification of orthologous sequences in other plants.

[0027] A method for the identification of DMR6 orthologous sequences in a plant species, may for example comprise identification of DMR6 ESTs of the plant species in a database; designing primers for amplification of the complete DMR6 transcript or cDNA; performing amplification experiments with the primers to obtain the corresponding complete transcript or cDNA; and determining the nucleotide sequence of the transcript or cDNA. Suitable methods for amplifying the complete transcript or cDNA in situations where only part of the coding sequence is known are the advanced PCR techniques 5'RACE, 3'RACE, TAIL-PCR, RLM-RACE and vectorette PCR.

[0028] Alternatively, if no nucleotide sequences are available for the plant species of interest, primers are designed on the DMR6 gene of a plant species closely related to the plant of interest, based on conserved domains as determined by multiple nucleotide sequence alignment, and used to PCR amplify the orthologous sequence. Such primers are suitably degenerate primers.

[0029] Another reliable method to assess a given sequence as being a DMR6 ortholog is by identification of the reciprocal best hit. A candidate orthologous DMR6 sequence of a given plant species is identified as the best hit from DNA databases when searching with the Arabidopsis DMR6 protein or DNA sequence, or that of another plant species, using a Blast program. The obtained candidate orthologous nucleotide sequence of the given plant species is used to search for homology to all Arabidopsis proteins present in the DNA databases (e.g., at NCBI or TAIR) using the BlastX search method. If the best hit and score is to the Arabidopsis DMR6 protein, the given DNA sequence can be described as being an ortholog, or orthologous sequence.

[0030] DMR6 is encoded by a single gene in Arabidopsis as deduced from the complete genome sequence that is publicly available. In the genome of rice 3 orthologs, and in poplar 2 orthologs have been identified. In most other plant species tested so far, DMR6 appears to be encoded by a single gene, as determined by the analysis of mRNA sequences and EST data from public DNA databases. The orthologous genes and proteins are identified in these plants by nucleotide and amino acid comparisons with the information that is present in public databases.

[0031] Alternatively, if no DNA sequences are available for the desired plant species, orthologous sequences are isolated by heterologous hybridization using DNA probes of the DMR6 gene of Arabidopsis or another plant or by PCR methods, making use of conserved domains in the DMR6 coding sequence to define the primers. For many crop species, partial DMR6 mRNA sequences are available that can be used to design primers to subsequently PCR amplify the complete mRNA or genomic sequences for DNA sequence analysis.

[0032] In a specific embodiment the ortholog is a gene of which the encoded protein shows at least 50% identity with the Arabidopsis DMR6 protein (At5g24530) or that of other plant DMR6 proteins. In a more specific embodiment the identity is at least 55%, more specifically 60%, even more specifically 65%, 70%, 75%, 80%, 85%, 90%, 95% or 99%.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] FIG. 1A-D shows the alignment of the amino acid sequences of the DMR6 protein of Arabidopsis thaliana (SEQ ID NO. 62) and orthologs from Aquilegia species (SEQ ID NO. 63), Citrus sinensis (SEQ ID NO. 64), Coffea canephora (SEQ ID NO. 65), Cucumis sativus (SEQ ID NO. 67), Gossypium hirsitum (SEQ ID NO. 68), Lactuca sativa (SEQ ID NO. 70), Medicago truncatula (SEQ ID NO. 71), Oryza sativa (SEQ ID NOs. 72-74), Populus trichocarpa (SEQ ID NOs. 75 and 76), Solanum lycopersicum (SEQ ID NOs. 77 and 78), Sorghum bicolor (SEQ ID NO. 79), Spinacia oleracea (SEQ ID NO. 81), Vitis vinifera (SEQ ID NO. 82), Zea mays (SEQ ID NO. 83), and Zingiber officinale (SEQ ID NO. 84), using the CLUSTAL W (1.83) multiple sequence alignment programme (EBI). Below the sequences the conserved amino acids are indicated by the dots, and the identical amino acids are indicated by the asterisk.

[0034] FIG. 2 shows the nucleotide (SEQ ID NO. 61) and amino acid sequence (SEQ ID NO. 62) of the DMR6 gene (At5g24530, gi 42568064, Genbank NM_122361) and protein (gi 15238567, Genbank NP_197841) of Arabidopsis thaliana, respectively.

[0035] FIG. 3 shows the nucleotide (SEQ ID NO. 69) and derived amino acid sequence (SEQ ID NO. 70) of the DMR6 ortholog of Lactuca sativa, respectively.

[0036] FIG. 4 shows the nucleotide (SEQ ID NO. 80) and derived amino acid sequence (SEQ ID NO. 81) of the DMR6 ortholog of Spinacia oleracea, respectively.

[0037] FIG. 5 shows the nucleotide (SEQ ID NO. 66) and derived amino acid sequence (SEQ ID NO. 67) of the DMR6 ortholog of Cucumis sativus and Cucumis melo.

[0038] FIG. 6A-B shows the downy mildew resistance of the Arabidopsis dmr6 mutants. (a) Quantification of sporangiophores of H. parasitica isolate Waco9, 7 days post inoculation, on the dmr6-1 mutant (BC2, line E37) compared to its parental line Ler eds1-2 and on the dmr6-2 mutant (FLAG_445D09 T-DNA line) compared to its parental line Ws-4. (b) Restoration of susceptibility by complementation with the At5g24530 gene in the dmr6-1 mutant. H. parasitica spores per mg seedling weight were quantified on Ler eds1-2, dmr6-1 and 5 complementation lines (#121, 122, 211,231, and 241).

[0039] FIG. 7 shows the structure of the Arabidopsis DMR6 gene and dmr6-1 and dmr6-2 mutations. The DMR6 gene contains four exons and a coding sequence of 1026 bases. The two alleles are indicated; dmr6-1 with a base change in exon 2, and dmr6-2 with a T-DNA insertion into intron 2.

[0040] FIG. 8 shows the relative transcript levels of DMR6 in Ler plants either mock treated or inoculated with a compatible or incompatible H. parasitica isolate. Transcript levels were determined at different days post inoculation. The difference in cycle threshold (.DELTA.CT) values reflect the number of additional PCR amplification cycles required to reach an arbitrary threshold product concentration as compared to ACTIN2. A lower .DELTA.CT value indicates a higher transcript level.

[0041] FIG. 9 shows the expression of the DMR6 promoter-reporter (pDMR6::GUS) construct in transgenic Arabidopsis lines, visualized with only X-gluc as substrate (Figure d and e) or Magenta-Xgluc (Figure a-c) and trypan blue staining of H. parasitica growth (a) Ler eds1-2 (pDMR6::GUS) 3dpi with H. parasitica, Cala2 isolate. (b) Col-0 (pDMR6::GUS) 3 dpi with H. parasitica, Waco9 isolate. (c) Ler eds1-2 (pDMR6::GUS) 3 dpi with H. parasitica, Emoy2 isolate. (d) Col-0 (pDMR6::GUS) 3 dp wounding. (e) Col-0 (pDMR6::GUS) 3 dp BTH application.

[0042] FIG. 10A-B shows the Q-PCR analysis of the transcript levels of the genes; At4g14365, At1g14880, ACD6, PR-1, PR-2 and PR-5, selected as up regulated in the dmr6-1 micro array analysis.(a) Transcription levels of the six genes in dmr6-1 compared to Ler eds1-2 and additionally the DMR6 transcript. (b) Elevated gene transcripts of six defense-associated genes in dmr6-2 versus Ws-4. CT reflects the number of additional PCR amplification cycles required to reach the level of ACTIN2 transcripts. A lower .DELTA.CT value indicates a higher transcript level.

[0043] FIG. 11 shows the nucleotide sequence (SEQ ID NO. 107) of the 3 kb region upstream of the start codon of the DMR6 gene (at5g24530) of Arabidopsis thaliana, including the promoter and 5'-UTR (underlined).

[0044] FIG. 12 shows the nucleotide (SEQ ID NO. 95) and derived amino acid sequence (SEQ ID NO. 96) of the DMR6 ortholog of Solanum lycopersicum, respectively.

[0045] FIG. 13 shows the nucleotide (SEQ ID NO. 97) and derived amino acid sequence (SEQ ID NO. 98) of the DMR6 ortholog of Nicotiana benthamiana, respectively.

[0046] FIG. 14 shows complementation of Arabidopsis thaliana dmr6-1 with DMR6 derived from Cucumis sativa (Cs), Spinacia oleracea (Si), Lactuca sativa (Ls) and Solanum lycopersicum (So).

[0047] FIGS. 15A-15B shows (15A) nucleotide (SEQ ID NO: 113) and derived amino acid (SEQ ID NO: 112) and (15B) nucleotide (SEQ ID NO: 115) and derived amino acid (SEQ ID NO: 114) sequences of the DMR6 ortholog of Solanum tuberosum, respectively.

DETAILED DESCRIPTION OF THE INVENTION

[0048] FIG. 1 shows orthologous DMR6 sequences (described in Table 1) that have been identified in publicly available databases and obtained by PCR amplification on cDNA and subsequent sequencing. After orthologous DMR6 sequences are identified, the complete nucleotide sequence of the regulatory and coding sequence of the gene is identified by standard molecular biological techniques. For this, genomic libraries of the plant species are screened by DNA hybridization or PCR with probes or primers derived from a known DMR6 gene to identify the genomic clones containing the DMR6 gene. Alternatively, advanced PCR methods, such as RNA ligase-mediated RACE (RLM-RACE), can be used to directly amplify gene and cDNA sequences from genomic DNA or reverse-transcribed mRNA. DNA sequencing subsequently results in the characterization of the complete gene or coding sequence.

[0049] Once the DNA sequence of the gene is known this information is used to prepare the means to modulate the expression of the DMR6 gene.

[0050] To achieve a reduced DMR6 protein level, the expression of the DMR6 gene can be down-regulated or the enzymatic activity of the DMR6 protein can be reduced by amino acid substitutions resulting from nucleotide changes in the DMR6 coding sequence.

[0051] In a particular embodiment of the invention, downregulation of DMR6 gene expression is achieved by gene-silencing using RNAi. For this, transgenic plants are generated expressing a DMR6 anti-sense construct, an optimized micro-RNA construct, an inverted repeat construct, or a combined sense-anti-sense construct, so as to generate dsRNA corresponding to DMR6 that leads to gene silencing.

[0052] In an alternative embodiment, one or more regulators of the DMR6 gene are downregulated (in case of transcriptional activators) by RNAi.

[0053] In another embodiment regulators are upregulated (in case of repressor proteins) by transgenic overexpression. Overexpression is achieved in a particular embodiment by expressing repressor proteins of the DMR6 gene from a strong promoter, e.g., the 35S promoter that is commonly used in plant biotechnology.

[0054] The downregulation of the DMR6 gene can also be achieved by mutagenesis of the regulatory elements in the promoter, terminator region, or potential introns. Mutations in the DMR6 coding sequence in many cases leads to amino acid substitutions or premature stop codons that negatively affect the expression or activity of the encoded DMR6 protein.

[0055] These mutations are induced in plants by using mutagenic chemicals such as ethyl methane sulfonate (EMS), by irradiation of plant material with gamma rays or fast neutrons, or by other means. The resulting nucleotide changes are random, but in a large collection of mutagenized plants the mutations in the DMR6 gene can be readily identified by using the TILLING (Targeting Induced Local Lesions IN Genomes) method (McCallum et al. (2000) Targeted screening for induced mutations. Nat. Biotechnol. 18, 455-457, and Henikoff et al. (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 135, 630-636). The principle of this method is based on the PCR amplification of the gene of interest from genomic DNA of a large collection of mutagenized plants in the M2 generation. By DNA sequencing or by looking for point mutations using a single-strand specific nuclease, such as the CEL-I nuclease (Till et al. (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res. 32, 2632-2641) the individual plants that have a mutation in the gene of interest are identified.

[0056] By screening many plants, a large collection of mutant alleles is obtained, each giving a different effect on gene expression or enzyme activity. The gene expression or protein levels can for example be tested by analysis of DMR6 transcript levels (e.g., by RT-PCR) or by quantification of DMR6 protein levels with antibodies.

[0057] Plants with the desired reduced DMR6 level or DMR6 expression are then back-crossed or crossed to other breeding lines to transfer only the desired new allele into the background of the crop wanted.

[0058] The invention further relates to mutated DMR6 genes. In a particular embodiment, the invention relates to dmr6 alleles with premature stop codons, such as the dmr6-1 allele.

[0059] In another embodiment, the invention relates to mutated versions of the DMR6 genes of Lactuca sativa, Cucumis sativus, and Spinacia oleracea as shown in FIGS. 3-5.

[0060] The present invention demonstrates that plants having no or a reduced level of functional DMR6 gene product show resistance to pathogens, in particular of oomycete and fungal origin. With such knowledge the skilled person can identify so far unknown natural variants of a given plant species that have variants of the DMR6 gene that lead to a reduced level or absence of a functional DMR6 protein, or mutated versions of the DMR6 protein, and to use these natural variants according to the invention.

[0061] The present invention further relates to the use of a DMR6 promotor for providing disease resistance into plants, i.e. for providing plants with a resistance to a pathogen of viral, bacterial, fungal or oomycete origin. According to the present invention, the transcriptional up-regulation of DMR6 in response to pathogen infection has been demonstrated. Both transcript analysis as well as promotor DMR6-reporter lines support this finding (see Example 1, below). The pathogen-inducible DMR6 promotor according to the invention thus is particularly useful to control the expression of inducible systems that lead to disease resistance in plants.

[0062] One example of such inducible system that leads to disease resistance in plants, and in which the DMR6 promotor according to the present invention may be effective, has e.g., been described in WO 99/45125, wherein an antisense nucleotide sequence for a gene involved in the regulation of the C-5 porphyrin metabolic pathway is operably linked to a pathogen-inducible promotor and used to transform plant cells. Expression of the antisense nucleotide sequence in response to the pathogen effectively disrupts porphyrin metabolism of the transformed plant cell, and development of a localized lesion wherein the spread of the pathogen is contained. WO 96/36697 also discloses inducible systems leading to disease resistance in plants, wherein an inducible promotor controls the expression of a protein capable of evoking the hypersensitivity response in a plant. EP 0474857 furthermore discloses a method for the induction of pathogen resistance in plants, comprising transforming plants with polynucleotide sequences encoding a pair of pathogen-derived-avirulence-gene/plant-derived-resistance gene, wherein the expression of one of or both the elicitor peptide and the resistance gene is regulated by a pathogen inducible promotor. Further examples of inducible systems leading to resistance to pathogens in plants have been described in e.g., WO 98/32325.

[0063] In a particular preferred embodiment, the present invention relates to a method of providing disease resistance in a plant, comprising transforming a plant cell with a DNA construct comprising at least one expressible nucleic acid which is operably linked to a pathogen-inducible promotor that is operable within a plant cell, and regenerating transformed plants from said plant cells, wherein the pathogen-inducible promotor is a DMR6 promotor, and wherein the expression of the expressible nucleic acid confers disease resistance to the transgenic plant.

[0064] The invention also relates to disease resistance plants, obtainable by said method, as well as to plant tissue, and seeds obtained from said plants.

[0065] The invention in particular relates to plants, which are resistant to a pathogen of viral, bacterial, fungal or oomycete origin, wherein the plant comprises in its genome a DNA construct, comprising at least one expressible nucleic acid which is operably linked to a pathogen-inducible promotor, wherein the pathogen-inducible promotor is a DMR6 promotor.

[0066] The present invention also relates to the DNA construct per se, comprising at least one expressible nucleic acid which is operably linked to a pathogen-inducible promotor, wherein the pathogen-inducible promotor is a DMR6 promotor. The construct of the invention can be used to transform plant cells which may be regenerated into transformed plants. Furthermore, transformed plant tissue and seed may be obtained. Suitable methods for introducing the construct of the invention into plant cells are known to the skilled person.

[0067] According to the invention, by "operably linked" is meant that a promotor and an expressible nucleic acid, e.g., a gene, are connected in such way as to permit initiation of transcription of the expressible nucleic acid (e.g., gene) by the promotor.

[0068] By "expressible nucleic acid" is meant a nucleic acid (e.g., a gene, or part of a gene) that can be expressed in the cell, i.e., that can be transcribed into mRNA, and eventually may be translated into a protein. The expressible nucleic acid may be genomic DNA, cDNA, or chemically synthesized DNA or any combination thereof.

[0069] According to the present invention, a DNA construct comprises all necessary nucleic acid elements which permit expression (i.e. transcription) of a particular nucleic acid in a cell. Typically, the construct includes an expressible nucleic acid, i.e., a nucleic acid to be transcribed, and a promotor. The construct can suitably be incorporated into e.g a plasmid or vector.

[0070] The expressible nucleic acid preferably is a gene involved in a plant defense response, e.g., a gene associated with the hypersensitivity response of a plant. In the hypersensitivity response (HR) of a plant, the site in the plant where the pathogen invades undergoes localized cell death by the induced expression of a suicide mechanism that triggers said localized cell death in response to pathogens. In this way, only a few plant cells are sacrificed and the spread of the pathogen is effectively arrested. Examples of said genes involved in a plant defense response are the regulatory protein NPR1/NIM1 (Friedrich et al., Mol. Plant Microbe Interact. 14(9): 1114-1124, 2001) and the transcription factor MYB30 (Vailleau et al., Proc. Natl. Acad. Sci. USA 99(15): 10179-10184, 2002).

[0071] In a particular embodiment, the expressible nucleic acid encodes an autologous or heterologous polypeptide capable of conferring disease-resistance to a plant. By "autologous polypeptide" is meant any polypeptide that is expressed in a transformed plant cell from a gene that naturally occurs in the transformed plant cell. By "heterologous polypeptide" is meant any polypeptide that is expressed in a transformed plant cell from a gene that is partly or entirely foreign (i.e. does not naturally occur in) to the transformed plant cell. Examples of such polypeptides are the mammalian Bax protein, which encodes a pro-apoptotic protein and results in cell death in plants (Lacomme and Santa Cruz, Proc. Natl. Acad. Sci. USA 96(14): 7956-61, 1999) and fungal chitinases (de las Mercedes Dana et al., Plant Physiol. 142(2): 722-730, 2006).

[0072] Preferably, the DMR6 promotor is the Arabidopsis DMR6 promotor. The DMR6 promotor comprises a region of 3000 by that is upstream of the Arabidopsis DMR6 coding sequence (ATG start codon) and includes the 5'UTR. Preferably the DMR6 promotor comprises a nucleotide sequence as defined in FIG. 11, and/or any functional fragment thereof, i.e. any fragment (or part) of said sequence which still is capable of initiating transcription of the expressible nucleic acid(s) to which it is operably linked, and/or natural variants thereof, i.e. natural variants of this promotor which may contain small polymorphisms, but which are generally at least 90% identical.

[0073] In a further preferred embodiment, the DMR6 promotor is an orthologous DMR6 promotor, i.e. a promotor of an orthologous DMR6 gene. Methods for identifying DMR6 orthologs have been described in Example 2 below. Once the DMR6 orthologs have been identified, the skilled person will be able to isolate the respective promotor of said orthologs, using standard molecular biological techniques.

[0074] According to the present invention, the DMR6 promotor has been shown to be strongly pathogen-induced, and the DMR6 promotor is not highly expressed in other non-infected tissues. Thus, it is a very suitable promotor for use in inducible systems for providing resistance to pathogens of viral, bacterial, fungal or oomycete origin in plants. Examples of specific pathogens and plants for which the inducible system, using the DMR6 promotor of the present invention, suitably can be used, have been given above.

[0075] The present invention is illustrated in the following examples that are not intended to limit the invention in any way. In the examples reference is made to the figures described above and the following tables.

[0076] Table 1 shows the Genbank accession numbers and GenInfo identifiers of the Arabidopsis DMR6 mRNA and orthologous sequences from other plant species.

[0077] Table 2 shows the PCR primers for the markers used for the map-based cloning of DMR6.

[0078] Table 3 shows primer pairs for cloning dmr6 orthologs in a suitable plant expression vector.

EXAMPLE 1

The Arabidopsis DMR6 (At5g24530) Gene is Required for Downy Mildew Susceptibility

Experimental Procedures

Hyaloperonospora Parasitica Growth and Infection

[0079] H. parasitica isolate Waco9 was provided by Dr. M. Aarts (WUR, Wageningen, NL) and isolate Cala2 provided by Dr. E. Holub (Warwick HRI, Wellsbourne, UK) and maintained on Arabidopsis Ws-0 and Ler, respectively. Inocula (400,000 spores per ml) were weekly transferred to 10 day old healthy seedlings (Holub, E. B. et al., Mol. Plant Microbe Interact. 7: 223-239, 1994) by use of a spray gun. Seedlings were air-dried for approximately 45 minutes and incubated under a sealed lid at 100% relative humidity in a growth chamber at 16.degree. C. with 9 hours of light per day (100 mE/m2/s). The sporulation levels were quantified 7 days post inoculation (dpi) by counting the number of sporangiophores per seedling, for at least 40 seedlings per tested line (FIG. 6a) or by isolating spores in water 5 dpi and determining the spore concentration to give the number per mg leaf tissue (FIG. 6b).

Generation of Backcrossed dmr6 Lines

[0080] The dmr6 mutants were back crossed twice (BC2) to the parental line Ler eds1-2 as well as Ler. The BC2 lines generated with Ler were selected for the presence of the wild type EDS1 gene by PCR analysis.

Cloning DMR6

[0081] Fine mapping of the dmr6 gene was done with PCR markers designed using the Cereon database to identify insertion and deletion (IND) differences between Col-0 and Ler. The markers: IND_MOP9 in gene At5G24210; IND_K16H17 in gene At5G24420; IND_T4C12 in gene At5G24820; IND_T11H3 in between genes At5G24950_60 and IND_F21J6 in gene At5G25270 were used for mapping (Table 2). An additional screen for new recombinants was initiated on 300 F.sub.2 plants resulting in eight F.sub.2 recombinant plants between the two IND based markers IND_MOP9 and IND_T4C12, which flanked a region of 61 genes. Seven additional markers (M450-M590; Table 2) reduced the region to eighteen candidate genes for the dmr6 locus, between At5g24420 and At5g24590. Sequence analysis of At5g24530 indicated a point mutation leading to a stop codon in exon 2 in the dmr6-1 mutant.

Identification of a dmr6 T-DNA Insertion Line

[0082] A second dmr6 allele was identified, 445D09 a FLAG T-DNA insertion line generated by INRA Versailles in the Ws-4 accession background. The T-DNA insertion was confirmed by PCR using a primer designed in the At5g24530 gene, LP primer (5'-cagggttatggcatatctcacgtc-3') (SEQ ID NO: 108), in combination with the T-DNA right border primer, Tag3' (5'-tgataccagacgttgcccgcataa-3') (SEQ ID NO: 109) or RB4 (5'-tcacgggttggggtttctacaggac-3') (SEQ ID NO: 110). The exact T-DNA insertion in the second intron of At5g24530 was confirmed by sequencing of amplicons generated with the T-DNA primers from both the left and right border in combination with the gene specific primers LP or RP (5'-atgtccaagtccaatagccacaag-3') (SEQ ID NO: 111).

cDNA Synthesis

[0083] RNA was isolated (from approximately 100 mg leaf tissue from 10 day old seedlings) with the RNaesy kit (Qiagen, Venlo, The Netherlands) and treated with the RNase-free DNase set (Qiagen). Total RNA was quantified using an UVmini-1240 spectrophotometer (Shimadzu, Kyoto, Japan). cDNA was synthesized with Superscript III reverse transcriptase (Invitrogen, Carlsbad, Calif., USA) and oligo(dT)15 (Promega, Madison, Wis., USA), according manufactures instructions.

Complementation of the dmr6-1 Mutant

[0084] Complementation lines were generated by transforming dmr6 plants by the floral dip method with Agrobacterium tumefaciens (Clough and Bent, 1998) containing the At5g24530 gene from Col-0 behind the 35S promoter. The construct was generated by PCR amplification of the full length At5g24530 from Col-0 cDNA with primers which included restriction sites that were used for directional cloning. A forward primer (5'-ttctgggatccaATGGCGGCAAAGCTGATATC-3') (SEQ ID NO: 1) containing a BamHI restriction site near the start codon (ATG), amplified the 5'-end of DMR6 and at the 3'-end after the stop codon an EcoRI site was generated with a reverse primer (5'-gatatatgaattcttagttgtttagaaaattctcgaggc-3') (SEQ ID NO: 2). The 35S-DMR6-Tn was cloned into the pGreenII0229 (Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S., and Mullineaux, P. M. (2000)). pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819-832). 300 .mu.M DL-Phosphinothricin (BASTA) resistant seedlings were isolated and analyzed for H. parasitica susceptibility and for DMR6 expression levels by RT-PCR.

Knock Down Lines of DMR6 by RNAi

[0085] RNAi lines were generated in the Ler eds1-2 and Col-0 background. A 782 bp long cDNA amplicon of Col-0 At5g24530 gene was generated. The PCR was done with the Phusion DNA polymerase (2 U/.mu.L) and two different primer combinations. The amplicon from the first DMR6 gene specific primer combination (RNAiDMR6F: 5'-aaaaagcaggctGACCGTCCACGTCTCTCTGAA-3' (SEQ ID NO: 3) and RNAiDMR6R: 5'- AGAAAGCTGGGTGAAACGATGCGACCGATAGTC -3') (SEQ ID NO: 4) was used as a template for the second PCR amplification with general primers allowing recombination into the pDONR7 vector of the GateWay cloning system. For the second PCR 10 .mu.l of the first PCR (denaturation for 30 sec. at 98.degree. C. followed by 10 cycles of: 10 sec. at 98.degree. C.; 30 sec. at 58.degree. C.; 30 sec. at 72.degree. C.) in a total volume of 20 .mu.l was used as template. The second PCR (denaturation for 30 sec. at 98.degree. C. followed by 5 cycles of: 10 sec. at 98.degree. C.; 30 sec. at 45.degree. C.; 30 sec. at 72.degree. C. and 20 cycles of 10 sec. at 98.degree. C.; 30 sec. at 55.degree. C.; 30 sec. at 72.degree. C. finished by a final extension of 10 min at 72.degree. C.) with the attB1 (5'-GGGACAAGTTTGTACAAAAAAGCAGGCT-3') (SEQ ID NO: 5) and the attB2 (5'-ggggaccactttgtacaagaaagctgggt-3') (SEQ ID NO: 6) were performed in a 50 .mu.l reaction volume. PCR product was gel purified and 50 .eta.g insert was recombined into 150 .eta.g pDONR7 vector with the clonase BP enzyme. The vector was transformed into electrocompotent DH5.alpha. E.coli cells and plasmids containing the correct insert were isolated and 100 .eta.g of the pDONR7 with the DMR6 amplicon were used in the LR reaction to recombine the insert in two opposite direction into 150 .eta.g pHellsgate8 vector. After transformation into E.coli, Spectomycin resistant clones were selected and the isolated plasmids were verified by a NotI digest for the right insert size and by colony PCR with a single internal primer for At5G24530 (DfragmentF: 5'-gagaagtgggatttaaaatagaggaa-3') (SEQ ID NO: 7), if the inserts was inserted twice in opposite direction an amplicon of 1420 bp could be detected. Correct pHellsgate8 plasmids with the double insert in opposite directions were transformed into electrocompotent Agrobacterium strain, C58C1. Plasmids were isolated from the Agrobacterium and retransformed into the E. coli to confirm the right size of the plasmid and the insert by NotI digestion. The reconfirmed Agrobacterium strains were used for the floral dip transformation of the Col-0 and Ler eds1-2 plants. The developed seeds were screened for Kanamycin resistance on 1/2.times. GM plates, the Ti seedlings were transferred and the next generation of seeds the T2 was analyzed for DMR6 expression and H. parasitica susceptibility.

Gene Expression Profiling of the dmr6 Mutant

[0086] Total RNA was isolated as described above. mRNA was amplified with the MessageAmp aRNA kit (Ambion). CATMA array (Crowe et al., 2003) slides containing approximately 25,000 gene specific tags were hybridized according to standardized conditions described by de Jong et al. (de Jong M., van Breukelen B., Wittink, F. R., Menke, F. L., Weisbeek, P. J., and Van den Ackerveken G. (2006). Membrane-associated transcripts in Arabidopsis; their isolation and characterization by DNA microarray analysis and bioinformatics. Plant J. 46, 708-721). For quantitative PCR, cDNA templates were generated as described previously. Cycle thresholds were determined per transcript in triplicate using the ABI PRISM 7700 sequence detection system (Applied Biosystems, Foster City, Calif., USA) using SYBR Green I (Applied Biosystems, Foster City, Calif., USA) as reporter dye. Primer sets for the transcripts are DMR6 (QDMR6F:5'-TGTCATCAACATAGGTGACCAG-3' (SEQ ID NO: 8) and QDMR6R: 5'-CGATAGTCACGGATTTTCTGTG-3') (SEQ ID NO: 9), At1g14880 (QAt1g14880F:5'-CTCAAGGAGAATGGTCCACA-3' (SEQ ID NO: 10) and QAt1g14880R: 5'-CGACTTGGCCAAATGTGATA-3') (SEQ ID NO: 11), At4g14365 (QAt4g14365F: 5'-TGGTTTTCTGAGGCATGTAAA-3' (SEQ ID NO: 12) and QAt4g14365R:5'-AGTGCAGGAACATTGGTTGT-3') (SEQ ID NO: 13), ACD6 (QACD6F:5'-TGGACAGTTCTGGAGCAGAT-3' (SEQ ID NO: 14) and QACD6R: 5'-CAACTCCTCCGCTGTGAG-3') (SEQ ID NO: 15), PR-5 (QPR-5F:5'-GGCAAATATCTCCAGTATTCACA-3' (SEQ ID NO: 16) and QPR-5R: 5'-GGTAGGGCAATTGTTCCTTAGA-3') (SEQ ID NO: 17), PR-2 (QPR-2 F:5'-AAGGAGCTTAGCCTCACCAC-3' (SEQ ID NO: 18) and QPR-2R: 5'-GAGGGAAGCAAGAATGGAAC-3') (SEQ ID NO: 19), PR-1 (QPR-1F:5'-GAACACGTGCAATGGAGTTT-3' (SEQ ID NO: 20) and QPR-1R: 5'-GGTTCCACCATTGTTACACCT-3') (SEQ ID NO: 21) and ACT-2 (QACT2 F:5'-AATCACAGCACTTGCACCA-3' (SEQ ID NO: 22) and QACT2R: 5'-GAGGGAAGCAAGAATGGAAC-3') (SEQ ID NO: 23) generating 100 base pair fragments.

Results

[0087] Characterization of the Gene Responsible for Pathogen Resistance in the dmr6 Mutant

[0088] Van Damme et al., 2005, supra disclose a dmr6 mutant that is resistant to H. parasitica. The level of resistance can be examined by counting the number of sporangiophores per seedling seven day post inoculation with the H. parasitica (isolate Waco9 or Cala2, obtainable from Dr. G. Van den Ackerveken, Plant-Microbe Interactions Group, University of Utrecht, Utrecht, NL). The parental line, Ler eds1-2 (Parker et al., 1996, Plant Cell 8:2033-2046), which is highly susceptible, is used as a positive control (and is set at 100%).

[0089] The reduction in sporangiophore formation on the infected dmr6 mutants compared to seedlings of the parental lines is shown in FIG. 6a, wherein the results of the quantification of Hyaloperonospora parasitica, Waco9 sporulation (sporangiophores/seedling) on the downy mildew resistant dmr6-1 mutant, back-crossed twice to the parental line Ler eds1-2, and on mutant dmr6-2 (FLAG_445D09 T-DNA line) compared to the control lines is shown.

[0090] According to the invention, the gene responsible for resistance to H. parasitica in the dmr6 mutants of van Damme et al., 2005, supra, has been cloned by a combination of mapping and sequencing of candidate genes. Previously, the recessive dmr6 mutation was mapped near the nga139 marker on chromosome 5 to a region encompassing 74 genes. Fine mapping linked the dmr6 locus to a mapping interval containing the BACs T13K7 and K18P6 between the markers At5g24420 and At5g24590 located in the corresponding genes. This allowed the dmr6 interval to be confined to a region of 18 candidate genes. Comparative sequence analysis of the 18 genes in dmr6 and the parental line, Ler eds1-2 revealed a point mutation in the second exon of the At5g24530 gene. This single base change of G to A, typical for an EMS mutation, changes a TGG a (trp codon) to a TGA (premature stop codon) at nucleotide position 691 of the coding sequence (FIG. 7). The early stop codon truncates the predicted oxidoreductase enzyme of 342 aa at position 141 before the conserved catalytic domain suggesting that dmr6 is a null-allele. The At5g24530 coding sequence (FIG. 2) is predicted to encode a protein with a mass of 39.4 kDa. No biological role has so far been described for At5g24530.

At5g24530 is DMR6

[0091] A second allele, dmr6-2, was identified in a T-DNA insertion line (FLAG_445D09) from the mutant collection from INRA, Versailles. The presence and location of the T-DNA insert in the second intron of At5g24530 (FIG. 7) was confirmed by PCR and sequence analysis (data not shown). Progeny of the FLAG_445D09 line homozygous for the T-DNA insertion was resistant to H. parasitica isolate Waco9, whereas the parental line (Ws-4) was susceptible (FIG. 6a). The At5g24530 transcript could be amplified by RT-PCR using primers in exon 2 and 3 in Ws-4, but not in the homozygous dmr6-2 line (data not shown), indicating that dmr6-2 can be considered a second null-allele.

[0092] To corroborate the idea that At5g24530 is required for susceptibility to H. parasitica the dmr6-1 mutant was transformed with the cDNA from At5g24530 cloned under control of the 35S promoter. In five independent dmr6-1 T2 seedlings the strong overexpression of At5g24530 was confirmed by RT-PCR (data not shown). All T3 lines, homozygous for the transgene, showed restoration of susceptibility to H. parasitica isolate Cala2 (FIG. 6b), confirming that At5g24530 is DMR6. The complementation, together with the identification of two independent dmr6 mutants clearly indicates that a functional DMR6 gene is required for susceptibility to H. parasitica.

DMR6 is Transcriptionally Activated During H. parasitica Infection

[0093] To study the expression of DMR6 during infection with H. parasitica relative transcript levels were measured by quantitative PCR at six different time points from 0 days (2 hours) post inoculation to 5 days post inoculation (dpi) (FIG. 8). RNA was isolated from ten day old Ler seedlings that were spray inoculated with water (mock), compatible, or incompatible H. parasitica isolate. At 2 hours post inoculation (0 dpi) the levels of DMR6 transcripts were equal in the different treatments. Starting from 1 dpi, the level of DMR6 transcript was significantly increased in both the compatible and incompatible interaction compared to mock-treated seedlings. The DMR6 transcript level was slightly but significantly higher at 1 dpi in the incompatible interaction (.DELTA.CT of 3.5, approximately 11 fold induction) than in the compatible (ACT of 3.0, approximately 8 fold induction). The expression level increased further in time to reach a stable high level at 4-5 dpi. At these time points the DMR6 transcript level was higher in the compatible than in the incompatible interaction. The elevated DMR6 transcript levels during compatible and incompatible H. parasitica interactions suggest a role of DMR6 in plant defense. The defense-associated expression of DMR6 could be confirmed in our three enhanced-defense mutants, dmr3, dmr4, and dmr5 (Van den Ackerveken et al., unpublished). Furthermore, in silico analysis of DMR6 levels in the Genevestigator Mutant Surveyor (Zimmermann, P., Hennig, L., and Gruissem, W. (2005). Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci. 10, 407-409) showed that the gene is strongly induced in the pathogen resistant mutants mpk4 and cpr5. In the cpr5/npr1 double mutant the DMR6 transcript level remained high indicating that the induction of DMR6 expression is mostly NPR1 independent. Salicylic acid appears to be an important signal in the induction of DMR6 expression during senescence as nahG transgenic plants (expressing the bacterial salicylate hydroxylase gene) showed only low levels of DMR6 transcript.

[0094] To investigate in more detail how the expression of DMR6 is activated during biotic and abiotic stress, DMR6 reporter lines were generated. The localization of DMR6 expression was studied in transgenic Col-0 and Ler eds1-2 plants containing the DMR6 promoter linked to the uidA (.beta.-glucuronidase, GUS) reporter gene (pDMR6::GUS). To visualize both H. parasitica hyphal growth, by staining with trypan blue, as well as GUS activity, magenta-Xgluc was used as a .beta.-glucuronidase substrate yielding a magenta precipitate. In uninfected plants no GUS expression could be detected in the different plant organelles; roots, meristem, flower, pollen and seed. The expression of DMR6 was induced in the compatible interactions, Ler eds1-2 infected with Cala2 (FIG. 9a), and Col-0 infected with isolate Waco9 (FIG. 9b). GUS expression was also induced in the incompatible interaction Ler eds1-2 inoculated with isolate Emoy2 (FIG. 9c). As shown in FIGS. 9a and 9b DMR6 expression was confined to the cells in which H. parasitica had formed haustoria. Plant cells containing the most recently formed haustoria did not show detectable levels of GUS activity (FIG. 9a, indicated by asterisk). During the incompatible interaction (FIG. 9c) activity of the DMR6 promoter could only be detected in the cells that were in contact with the initial invading hyphae. In death cells, resulting from the hypersensitive response (HR, visualized by trypan blue staining indicated in FIG. 9c by asterisk) no GUS activity could be detected, possibly due to protein degradation in these cells. To test if the DMR6 expression in haustoria-containing cells is caused by a wound-like response, seedlings were wound by incision with scissors and stained for GUS activity 3 days later. No detectable promoter DMR6 GUS expression was seen, indicating that the expression of DMR6 is not induced by wounding (FIG. 9d). Furthermore the local induction of DMR6 expression was tested in response to treatment with benzothiadiazole (BTH), a functional analogue of salicylic acid (SA). At 3 days post BTH treatment GUS activity was mainly localized in the newly formed, but not in the mature leaves (FIG. 9e). Analysis of pDMR6::GUS lines confirm the expression data described above and highlights the strictly localized induction of DMR6 in response to H. parasitica infection.

The dmr6-1 Mutant Constitutively Expresses Defense Associated Transcripts

[0095] To elucidate how the lack of DMR6 results in H. parasitica resistance, the transcriptome of the dmr6-1 mutant compared to the Ler eds1-2 parental line was analyzed. Probes derived from mRNA of the above-ground parts of 14 day old dmr6-1 and Ler eds1-2 seedlings were hybridized on whole genome CATMA micro arrays. A total of 58 genes were found to be significantly differentially expressed in dmr6-1, of which 51 genes had elevated and 7 genes had reduced transcript levels. A pronounced set of the 51 induced transcripts have been identified as genes associated with activated plant defense responses, e.g, ACD6, PR-5, PR-4/HEL and PAD4. These data indicate that the loss of DMR6 results in the activation of a specific set of defense-associated transcripts. The finding that DMR6 is among the dmr6-1-induced genes corroborates the idea that DMR6 is defense-associated. To test if the induced expression of the defense-associated genes was due to the loss of DMR6 and not due to additional ethane methyl sulfonate (EMS) mutations remaining in the backcrossed dmr6-1 mutant the transcript level of a selection of genes (At4g14365, At1g14880, ACD6, PR-1, PR-2 and PR-5) was verified by quantitative PCR in both the dmr6-1 and dmr6-2 mutant (FIG. 10). We could only test DMR6 transcript levels in the dmr6-1 mutant (FIG. 10a) as the dmr6-2 mutant (FIG. 10b) has a T_DNA insertion disrupting the DMR6 transcript. The induction of DMR6 as observed in the micro array analysis was confirmed by Q-PCR in dmr6-1 compared to Ler eds1-2 (FIG. 10a). FIGS. 10a and b show that all six selected genes were elevated in both dmr6 mutants compared to the parental lines. The observed elevated expression of the selected defense-associated genes in the dmr6 mutants indicates that lack of DMR6 activates a plant defense response. The activation of this set of defense-associated transcripts could be the primary cause of resistance to H. parasitica in the dmr6 mutants.

EXAMPLE 2

Identification of DMR6 Orthologs in Crops

1. Screening of Libraries on the Basis of Sequence Homology

[0096] The nucleotide and amino acid sequences of the DMR6 coding sequence and protein of Arabidopsis thaliana are shown in FIG. 2. Public libraries of nucleotide and amino acid sequences were compared with the sequences of FIG. 2. This comparison resulted in identification of the complete DMR6 coding sequences and predicted amino acid sequences in Aquilegia species, Citrus sinensis, Coffea canephora, Cucumis sativus, Gossypium hirsitum, Lactuca sativa, Medicago truncatula, Oryza sativa (3), Populus trichocarpa (2), Solanum lycopersicum (2), Sorghum bicolor, Spinacia oleracea, Vitis vinifera, Zea mays, and Zingiber officinale. The sequence information of the orthologous proteins thus identified is given in Table 1 and visualized in a multiple alignment in FIG. 1. For many other plant species orthologous DNA fragments could be identified by BlastX as reciprocal best hits to the Arabidopsis or other plant DMR6 protein sequences.

2. Identification of Orthologs by Means of Heterologous Hybridisation

[0097] The DMR6 DNA sequence of Arabidopsis thaliana as shown in FIG. 2 is used as a probe to search for homologous sequences by hybridization to DNA of any plant species using standard molecular biological methods. Using this method orthologous genes are detected by southern hybridization on restriction enzyme-digested DNA or by hybridization to genomic or cDNA libraries. These techniques are well known to the person skilled in the art. As an alternative probe the DMR6 DNA sequence of any other more closely related plant species can be used as a probe.

3. Identification of Orthologs by Means of PCR

[0098] For many crop species, partial DMR6 mRNA or gene sequences are available that are used to design primers to subsequently PCR amplify the complete cDNA or genomic sequence. When 5' and 3' sequences are available the missing internal sequence is PCR amplified by a DMR6 specific 5' forward primer and 3' reverse primer. In cases where only 5', internal or 3' sequences are available, both forward and reverse primers are designed. In combination with available plasmid polylinker primers, inserts are amplified from genomic and cDNA libraries of the plant species of interest. In a similar way, missing 5' or 3' sequences are amplified by advanced PCR techniques; 5'RACE, 3' RACE, TAIL-PCR, RLM-RACE or vectorette PCR.

[0099] As an example the sequencing of the Lactuca sativa (lettuce) DMR6 cDNA is provided. From the Genbank EST database at NCBI several Lactuca DMR6 ESTs were identified using the tblastn tool starting with the Arabidopsis DMR6 amino acid sequence. Clustering and alignment of the ESTs resulted in a consensus sequence for a 5' DMR6 fragment. To obtain the complete lettuce DMR6 cDNA the RLM-RACE kit (Ambion) was used on mRNA from lettuce seedlings. The 3' mRNA sequence was obtained by using two primers that were designed in the 5' DMR6 consensus sequence derived from ESTs (Lsat_dmr6_fwl: CGATCAAGGTCAACACATGG (SEQ ID NO: 24), and Lsat_dmr6_fw2: TCAACCATTACCCAGTGTGC) (SEQ ID NO: 25) and the 3'RACE primers from the kit. Based on the assembled sequence new primers were designed to amplify the complete DMR6 coding sequence from cDNA to provide the nucleotide sequence and derived protein sequence as presented in FIG. 3.

[0100] The complete DMR6 coding sequences from more than 10 different plants species have been identified from genomic and EST databases. From the alignment of the DNA sequences, conserved regions in the coding sequence were selected for the design of degenerate oligonucleotide primers (for the degenerate nucleotides the abbreviations are according to the IUB nucleotide symbols that are standard codes used by all companies synthesizing oligonucleotides; G=Guanine, A=Adenine, T=Thymine, C=Cytosine, R=A or G, Y=C or T, M=A or C, K=G or T, S=C or G, W=A or T, B=C or G or T, D=G or A or T, H=A or C or T, V=A or C or G, N=A or C or G or T).

[0101] The procedure for obtaining internal DMR6 cDNA sequences of a given plant species is as follows: [0102] 1. mRNA is isolated using standard methods, [0103] 2. cDNA is synthesized using an oligo dT primer and standard methods, [0104] 3. using degenerate forward and reverse oligonucleotides a PCR reaction is carried out, [0105] 4. PCR fragments are separated by standard agarose gel electrophoresis and fragments of the expected size are isolated from the gel, [0106] 5. isolated PCR fragments are cloned in a plasmid vector using standard methods, [0107] 6. plasmids with correct insert sizes, as determined by PCR, are analysed by DNA sequencing, [0108] 7. Sequence analysis using blastX reveals which fragments contain the correct internal DMR6 sequences, [0109] 8. The internal DNA sequence can then be used to design gene- and species- specific primers for 5' and 3' RACE to obtain the complete DMR6 coding sequence by RLM-RACE (as described above).

[0110] As an example the sequencing of the Cucumis sativus (cucumber) DMR6 cDNA is provided. For cucumber several primer combinations between the following primers were successful in amplifying a stretch of internal coding sequence from cDNA; forward primers dmr6_deg_fw1B (TTCCAGGTDATTAAYCAYGG) (SEQ ID NO: 26), dmr6_deg_fw2B CATAAYTGGAGRGAYTAYCT) (SEQ ID NO: 27), dmr6_deg_fw3B (GARCAAGGRCARCAYATGGC) (SEQ ID NO: 28) and dmr6_deg_fw4 (AATCCTCCTTCHTTCAAGGA) (SEQ ID NO: 29) and reverse primers dmr6_deg_rv3B (AGTGCATTKGGGTCHGTRTG) (SEQ ID NO: 30), dmr6_deg_rv4 (AATGTTRATGACAAARGCAT) (SEQ ID NO: 31) and dmr6_deg_rv5 (GCCATRTGYTGYCCTTGYTC) (SEQ ID NO: 32). After cloning and sequencing of the amplified fragments cucumber DMR6-specific primers were designed for 5' RACE (Cuc_dmr6_rv1: TCCGGACATTGAAACTTGTG (SEQ ID NO: 33) and Cuc_dmr6_rv2: TCAAAGAACTGCTTGCCAAC) (SEQ ID NO: 34) and 3' RACE (Cuc_dmr6_fw1: CGCACTCACCATTCTCCTTC (SEQ ID NO: 35) and Cuc_dmr6_fw2: GGCCTCCAAGTCCTCAAAG) (SEQ ID NO: 36). Finally the complete cucumber DMR6 cDNA sequence was amplified and sequenced (FIG. 5). A similar approach was a used for spinach, Spinacia oleracea (FIG. 4), Solanum lycopersicum (FIG. 12) and Nicotiana benthamiana (FIG. 13).

[0111] Orthologs identified as described in this example can be modified using well-known techniques to induce mutations that reduce the DMR6 expression or activity, to obtain non-genetically modified plants resistant to Fungi or Oomycota. Alternatively, the genetic information of the orthologs can be used to design vehicles for gene silencing, and to transform the corresponding crop plants to obtain plants that are resistant to Oomycota.

EXAMPLE 3

Mutation of Seeds

[0112] Seeds of the plant species of interest are treated with a mutagen in order to introduce random point mutations in the genome. Mutated plants are grown to produce seeds and the next generation is screened for the absence of reduction of DMR6 transcript levels or activity. This is achieved by monitoring the level of DMR6 gene expression, or by searching for nucleotide changes (mutations) by the TILLING method, by DNA sequencing, or by any other method to identify nucleotide changes. The selected plants are homozygous or are made homozygous by selfing or inter-crossing. The selected homozygous plants with absent or reduced DMR6 transcript activity are tested for increased resistance to the pathogen of interest to confirm the increased disease resistance.

EXAMPLE 4

[0113] Transfer of a Mutated Allele into the Background of a Desired Crop

[0114] Introgression of the desired mutant allele into a crop is achieved by crossing and genotypic screening of the mutant allele. This is a standard procedure in current-day marker assistant breeding of crops.

EXAMPLE 5

Use of the DMR6 Promotor for Pathogen-Induced Dene Expression and the Generation of Disease Resistant Plants

[0115] Precise control of transgene expression is pivotal to the engineering of plants with increased disease resistance. In the past, constitutive overexpression of transgenes frequently has resulted in poor quality plants. It has therefor been suggested to use pathogen-inducible promotors, by which the transgenes are expressed only when and where they are needed - at infection sites.

[0116] Local and inducible expression of engineered genes, e.g., master switch genes, elicitor or Avr genes, anti-microbial genes, or toxic genes, results in the activation of defense or cell death that will lead to pathogen resistance, such as described by Gurr and Rushton (Trends in Biotechnology 23: 275-282, 2005). A good example is provided by De wit (Annu. Rev. Phytopathol. 30: 391-418, 1992) who proposes the use of the Avr9-Cf9 combination to achieve induced cell death leading to disease resistance. The tissue-specificity and inducibility of expression is of prime importance for such approaches, as described by Gurr and Rushton (Trends in Biotechnology 23: 283-290, 2005).

[0117] According to the present invention, the DMR6 promoter has been demonstrated to show a strong, inducible, localized expression based on promoter-GUS analysis. Thus, the DMR6 promotor is very suitable for engineering disease resistance in transgenic plants. The DMR6 promoter consists of a region of 2.5 kb that is upstream of the Arabidopsis DMR6 coding sequence (ATG start codon) and includes the 5'UTR (as depicted in FIG. 11). This pathogen-inducible promotor is then used to engineer suitable transgene constructs, using standard techniques known the person skilled in the art.

[0118] Using orthologous DNA sequences from a given plant species primers are designed for PCR. These are then used to screen genomic libraries of the plant species of interest to identify the genomic clones that contain the DMR6 ortholog with its promoter and regulatory sequences. Alternatively, the genomic clones are isolated by screening a library with a labelled PCR fragment corresponding to the DMR6 orthologous gene. Sequencing reveals the nucleotide sequence of the promoter. The region of 2-5 kb upstream the DMR6 orthologous coding sequence (ATG start codon), so including the 5'UTR, is then amplified by PCR to engineer transgene constructs for plant transformation.

EXAMPLE 6

[0119] This example demonstrates the complementation of mutant dmr6-1 in Arabidopsis thaliana by DMR6 orthologs from 4 different crop species. For this, DMR6 orthologs of Cucumis sativa (Cs), Spinacia oleracea (So), Lactuca sativa (Ls) and Solanum lycopersicum (Sl) were cloned into a plant expression vector under the control of the 35S promoter and, subsequently, this vector was transformed into a Arabidopsis thaliana mutant dmr6-1.

[0120] Briefly, mRNA was isolated using standard methods and cDNA was synthesized using an oligo dT primer and standard methods. Subsequently, PCR fragments were generated using primer pairs for each crop as depicted in table 3 below. The generated PCR products were cloned into a pENTR/D-TOPO vector using the pENTR/D-TOPO cloning kit from Invitrogen and resulting plasmids with correct insert sizes, as determined by PCR, were analyzed by DNA sequencing. Recombination to the pB7WG2,0 vector was done using LR clonase II from Invitrogen and the resulting plasmids were analyzed by PCR and digestion with restriction enzymes. Suitable plasmids were transformed into Agrobacterium tumefaciens C58C1 PGV2260 and plasmids from Agrobacterium were analyzed by PCR and digestion with restriction enzymes.

[0121] Arabidopsis thaliana dmr6-1 plants were transformed with the above constructs by dipping into Agrobacterium solution and overexpression of crops DMR6 in Arabidopsis T1 plants is verified by RT-PCR using the crops DMR6 cloning primers (table 3). Finally, Arabidopsis T2 and T3 plants were infected with Hyaloperonospora parasitica Cala2 to confirm complementation. The results are shown in FIG. 14.

[0122] As shown in FIG. 14, all DMR6 orthologs tested were capable of complementing Arabidopsis thaliana mutant dmr6-1 indicating that the DMR6 orthologs identified encode DMR6 proteins with a similar functionality as Arabidopsis thaliana DMR6.

Tables

[0123] Table 1 lists the GI numbers (GenInfo identifier) and Genbank accession number for Expressed Sequence Tags (ESTs) and mRNA or protein sequences of the Arabidopsis DMR6 mRNA and orthologous sequences from other plant species. A GI number (genInfo identifier, sometimes written in lower case, "gi") is a unique integer which identifies a particular sequence. The GI number is a series of digits that are assigned consecutively to each sequence record processed by NCBI. The GI number will thus change every time the sequence changes. The NCBI assigns GI numbers to all sequences processed into Entrez, including nucleotide sequences from DDBJ/EMBL/GenBank, protein sequences from SWISS-PROT, PIR and many others. The GI number thus provides a unique sequence identifier which is independent of the database source that specifies an exact sequence. If a sequence in GenBank is modified, even by a single base pair, a new GI number is assigned to the updated sequence. The accession number stays the same. The GI number is always stable and retrievable. Thus, the reference to GI numbers in the table provides a clear and unambiguous identification of the corresponding sequence.

TABLE-US-00001 TABLE 1 Species Common name Detail GI number Genbank Arabidopsis thaliana Thale cress mRNA 42568064 NM_122361 Aquilegia_sp Aquilegia ESTs 75461114 DT768847.1 74538666 DT745001.1 74562677 DT760187.1 75461112 DT768846.1 74562675 DT760186.1 Citrus sinensis Sweet Orange ESTs 5793134 CX672037.1 57933368 CX673829.1 63078039 CX309185.1 Coffea canephora Coffea ESTs 82485203 DV705375.1 82458236 DV684837.1 82461999 DV688600.1 82487627 DV707799.1 Gossypium hirsutum Cotton ESTs 109842586 DW241146.1 48751103 CO081622.1 Sorghum bicolor Sorghum ESTs 45992638 CN150358.1 57813436 CX614669.1 45985339 CN145819.1 57821006 CX622219.1 45989371 CN148311.1 57821495 CX622708.1 45959033 CN130459.1 45985193 CN145752.1 18058986 BM322209.1 45958822 CN130381.1 30164583 CB928312.1 Medicago truncatula Barrel medic Genome draft MtrDRAFT_AC119415g1v1 protein 92878635 ABE85154 Oryza sativa 1 Rice Genome OSJNBb0060I05.4 protein 18057095 AAL58118.1 Oryza sativa 2 mRNA 115450396 NM_001055334 protein 115450397 NP_001048799 Oryza sativa 3 mRNA 115460101 NM_001060186 protein 115460102 NP_001053651 Populus trichocarpa 1 Poplar Genome: LG_XII: 3095392-3103694 protein: Poptr1_1: 569679, eugene3.00120332 Populus trichocarpa 2 Poplar Genome: LG_XV: 201426-209590 protein: Poptr1_1: 732726, estExt_Genewise1_v1.C_LG_XV0083 Solanum lycopersicum 1 Tomato ESTs 62932307 BW689896.1 58229384 BP885913.1 117682646 DB678879.1 5894550 AW035794.1 117708809 DB703617.1 62934028 BW691617.1 15197716 BI422913.1 4381742 AI486371.1 5601946 AI896044.1 4387964 AI484040.1 4383017 AI487646. 5278230 AI780189.1 12633558 BG133370.1 76572794 DV105461.1 117692514 DB718569.1 4385331 AI489960.1 4383253 AI487882.1 4384827 AI489456.1 Solanum lycopersicum 2 Tomato ESTs 47104686 BT013271.1 14685038 BI207314.1 14684816 BI207092.1 Zea mays Maize ESTs 110215403 EC897301.1 76291496 DV031064.1 91050479 EB160897.1 91874282 EB404239.1 110540753 EE044673.1 78111856 DV530253.1 94477588 EB706546.1 71441483 DR822533.1 78111699 DV530096.1 78107139 DV525557.1 76017449 DT944619.1 91048249 EB158667.1 78104908 DV523326.1 78088214 DV516607.1 76291495 DV031063.1 71441482 DR822532.1 78088213 DV516606.1 Vitis vinifera Grape ESTs 33396402 CF202029.1 33399765 CF205392.1 45770972 CN006824.1 45770784 CN006636.1 45770528 CN006380.1 45770631 CN006483.1 33400623 CF206250.1 33396335 CF201962.1 30134763 CB920101.1 30305300 CB982094.1 71857419 DT006474.1 30305235 CB982029.1 Zingiber officinale Ginger ESTs 87108948 DY375732.1 87095447 DY362231.1 87095448 DY362232.1 87094804 DY361588.1 87095449 DY362233.1 87094803 DY361587.1 Lactuca sativa Lettuce Sequence described in this patent application Spinacia oleracea Spinach Sequence described in this patent application Cucumis sativus Cucumber Sequence described in this patent application Nicotiana benthamiana Tabac Sequence described in this patent application

TABLE-US-00002 TABLE 2 Primer sequences of insertion/deletion markers (size difference in brackets) used in the mapping and cloning of the DMR6 gene. Name primer Gene INDEL/enzyme Forward primer Reverse primer IND_MOP9 At5G24210 tttgggaacagaaaaagt catattcaaaagggaaaatc tggaggt ccaga (SEQ ID NO: 37) (SEQ ID NO: 38) IND_K16H17 At5g24420 tggggttgtggtttattctg tggccaatagtagttgatac ttgac gcaaga (SEQ ID NO: 39) (SEQ ID NO: 40) IND_T4C12 At5g24820 tctcgggtaagacacaa tattccaacttgcgacgtag gtcgagat agcat (SEQ ID NO: 41) (SEQ ID NO: 42) IND_T11H3 At5g24950-60 ccaattgggttatttacttc cggcttttaacaacatattttc gatt ca (SEQ ID NO: 43) (SEQ ID NO: 44) IND_F21J6 At5g25270 aacacatcaccaagatg cctctgccccaagaaatatt aatccaga gagat (SEQ ID NO: 45) (SEQ ID NO: 46) M450 At5G24450 18 agctttgtatggtagtgcc gcggtatacgggggttaaa aatga atcta (SEQ ID NO: 47) (SEQ ID NO: 48) M490 At5g24490 TaqI atggccaaccactctttgt acaagcaagaagaacagc tac gaag (SEQ ID NO: 49) (SEQ ID NO: 50) M525 At5g24520-30 TaqI gaaatttggttgttggcat tcaagatcttcatattctcatt ttatc cca (SEQ ID NO: 51) (SEQ ID NO: 52 M545 At5G24540/50 41 cagctgaagtatgtttcat cttgcaattgttgggactag cccttt gtaa (SEQ ID NO: 53) (SEQ ID NO: 54) M555 At5G24550/60 14 tcactaaccagtgaaaaa tatacagcgaatagcaaag ggttgc ccaag (SEQ ID NO: 55) (SEQ ID NO: 56) M470 At5g24470 HphI ccgcgagtgtaatatatct cagtttaacgcatgaagtgc ctcct tagt (SEQ ID NO: 57) (SEQ ID NO: 58) M590 At5g24590 PdmI gcatcatttgtaccgtact tagtggatactctgtccctg gagtc aggt (SEQ ID NO: 59 (SEQ ID NO: 60)

TABLE-US-00003 TABLE 3 Primer pairs for cloning dmr6 orthologs in a suitable plant expression vector Arabidopsis AtDMR6_fw CACCATGGCGGCAAAGCTGAT thaliana A (SEQ ID NO: 85) AtDMR6UTR_rv GACAAACACAAAGGCCAAAGA (SEQ ID NO: 86) Cucumis cuc_fw CACCATGAGCAGTGTGATGGA sativa GAT (SEQ ID NO: 87) cucUTR_rv TGGGCCAAAAAGTTTATCCA (SEQ ID NO: 88) Spinacia spi_fw CACCATGGCAAACAAGATATT oleracea ATCCAC (SEQ ID NO: 89) spiUTR_rv TTGCTGCCTACAAAAGTACAA A (SEQ ID NO: 90) Lactuca Lsat_fw CACCATGGCCGCAAAAGTCAT sativa CTC (SEQ ID NO: 91) LsatUTR_rv CATGGAAACACATATTCCTTCA (SEQ ID NO: 92) Solanum Slyc CACCATGGAAACCAAAGTTAT lycopersicum ldmr6_fw TTCTAGC (SEQ ID NO: 93) Slyc GGGACATCCCTATGAACCAA ldmr6UTR_rv (SEQ ID NO: 94)

Sequence CWU 1

1

115133DNAArtificialforward primer 1ttctgggatc caatggcggc aaagcttgat atc 33239DNAArtificialreverse primer 2gatatatgaa ttcttagttg tttagaaaat tctcgaggc 39333DNAArtificialRNAiDMR6F 3aaaaagcagg ctgaccgtcc acgtctctct gaa 33433DNAArtificialRANiDMR6R 4agaaagctgg gtgaaacgat gcgaccgata gtc 33529DNAArtificialattB1 5ggggacaagt ttgtacaaaa aagcaggct 29629DNAArtificialattB2 6ggggaccact ttgtacaaga aagctgggt 29726DNAArtificialinternal primer for At5G24530 7gagaagtggg atttaaaata gaggaa 26822DNAArtificialQDMR6F 8tgtcatcaac ataggtgacc ag 22922DNAArtificialQDMR6R 9cgatagtcac ggattttctg tg 221020DNAArtificialQAt1g114880F 10ctcaaggaga atggtccaca 201120DNAArtificialQAt1g14880R 11cgacttggcc aaatgtgata 201221DNAArtificialQAt4g14365F 12tggttttctg aggcatgtaa a 211320DNAArtificialQAtfg14365R 13agtgcaggaa cattggttgt 201420DNAArtificialQACD6F 14tggacagttc tggagcagat 201518DNAArtificialQACD6R 15caactcctcc gctgtgag 181623DNAArtificialQPR-5F 16ggcaaatatc tccagtattc aca 231722DNAArtificialQPR-5R 17ggtagggcaa ttgttcctta ga 221820DNAArtificialQPR-2F 18aaggagctta gcctcaccac 201920DNAArtificialQPR-2R 19gagggaagca agaatggaac 202020DNAArtificialQPR-1F 20gaacacgtgc aatggagttt 202121DNAArtificialQPR-1R 21ggttccacca ttgttacacc t 212219DNAArtificialQACT2F 22aatcacagca cttgcacca 192320DNAArtificialQACT2R 23gagggaagca agaatggaac 202420DNAArtificialLsat_dmr6_fw1 24cgatcaaggt caacacatgg 202520DNAArtificialLsat_dmr6_fw2 25tcaaccatta cccagtgtgc 202620DNAArtificialdmr6_deg_fw1B 26ttccaggtda ttaaycaygg 202720DNAArtificialdmr6_deg_fw2B 27cataaytgga grgaytayct 202820DNAArtificialdmr6_deg_fw3b 28garcaaggrc arcayatggc 202920DNAArtificialdmr6_deg_fw4 29aatcctcctt chttcaagga 203020DNAArtificialdmr6_deg_rv3B 30agtgcattkg ggtchgtrtg 203120DNAArtificialdmr6_deg_rv4 31aatgttratg acaaargcat 203220DNAArtificialdmr6_deg_rv5 32gccatrtgyt gyccttgytc 203320DNAArtificialCuc_dmr6_rv1 33tccggacatt gaaacttgtg 203420DNAArtificialCuc_dmr6_rv2 34tcaaagaact gcttgccaac 203520DNAArtificialCuc_dmr6_fw1 35cgcactcacc attctccttc 203619DNAArtificialCuc_dmr6_fw2 36ggcctccaag tcctcaaag 193725DNAArtificialIND_MOP9 Fw 37tttgggaaca gaaaaagttg gaggt 253825DNAArtificialIND_MOP9 Rv 38catattcaaa agggaaaatc ccaga 253925DNAArtificialIND_K16H17 Fw 39tggggttgtg gtttattctg ttgac 254026DNAArtificialIND_K16H17 Rv 40tggccaatag tagttgatac gcaaga 264125DNAArtificialIND_T4C12 Fw 41tctcgggtaa gacacaagtc gagat 254225DNAArtificialIND_T4C12 Rv 42tattccaact tgcgacgtag agcat 254324DNAArtificialIND_T11H3 Fw 43ccaattgggt tatttacttc gatt 244424DNAArtificialIND_T11H3 Rv 44cggcttttaa caacatattt tcca 244525DNAArtificialIND_F21J6 fw primer 45aacacatcac caagatgaat ccaga 254625DNAArtificialIND_F21J6 rv primer 46cctctgcccc aagaaatatt gagat 254724DNAArtificialM450 fw 47agctttgtat ggtagtgcca atga 244824DNAArtificialM450 Rv 48gcggtatacg ggggttaaaa tcta 244922DNAArtificialM490 Fw 49atggccaacc actctttgtt ac 225022DNAArtificialM490 Rv 50acaagcaaga agaacagcga ag 225124DNAArtificialM525 Fw 51gaaatttggt tgttggcatt tatc 245225DNAArtificialM525 Rv 52tcaagatctt catattctca ttcca 255325DNAArtificialM545 Fw 53cagctgaagt atgtttcatc ccttt 255424DNAArtificialM545 Rv 54cttgcaattg ttgggactag gtaa 245524DNAArtificialM555 Fw 55tcactaacca gtgaaaaagg ttgc 245624DNAArtificialM555 Rv 56tatacagcga atagcaaagc caag 245724DNAArtificialM470 Fw 57ccgcgagtgt aatatatctc tcct 245824DNAArtificialM470 Rv 58cagtttaacg catgaagtgc tagt 245924DNAArtificialM590 Fw 59gcatcatttg taccgtactg agtc 246024DNAArtificialM590 Rv 60tagtggatac tctgtccctg aggt 24611026DNAArabidopsis thaliana 61atggcggcaa agctgatatc caccggtttc cgtcatacta ctttgccgga aaactatgtc 60cggccaatct ccgaccgtcc acgtctctct gaagtctctc aactcgaaga tttccctctc 120atcgatctct cttccactga tcgatctttt ctcatccaac aaatccacca agcttgtgcc 180cgattcggat tttttcaggt cataaatcac ggagttaaca aacaaataat agatgagatg 240gtgagtgttg cgcgtgagtt ctttagcatg tctatggaag aaaaaatgaa gctatattca 300gacgatccaa cgaagacaac aagattatcg acgagcttca atgtgaagaa agaagaagtc 360aacaattgga gagactatct aagactccat tgttatccta tccacaagta tgtcaatgag 420tggccgtcaa accctccttc tttcaaggaa atagtaagta aatacagtag agaagtaaga 480gaagtgggat ttaaaataga ggaattaata tcagagagct taggtttaga aaaagattac 540atgaagaaag tgcttggtga acaaggtcaa cacatggcag tcaactatta tcctccatgt 600cctgaacctg agctcactta cggtttacct gctcataccg acccaaacgc cctaaccatt 660cttcttcaag acactactgt ttgcggtctc cagatcttga tcgacggtca gtggttcgcc 720gttaatccac atcctgatgc ttttgtcatc aacataggtg accagttaca ggcattaagt 780aatggagtat acaaaagtgt ttggcatcgc gctgtaacaa acacagaaaa tccgagacta 840tcggtcgcat cgtttctgtg cccagctgac tgtgctgtca tgagcccggc caagcccttg 900tgggaagctg aggacgatga aacgaaacca gtctacaaag atttcactta tgcagagtat 960tacaagaagt tttggagtag gaatctggac caagaacatt gcctcgagaa ttttctaaac 1020aactaa 102662341PRTArabidopsis thaliana 62Met Ala Ala Lys Leu Ile Ser Thr Gly Phe Arg His Thr Thr Leu Pro 1 5 10 15 Glu Asn Tyr Val Arg Pro Ile Ser Asp Arg Pro Arg Leu Ser Glu Val 20 25 30 Ser Gln Leu Glu Asp Phe Pro Leu Ile Asp Leu Ser Ser Thr Asp Arg 35 40 45 Ser Phe Leu Ile Gln Gln Ile His Gln Ala Cys Ala Arg Phe Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Asn Lys Gln Ile Ile Asp Glu Met 65 70 75 80 Val Ser Val Ala Arg Glu Phe Phe Ser Met Ser Met Glu Glu Lys Met 85 90 95 Lys Leu Tyr Ser Asp Asp Pro Thr Lys Thr Thr Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Lys Lys Glu Glu Val Asn Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Tyr Pro Ile His Lys Tyr Val Asn Glu Trp Pro Ser Asn 130 135 140 Pro Pro Ser Phe Lys Glu Ile Val Ser Lys Tyr Ser Arg Glu Val Arg 145 150 155 160 Glu Val Gly Phe Lys Ile Glu Glu Leu Ile Ser Glu Ser Leu Gly Leu 165 170 175 Glu Lys Asp Tyr Met Lys Lys Val Leu Gly Glu Gln Gly Gln His Met 180 185 190 Ala Val Asn Tyr Tyr Pro Pro Cys Pro Glu Pro Glu Leu Thr Tyr Gly 195 200 205 Leu Pro Ala His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp 210 215 220 Thr Thr Val Cys Gly Leu Gln Ile Leu Ile Asp Gly Gln Trp Phe Ala 225 230 235 240 Val Asn Pro His Pro Asp Ala Phe Val Ile Asn Ile Gly Asp Gln Leu 245 250 255 Gln Ala Leu Ser Asn Gly Val Tyr Lys Ser Val Trp His Arg Ala Val 260 265 270 Thr Asn Thr Glu Asn Pro Arg Leu Ser Val Ala Ser Phe Leu Cys Pro 275 280 285 Ala Asp Cys Ala Val Met Ser Pro Ala Lys Pro Leu Trp Glu Ala Glu 290 295 300 Asp Asp Glu Thr Lys Pro Val Tyr Lys Asp Phe Thr Tyr Ala Glu Tyr 305 310 315 320 Tyr Lys Lys Phe Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu 325 330 335 Asn Phe Leu Asn Asn 340 63335PRTAquilegia sp. 63Met Glu Ser Ser Asn Val Leu Leu Thr Gly Thr Arg His Ser Asn Leu 1 5 10 15 Pro Glu Asn Tyr Val Arg Ser Val Ser Asp Arg Pro Arg Leu Ser Glu 20 25 30 Val Lys Asp Cys Glu Asn Val Pro Val Ile Asp Leu Ser Val Ala Asp 35 40 45 Glu Ser Leu Leu Ala Gln Gln Ile Gly Asn Ala Cys Lys Ser His Gly 50 55 60 Phe Phe Gln Val Ile Asn His Gly Val Asn Ser Glu Leu Val Glu Lys 65 70 75 80 Met Met Glu Ile Ser His Glu Phe Phe His Leu Pro Leu Asp Val Lys 85 90 95 Met Gln Phe Tyr Ser Asp Asp Pro Thr Lys Thr Met Arg Leu Ser Thr 100 105 110 Ser Phe Asn Leu Lys Lys Glu Ser Val His Asn Trp Arg Asp Tyr Leu 115 120 125 Arg Leu His Cys His Pro Ile Glu Lys Tyr Val Gln Glu Trp Pro Ser 130 135 140 Val Pro Ser Thr Phe Lys Asp Val Val Ala Thr Tyr Cys Lys Glu Val 145 150 155 160 Arg Lys Leu Gly Leu Arg Leu Leu Gly Ser Ile Ser Leu Ser Leu Gly 165 170 175 Leu Glu Glu Asp Tyr Ile Glu Lys Val Leu Gly Asp Gln Gly Gln His 180 185 190 Met Ala Val Asn Tyr Tyr Pro Pro Cys Pro Glu Pro Glu Leu Thr Tyr 195 200 205 Gly Leu Pro Arg His Thr Asp Pro Asn Thr Ile Thr Ile Leu Leu Gln 210 215 220 Gly Gln Glu Val Ala Gly Leu Gln Val Leu His Asn Gly Lys Trp Val 225 230 235 240 Ala Val Asn Pro Tyr Pro Asn Ala Phe Val Val Asn Ile Gly Asp Gln 245 250 255 Ile Gln Ala Leu Ser Asn Gly Asn Tyr Ala Ser Val Trp His Arg Ala 260 265 270 Thr Val Asn Thr Asp Arg Glu Arg Ile Ser Val Ala Ser Phe Leu Cys 275 280 285 Pro Ala Asn Asp Ala Ile Ile Cys Pro Ala Val Lys Asp Gly Ser Pro 290 295 300 Ser Met Tyr Lys Lys Phe Thr Tyr Asp Glu Tyr Tyr Lys Lys Phe Trp 305 310 315 320 Ser Gly Asn Leu Asp Gln Gln His Cys Leu Glu Leu Phe Lys Glu 325 330 335 64337PRTCitrus sinensis 64Met Asp Thr Lys Val Leu Ser Ser Gly Ile Arg Tyr Thr Asn Leu Pro 1 5 10 15 Glu Gly Tyr Val Arg Pro Glu Ser Glu Arg Pro Asn Leu Ser Glu Val 20 25 30 Ser Glu Cys Lys Asn Val Pro Val Ile Asp Leu Ala Cys Asp Asp Arg 35 40 45 Ser Leu Ile Val Gln Gln Val Ala Asp Ala Cys Lys Asn Tyr Gly Phe 50 55 60 Phe Gln Ala Ile Asn His Glu Val Pro Leu Glu Thr Val Glu Arg Val 65 70 75 80 Leu Glu Val Ala Lys Glu Phe Phe Asn Leu Pro Val Glu Glu Lys Leu 85 90 95 Lys Leu Tyr Ser Asp Asp Pro Ser Lys Thr Met Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Asn Lys Glu Lys Val His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Tyr Pro Leu Asp Lys Tyr Val Pro Glu Trp Pro Ser Asn 130 135 140 Pro Ser Thr Phe Lys Glu Phe Val Ser Thr Tyr Cys Ser Glu Val Arg 145 150 155 160 Gly Leu Gly Tyr Arg Val Leu Glu Leu Ile Ser Glu Ser Leu Gly Leu 165 170 175 Glu Lys Asp Tyr Ile Lys Lys Val Leu Gly Glu Gln Gly Gln His Met 180 185 190 Ala Val Asn Phe Tyr Pro Pro Cys Pro Glu Pro Glu Leu Thr Tyr Gly 195 200 205 Leu Pro Gly His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp 210 215 220 Leu Glu Val Ala Gly Leu Gln Val Leu Lys Asp Asp Lys Trp Val Ala 225 230 235 240 Val Asn Pro Leu Pro Asn Ala Phe Val Ile Asn Ile Gly Asp Gln Leu 245 250 255 Gln Ala Leu Ser Asn Gly Arg Tyr Lys Ser Val Trp His Arg Ala Ile 260 265 270 Val Asn Ala Glu Lys Ala Arg Met Ser Val Ala Ser Phe Leu Cys Pro 275 280 285 Asn Asn Asp Ala Met Ile Ser Pro Pro Lys Ala Leu Thr Glu Asp Gly 290 295 300 Ser Gly Ala Val Tyr Arg Asp Phe Thr Tyr Ala Glu Tyr Tyr Ser Lys 305 310 315 320 Phe Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu Leu Phe Lys 325 330 335 Asn 65337PRTCoffea canephora 65Met Glu Thr Lys Val Ile Ser Ser Gly Ile Lys Tyr Thr Ser Leu Pro 1 5 10 15 Glu Ser Tyr Val Arg Pro Glu Ser Glu Arg Pro Arg Leu Ser Glu Val 20 25 30 Ser Asp Cys Gln Asn Val Pro Val Val Asp Leu Gly Phe Gly Asp Arg 35 40 45 Asn Leu Met Val Arg Gln Ile Gly Asp Ala Cys Arg Asp Tyr Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Ser Lys Asp Ala Val Asp Lys Met 65 70 75 80 Leu Glu Thr Ala Thr Glu Phe Phe Ser Leu Pro Val Glu Glu Lys Leu 85 90 95 Lys Leu Tyr Ser Asp Asp Pro Ser Lys Thr Thr Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Lys Lys Glu Thr Val His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Tyr Pro Leu Glu Lys Tyr Val Pro Glu Trp Pro Ser Asn 130 135 140 Pro Pro Ser Phe Lys Glu Met Val Ser Asn Tyr Cys Val Gln Ile Arg 145 150 155 160 Glu Leu Gly Leu Arg Leu Glu Glu Ala Ile Ala Glu Ser Leu Gly Leu 165 170 175 Asp Lys Glu Cys Ile Lys Lys Val Leu Gly Asp Gln Gly Gln His Met 180 185 190 Ala Val Asn Tyr Tyr Pro Pro Cys Pro Gln Pro Asp Leu Thr Tyr Gly 195 200 205 Leu Pro Gly His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp 210 215 220 Leu Asn Val Ala Gly Leu Gln Val Leu Arg Asp Gly Arg Trp Leu Ala 225 230 235 240 Val Lys Pro His Pro Asp Ala Phe Val Val Asn Ile Gly Asp Gln Leu 245 250 255 Gln Ala Leu Ser Asn Gly Ile Tyr Lys Ser Val Trp His Arg Ala Val 260 265 270 Val Asn Ala Asp Gln Pro Arg Leu Ser Val Ala Ser Phe Leu Cys Pro 275 280 285 Cys Asp His Ala Val Ile Ser Ala Pro Lys Pro Leu Thr Ala Asp Gly 290

295 300 Ser Pro Val Val Tyr Arg Asp Phe Thr Tyr Ala Gln Tyr Tyr Lys Lys 305 310 315 320 Phe Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu Leu Phe Lys 325 330 335 Asn 661029DNACucumis sativus 66atgagcagtg tgatggagat ccaacttttg tgttcagggg gacgtcacga gaagttgcca 60gagaagtatg aacggcctga atcggatagg ccgcggctgt cggaggtgtg ttgttgggac 120aaggttccaa taatcgactt gggatgcgag gagagagaga tgattgtgaa gcaagtggag 180gaggcctgca agtcttacgg ctttttccag gttataaatc atggtgtgag gaaggaattg 240gtggagaaag tgatagaagt tggcaagcag ttctttgagc tgccgatgga ggagaagttg 300aaattttatt cagacgaccc ttccaagacc gtcagactct ccacaagttt caatgtccgg 360aaagagcaat ttcgcaactg gagggattat ctcagactcc attgctatcc tctctccaac 420tacacccccc attggccctc taacccacca tccttcaggg aaatagtgag tagttattgc 480aatgaagtac gaaaagttgg gtacagaata gaggagctaa tatcggagag cttggggctg 540gagaaggaat acataaggaa gaagttgggt gaacaaggtc agcacatggc tataaattat 600tatccgccat gtccccaacc agaactcacc tacgggctcc ctggccatac ggatcccaac 660gcactcacca ttctccttca ggatctccat gtcgccggcc tccaagtcct caaagatgga 720aagtggctag cggtcaaccc ccaccccaat gcctttgtaa tcaatatagg cgaccaattg 780caggcattga gcaatggggt gtacaagagc gtttggcacc gagcggtggt caatgttgat 840aagcccaggc tgtcggtcgc ttcttttctc tgcccttgtg atgacgccct cattactcct 900gcaccgctcc tctcccagcc ttcccccatt tacagacctt tcacctacgc ccagtactac 960aatacttttt ggagcagaaa cttggatcaa caacattgct tggaactatt taaaaaccac 1020cctccttaa 102967342PRTCucumis sativus 67Met Ser Ser Val Met Glu Ile Gln Leu Leu Cys Ser Gly Gly Arg His 1 5 10 15 Glu Lys Leu Pro Glu Lys Tyr Glu Arg Pro Glu Ser Asp Arg Pro Arg 20 25 30 Leu Ser Glu Val Cys Cys Trp Asp Lys Val Pro Ile Ile Asp Leu Gly 35 40 45 Cys Glu Glu Arg Glu Met Ile Val Lys Gln Val Glu Glu Ala Cys Lys 50 55 60 Ser Tyr Gly Phe Phe Gln Val Ile Asn His Gly Val Arg Lys Glu Leu 65 70 75 80 Val Glu Lys Val Ile Glu Val Gly Lys Gln Phe Phe Glu Leu Pro Met 85 90 95 Glu Glu Lys Leu Lys Phe Tyr Ser Asp Asp Pro Ser Lys Thr Val Arg 100 105 110 Leu Ser Thr Ser Phe Asn Val Arg Lys Glu Gln Phe Arg Asn Trp Arg 115 120 125 Asp Tyr Leu Arg Leu His Cys Tyr Pro Leu Ser Asn Tyr Thr Pro His 130 135 140 Trp Pro Ser Asn Pro Pro Ser Phe Arg Glu Ile Val Ser Ser Tyr Cys 145 150 155 160 Asn Glu Val Arg Lys Val Gly Tyr Arg Ile Glu Glu Leu Ile Ser Glu 165 170 175 Ser Leu Gly Leu Glu Lys Glu Tyr Ile Arg Lys Lys Leu Gly Glu Gln 180 185 190 Gly Gln His Met Ala Ile Asn Tyr Tyr Pro Pro Cys Pro Gln Pro Glu 195 200 205 Leu Thr Tyr Gly Leu Pro Gly His Thr Asp Pro Asn Ala Leu Thr Ile 210 215 220 Leu Leu Gln Asp Leu His Val Ala Gly Leu Gln Val Leu Lys Asp Gly 225 230 235 240 Lys Trp Leu Ala Val Asn Pro His Pro Asn Ala Phe Val Ile Asn Ile 245 250 255 Gly Asp Gln Leu Gln Ala Leu Ser Asn Gly Val Tyr Lys Ser Val Trp 260 265 270 His Arg Ala Val Val Asn Val Asp Lys Pro Arg Leu Ser Val Ala Ser 275 280 285 Phe Leu Cys Pro Cys Asp Asp Ala Leu Ile Thr Pro Ala Pro Leu Leu 290 295 300 Ser Gln Pro Ser Pro Ile Tyr Arg Pro Phe Thr Tyr Ala Gln Tyr Tyr 305 310 315 320 Asn Thr Phe Trp Ser Arg Asn Leu Asp Gln Gln His Cys Leu Glu Leu 325 330 335 Phe Lys Asn His Pro Pro 340 68337PRTGossypium hirsutum 68Met Asp Thr Lys Val Leu Ser Ser Gly Ile His Tyr Ser Ser Leu Pro 1 5 10 15 Glu Ser Tyr Val Arg Pro Glu Ser Glu Arg Pro Arg Leu Ser Glu Val 20 25 30 Ser Gln Cys Asp Asn Val Pro Val Ile Asp Leu Gly Cys Glu Asp Arg 35 40 45 Ser His Ile Val Gln Gln Ile Ala Leu Ala Cys Ile Asn Tyr Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Ser Lys Glu Ala Val Glu Arg Met 65 70 75 80 Leu Gln Val Ala His Asp Phe Phe Gly Leu Pro Val Glu Glu Lys Met 85 90 95 Lys Leu Tyr Ser Asp Asp Pro Ser Lys Thr Met Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Lys Lys Glu Lys Val His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Tyr Pro Leu His Lys Tyr Val Pro Glu Trp Pro Ser Asn 130 135 140 Pro Pro Ser Phe Lys Gln Ile Val Ser Asp Tyr Cys Val Gln Val Arg 145 150 155 160 Glu Leu Gly Tyr Arg Leu Gln Glu Leu Ile Ser Glu Ser Leu Gly Leu 165 170 175 Glu Lys Asp Tyr Ile Lys Lys Val Leu Gly Glu Gln Gly Gln His Met 180 185 190 Ala Val Asn Tyr Tyr Pro Pro Cys Pro Glu Pro Glu Leu Thr Tyr Gly 195 200 205 Leu Pro Gly His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp 210 215 220 Leu Gln Val Ala Gly Leu Gln Val Leu Lys Asp Gly Lys Trp Leu Ala 225 230 235 240 Val Asn Pro Gln Thr Asn Ala Phe Val Ile Asn Ile Gly Asp Gln Leu 245 250 255 Gln Ala Leu Ser Asn Gly Thr Tyr Lys Ser Val Trp His Arg Ala Ile 260 265 270 Val Asn Thr Asp Lys Pro Arg Met Ser Val Ala Ser Phe Leu Cys Pro 275 280 285 Tyr Asp His Ala Leu Ile Ser Pro Ala Lys Pro Leu Thr Gln His Gly 290 295 300 Cys Gly Ala Val Tyr Arg Asp Phe Thr Tyr Ala Glu Tyr Tyr Ser Lys 305 310 315 320 Phe Trp Gly Arg Asn Leu Asp Gln Glu His Cys Leu Glu Leu Phe Lys 325 330 335 Asn 691014DNALactuca sativa 69atggccgcaa aagtcatctc cagtggattc cggtatacta ctctaccgga gagctacgtc 60cgtccggtta acgacagacc taacctatct caagtttccg attgcaacga cgttcctgtt 120attgacatcg gttgtggtga tagacaactc ataagccaac aaattggcga tgcttgtaga 180agatacggtt ttttccaggt gattaatcat ggtgtgcctg atgaaatagt ggagaaaatg 240caacaagtag gtagggagtt tttcctgttg cctgtggaag agaagatgaa gctttactca 300gaggatccat cgaagacgat gaggctatcc accagcttta acgtccaaaa agaacaaatt 360cataactggc gagattatct ccgccttcac tgttatcctc tggatcaata cagtcctgaa 420tggccttcaa atccttctta tttcaaggaa tatgttggta attattgtac agcagtgcga 480aatttaggaa tgagaatatt agaatcaata tcagaaagtt tagggttaca aaaagaagaa 540ataaaaacta tattaggcga tcaaggtcaa cacatggcca tcaaccatta cccagtgtgc 600cctgagcccg agctaaccta cgggctaccc gggcacacag accccaatgc tctcaccatc 660cttctacagg acacactggt ctctggtctt caggttctca aagatggcaa atggttagcc 720gttaaaccac accctaatgc gtttgtaatt aacattggtg atcagttaga ggcggtgagt 780aatggtgaat ataaaagtgt atggcatcga gctgtggtta actcagacaa cccgcgaatg 840tctatagctt cgtttttgtg tccttgtaat gacaccgtta ttagggctcc taaagaaata 900ataaaggaag gatcgaaacc tgttttcaaa gaatttactt atgcagaata ctacgcgaag 960ttttggacaa gaaaccttga tcaagaacat tgcttagaat tcttcaagaa ctag 101470337PRTLactuca sativa 70Met Ala Ala Lys Val Ile Ser Ser Gly Phe Arg Tyr Thr Thr Leu Pro 1 5 10 15 Glu Ser Tyr Val Arg Pro Val Asn Asp Arg Pro Asn Leu Ser Gln Val 20 25 30 Ser Asp Cys Asn Asp Val Pro Val Ile Asp Ile Gly Cys Gly Asp Arg 35 40 45 Gln Leu Ile Ser Gln Gln Ile Gly Asp Ala Cys Arg Arg Tyr Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Pro Asp Glu Ile Val Glu Lys Met 65 70 75 80 Gln Gln Val Gly Arg Glu Phe Phe Leu Leu Pro Val Glu Glu Lys Met 85 90 95 Lys Leu Tyr Ser Glu Asp Pro Ser Lys Thr Met Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Gln Lys Glu Gln Ile His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Tyr Pro Leu Asp Gln Tyr Ser Pro Glu Trp Pro Ser Asn 130 135 140 Pro Ser Tyr Phe Lys Glu Tyr Val Gly Asn Tyr Cys Thr Ala Val Arg 145 150 155 160 Asn Leu Gly Met Arg Ile Leu Glu Ser Ile Ser Glu Ser Leu Gly Leu 165 170 175 Gln Lys Glu Glu Ile Lys Thr Ile Leu Gly Asp Gln Gly Gln His Met 180 185 190 Ala Ile Asn His Tyr Pro Val Cys Pro Glu Pro Glu Leu Thr Tyr Gly 195 200 205 Leu Pro Gly His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp 210 215 220 Thr Leu Val Ser Gly Leu Gln Val Leu Lys Asp Gly Lys Trp Leu Ala 225 230 235 240 Val Lys Pro His Pro Asn Ala Phe Val Ile Asn Ile Gly Asp Gln Leu 245 250 255 Glu Ala Val Ser Asn Gly Glu Tyr Lys Ser Val Trp His Arg Ala Val 260 265 270 Val Asn Ser Asp Asn Pro Arg Met Ser Ile Ala Ser Phe Leu Cys Pro 275 280 285 Cys Asn Asp Thr Val Ile Arg Ala Pro Lys Glu Ile Ile Lys Glu Gly 290 295 300 Ser Lys Pro Val Phe Lys Glu Phe Thr Tyr Ala Glu Tyr Tyr Ala Lys 305 310 315 320 Phe Trp Thr Arg Asn Leu Asp Gln Glu His Cys Leu Glu Phe Phe Lys 325 330 335 Asn 71338PRTMedicago truncatula 71Met Asp Thr Lys Val Leu Ser Ser Gly Ile His Tyr Ser Lys Leu Pro 1 5 10 15 Glu Ser Tyr Ile Arg Pro Glu Ser Asp Arg Pro Cys Leu Ser Gln Val 20 25 30 Ser Glu Phe Glu Asn Val Pro Ile Ile Asp Leu Gly Ser His Asn Arg 35 40 45 Thr Gln Ile Val Gln Gln Ile Gly Glu Ala Cys Ser Ser Tyr Gly Phe 50 55 60 Phe Gln Val Val Asn His Gly Val Pro Leu Glu Glu Leu Lys Lys Thr 65 70 75 80 Ala Glu Val Ala Tyr Asp Phe Phe Lys Leu Pro Val Glu Glu Lys Met 85 90 95 Lys Leu Tyr Ser Asp Asp Pro Thr Lys Thr Met Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Asn Lys Glu Glu Val His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Tyr Pro Leu Asp Asn Tyr Val Pro Glu Trp Pro Ser Asn 130 135 140 Pro Pro Ser Phe Lys Glu Thr Val Ala Asn Tyr Cys Lys Glu Val Arg 145 150 155 160 Glu Leu Gly Leu Arg Ile Glu Glu Tyr Ile Ser Glu Ser Leu Gly Leu 165 170 175 Glu Lys Asp Tyr Leu Arg Asn Ala Leu Gly Glu Gln Gly Gln His Met 180 185 190 Ala Val Asn Tyr Tyr Pro Pro Cys Pro Gln Pro Glu Leu Thr Tyr Gly 195 200 205 Leu Pro Gly His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp 210 215 220 Leu His Val Ala Gly Leu Gln Val Leu Lys Asp Gly Lys Trp Leu Ala 225 230 235 240 Ile Asn Pro Ile Pro Asp Ala Phe Val Ile Asn Ile Gly Asp Gln Leu 245 250 255 Gln Ala Leu Ser Asn Gly Leu Tyr Lys Ser Val Trp His Arg Ala Ile 260 265 270 Val Asn Ala Glu Lys Pro Arg Leu Ser Val Ala Ser Phe Leu Cys Pro 275 280 285 Asp Asn Glu Ala Leu Ile Cys Pro Ala Lys Pro Leu Thr Glu Asp Gly 290 295 300 Ser Gly Ala Val Tyr Arg Gly Phe Thr Tyr Pro Glu Tyr Tyr Ser Lys 305 310 315 320 Phe Trp Ser Arg Asp Leu Glu Lys Glu His Cys Leu Glu Phe Phe Lys 325 330 335 Asn Asn 72342PRTOryza sativa 72Met Ala Ala Glu Ala Glu Gln Gln His Gln Leu Leu Ser Thr Ala Val 1 5 10 15 His Asp Thr Met Pro Gly Lys Tyr Val Arg Pro Glu Ser Gln Arg Pro 20 25 30 Arg Leu Asp Leu Val Val Ser Asp Ala Arg Ile Pro Val Val Asp Leu 35 40 45 Ala Ser Pro Asp Arg Ala Ala Val Val Ser Ala Val Gly Asp Ala Cys 50 55 60 Arg Thr His Gly Phe Phe Gln Val Val Asn His Gly Ile Asp Ala Ala 65 70 75 80 Leu Ile Ala Ser Val Met Glu Val Gly Arg Glu Phe Phe Arg Leu Pro 85 90 95 Ala Glu Glu Lys Ala Lys Leu Tyr Ser Asp Asp Pro Ala Lys Lys Ile 100 105 110 Arg Leu Ser Thr Ser Phe Asn Val Arg Lys Glu Thr Val His Asn Trp 115 120 125 Arg Asp Tyr Leu Arg Leu His Cys Tyr Pro Leu His Gln Phe Val Pro 130 135 140 Asp Trp Pro Ser Asn Pro Pro Ser Phe Lys Glu Ile Ile Gly Thr Tyr 145 150 155 160 Cys Thr Glu Val Arg Glu Leu Gly Phe Arg Leu Tyr Glu Ala Ile Ser 165 170 175 Glu Ser Leu Gly Leu Glu Gly Gly Tyr Met Arg Glu Thr Leu Gly Glu 180 185 190 Gln Glu Gln His Met Ala Val Asn Tyr Tyr Pro Gln Cys Pro Glu Pro 195 200 205 Glu Leu Thr Tyr Gly Leu Pro Ala His Thr Asp Pro Asn Ala Leu Thr 210 215 220 Ile Leu Leu Met Asp Asp Gln Val Ala Gly Leu Gln Val Leu Asn Asp 225 230 235 240 Gly Lys Trp Ile Ala Val Asn Pro Gln Pro Gly Ala Leu Val Ile Asn 245 250 255 Ile Gly Asp Gln Leu Gln Ala Leu Ser Asn Gly Lys Tyr Arg Ser Val 260 265 270 Trp His Arg Ala Val Val Asn Ser Asp Arg Glu Arg Met Ser Val Ala 275 280 285 Ser Phe Leu Cys Pro Cys Asn Ser Val Glu Leu Gly Pro Ala Lys Lys 290 295 300 Leu Ile Thr Asp Asp Ser Pro Ala Val Tyr Arg Asn Tyr Thr Tyr Asp 305 310 315 320 Glu Tyr Tyr Lys Lys Phe Trp Ser Arg Asn Leu Asp Gln Glu His Cys 325 330 335 Leu Glu Leu Phe Arg Thr 340 73342PRTOryza sativa 73Met Ala Asp Gln Leu Ile Ser Thr Ala Asp His Asp Thr Leu Pro Gly 1 5 10 15 Asn Tyr Val Arg Pro Glu Ala Gln Arg Pro Arg Leu Ala Asp Val Leu 20 25 30 Ser Asp Ala Ser Ile Pro Val Val Asp Leu Ala Asn Pro Asp Arg Ala 35 40 45 Lys Leu Val Ser Gln Val Gly Ala Ala Cys Arg Ser His Gly Phe Phe 50 55 60 Gln Val Leu Asn His Gly Val Pro Val Glu Leu Thr Leu Ser Val Leu 65 70 75 80 Ala Val Ala His Asp Phe Phe Arg Leu Pro Ala Glu Glu Lys Ala Lys 85 90 95 Leu Tyr Ser Asp Asp Pro Ala Lys Lys Ile Arg Leu Ser Thr Ser Phe 100 105 110 Asn Val Arg Lys Glu Thr Val His Asn Trp Arg Asp Tyr Leu Arg Leu 115 120 125 His Cys Tyr Pro Leu His Arg Tyr Leu Pro Asp Trp Pro Ser Asn Pro 130 135 140 Pro Ser Phe Arg Glu Ile Ile Ser Thr Tyr Cys Lys Glu Val Arg Glu 145 150 155 160 Leu Gly Phe Arg Leu Tyr Gly Ala Ile Ser Glu Ser Leu Gly Leu Glu 165 170 175 Gln Asp Tyr Ile Lys Lys Val Leu Gly Glu Gln Glu Gln His Met Ala 180 185 190 Val Asn Phe Tyr Pro Lys Cys Pro Glu Pro Glu Leu Thr Phe Gly Leu 195 200 205 Pro Ala His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Met Asp Gln 210 215 220

Gln Val Ala Gly Leu Gln Val Leu Lys Glu Gly Arg Trp Ile Ala Val 225 230 235 240 Asn Pro Gln Pro Asn Ala Leu Val Ile Asn Ile Gly Asp Gln Leu Gln 245 250 255 Ala Leu Ser Asn Gly Arg Tyr Lys Ser Val Trp His Arg Ala Val Val 260 265 270 Asn Ser Asp Lys Ala Arg Met Ser Val Ala Ser Phe Leu Cys Pro Cys 275 280 285 Asn Asp Val Leu Ile Gly Pro Ala Gln Lys Leu Ile Thr Asp Gly Ser 290 295 300 Pro Ala Val Tyr Arg Asn Tyr Thr Tyr Asp Glu Tyr Tyr Lys Lys Phe 305 310 315 320 Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu Leu Phe Arg Thr 325 330 335 Thr Pro Thr Asp Thr Ser 340 74340PRTOryza sativa 74Met Ala Thr Thr Gln Leu Leu Ser Thr Val Glu His Arg Glu Thr Leu 1 5 10 15 Pro Glu Gly Tyr Ala Arg Pro Glu Ser Asp Arg Pro Arg Leu Ala Glu 20 25 30 Val Ala Thr Asp Ser Asn Ile Pro Leu Ile Asp Leu Ala Ser Pro Asp 35 40 45 Lys Pro Arg Val Ile Ala Glu Ile Ala Gln Ala Cys Arg Thr Tyr Gly 50 55 60 Phe Phe Gln Val Thr Asn His Gly Ile Ala Glu Glu Leu Leu Glu Lys 65 70 75 80 Val Met Ala Val Ala Leu Glu Phe Phe Arg Leu Pro Pro Glu Glu Lys 85 90 95 Glu Lys Leu Tyr Ser Asp Glu Pro Ser Lys Lys Ile Arg Leu Ser Thr 100 105 110 Ser Phe Asn Val Arg Lys Glu Thr Val His Asn Trp Arg Asp Tyr Leu 115 120 125 Arg Leu His Cys His Pro Leu Glu Glu Phe Val Pro Glu Trp Pro Ser 130 135 140 Asn Pro Ala Gln Phe Lys Glu Ile Met Ser Thr Tyr Cys Arg Glu Val 145 150 155 160 Arg Gln Leu Gly Leu Arg Leu Leu Gly Ala Ile Ser Val Ser Leu Gly 165 170 175 Leu Glu Glu Asp Tyr Ile Glu Lys Val Leu Gly Glu Gln Glu Gln His 180 185 190 Met Ala Val Asn Tyr Tyr Pro Arg Cys Pro Glu Pro Asp Leu Thr Tyr 195 200 205 Gly Leu Pro Lys His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Pro 210 215 220 Asp Pro His Val Ala Gly Leu Gln Val Leu Arg Asp Gly Asp Gln Trp 225 230 235 240 Ile Val Val Asn Pro Arg Pro Asn Ala Leu Val Val Asn Leu Gly Asp 245 250 255 Gln Ile Gln Ala Leu Ser Asn Asp Ala Tyr Lys Ser Val Trp His Arg 260 265 270 Ala Val Val Asn Pro Val Gln Glu Arg Met Ser Val Ala Ser Phe Met 275 280 285 Cys Pro Cys Asn Ser Ala Val Ile Ser Pro Ala Arg Lys Leu Val Ala 290 295 300 Asp Gly Asp Ala Pro Val Tyr Arg Ser Phe Thr Tyr Asp Glu Tyr Tyr 305 310 315 320 Lys Lys Phe Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu Leu 325 330 335 Phe Lys Gly Gln 340 75338PRTPopulus trichocarpa 75Met Asp Thr Lys Val Leu Ser Ser Gly Ile Gln Tyr Thr Asn Leu Pro 1 5 10 15 Ala Ser Tyr Val Arg Pro Glu Ser Glu Arg Pro Arg Leu Trp Glu Val 20 25 30 Ser Thr Cys Glu Asn Val Pro Val Ile Asp Leu Gly Cys Gln Glu Arg 35 40 45 Asp Gln Ile Val Gln Gln Val Gly Asp Ala Cys Lys Asn Tyr Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Ser Leu Glu Ala Val Glu Lys Met 65 70 75 80 Leu Gly Val Ala His Asp Phe Phe Ser Leu Pro Val Glu Glu Lys Leu 85 90 95 Lys Leu Tyr Ser Asp Asp Pro Ser Lys Thr Met Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Asn Lys Glu Lys Val His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Tyr Pro Leu Asp Lys Tyr Ala Pro Glu Trp Pro Ser Lys 130 135 140 Pro Pro Pro Phe Lys Asp Ile Val Ser Ser Tyr Cys Ile Gln Val Arg 145 150 155 160 Glu Leu Gly Phe Arg Ile Gln Glu Leu Ile Ser Glu Ser Leu Gly Leu 165 170 175 Glu Lys Asp His Val Lys Asn Val Leu Gly Glu Gln Gly Gln His Met 180 185 190 Ala Val Asn Phe Tyr Pro Pro Cys Pro Glu Pro Glu Leu Thr Phe Gly 195 200 205 Leu Pro Gly His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp 210 215 220 Gln Ser Val Ala Gly Leu Gln Val Leu Lys Asp Gly Lys Trp Val Ala 225 230 235 240 Val Asp Pro His Pro Asp Ala Phe Val Ile Asn Ile Gly Asp Gln Leu 245 250 255 Gln Ala Leu Ser Asn Gly Arg Tyr Lys Ser Val Trp His Arg Ala Ile 260 265 270 Thr Asn Thr Asp Lys Ala Arg Met Ser Val Ala Ser Phe Leu Cys Pro 275 280 285 Tyr Asp Asn Ala Leu Ile Thr Pro Pro Lys Ala Leu Thr Asp Asp Gly 290 295 300 Thr Gly Ala Val Tyr Arg Asp Phe Thr Tyr Ala Glu Tyr Tyr Lys Lys 305 310 315 320 Phe Trp Ser Arg Asp Leu Asp Gln Glu His Cys Leu Glu Leu Phe Lys 325 330 335 Asn Lys 76338PRTPopulus trichocarpa 76Met Asp Thr Lys Val Ile Ser Ser Gly Val His Tyr Thr Asn Leu Pro 1 5 10 15 Ala Ser Tyr Val Arg Pro Glu Ser Glu Arg Pro Arg Leu Ser Glu Val 20 25 30 Ser Thr Cys Glu Asp Val Pro Val Ile Asp Leu Gly Cys Gln Asp Arg 35 40 45 Asn Gln Ile Val Gln Gln Val Gly Asp Ala Cys Glu His Tyr Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Ser Leu Glu Ala Val Glu Lys Met 65 70 75 80 Leu Gly Val Ala His Asp Phe Phe Ser Leu Pro Val Glu Glu Lys Leu 85 90 95 Lys Leu Tyr Ser Asp Asp Pro Ser Lys Thr Met Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Asn Lys Glu Lys Val His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Tyr Pro Leu Asp Lys Tyr Val Pro Glu Trp Pro Ser Asn 130 135 140 Pro Pro Pro Phe Lys Glu Ile Val Arg Ser Tyr Ser Ile Gln Val Arg 145 150 155 160 Glu Leu Gly Phe Arg Ile Gln Glu Leu Ile Ser Glu Ser Leu Gly Leu 165 170 175 Glu Lys Asp His Ile Lys Asn Val Leu Gly Glu Gln Gly Gln His Met 180 185 190 Ala Val Asn Phe Tyr Pro Pro Cys Pro Glu Pro Glu Leu Thr Tyr Gly 195 200 205 Leu Pro Ala His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp 210 215 220 Leu Ser Val Ala Gly Leu Gln Val Leu Leu Lys Asp Gly Lys Trp Val 225 230 235 240 Ala Val Asn Pro His Pro Asp Ala Phe Val Ile Asn Ile Gly Asp Gln 245 250 255 Leu Gln Ala Leu Ser Asn Gly Arg Tyr Lys Ser Val Trp His Arg Ala 260 265 270 Ile Thr Asn Thr Asp Lys Ala Arg Met Ser Val Ala Ser Phe Leu Cys 275 280 285 Pro Phe Asp Asn Ala Leu Ile Thr Pro Pro Lys Ala Leu Thr Asp Asp 290 295 300 Gly Thr Gly Ala Ile Tyr Arg Asp Phe Thr Tyr Ala Glu Tyr Tyr Lys 305 310 315 320 Lys Phe Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu Leu Phe 325 330 335 Lys Asn 77337PRTSolanum lycopersicum 77Met Glu Thr Lys Val Ile Ser Ser Gly Ile Asn His Ser Thr Leu Pro 1 5 10 15 Gln Ser Tyr Ile Arg Pro Glu Ser Asp Arg Pro Arg Leu Ser Glu Val 20 25 30 Val Asp Cys Glu Asn Val Pro Ile Ile Asp Leu Ser Cys Gly Asp Gln 35 40 45 Ala Gln Ile Ile Arg Gln Ile Gly Glu Ala Cys Gln Thr Tyr Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Pro Lys Glu Val Val Glu Lys Met 65 70 75 80 Leu Gly Val Ala Gly Glu Phe Phe Asn Leu Pro Val Glu Glu Lys Leu 85 90 95 Lys Leu Tyr Ser Asp Asp Pro Ser Lys Thr Met Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Lys Lys Glu Thr Val His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Tyr Pro Leu Glu Lys Tyr Ala Pro Glu Trp Pro Ser Asn 130 135 140 Pro Ser Ser Phe Arg Glu Ile Val Ser Arg Tyr Cys Arg Glu Ile Arg 145 150 155 160 Gln Leu Gly Phe Arg Leu Glu Glu Ala Ile Ala Glu Ser Leu Gly Leu 165 170 175 Asp Lys Glu Cys Ile Lys Asp Val Leu Gly Glu Gln Gly Gln His Met 180 185 190 Ala Ile Asn Tyr Tyr Pro Pro Cys Pro Gln Pro Glu Leu Thr Tyr Gly 195 200 205 Leu Pro Ala His Thr Asp Pro Asn Ser Leu Thr Ile Leu Leu Gln Asp 210 215 220 Leu Gln Val Ala Gly Leu Gln Val Leu Lys Asp Gly Lys Trp Leu Ala 225 230 235 240 Val Lys Pro Gln Pro Asp Ala Phe Val Ile Asn Leu Gly Asp Gln Leu 245 250 255 Gln Ala Val Ser Asn Gly Lys Tyr Arg Ser Val Trp His Arg Ala Ile 260 265 270 Val Asn Ser Asp Gln Ala Arg Met Ser Val Ala Ser Phe Leu Cys Pro 275 280 285 Cys Asp Ser Ala Lys Ile Ser Ala Pro Lys Leu Leu Thr Glu Asp Gly 290 295 300 Ser Pro Val Ile Tyr Gln Asp Phe Thr Tyr Ala Glu Tyr Tyr Asn Lys 305 310 315 320 Phe Trp Ser Arg Asn Leu Asp Gln Gln His Cys Leu Glu Leu Phe Lys 325 330 335 Asn 78342PRTSolanum lycopersicum 78Met Thr Thr Thr Ser Val Leu Ser Ser Gly Phe Asn His Ser Thr Leu 1 5 10 15 Pro Gln Ser Tyr Val Arg Pro Glu Ser Gln Arg Pro Cys Met Ser Glu 20 25 30 Val Val Asp Ser Asp Asp Leu Val Pro Val Ile Asp Met Ser Cys Thr 35 40 45 Asn Arg Asn Val Ile Val His Gln Ile Gly Glu Ala Cys Arg Leu Tyr 50 55 60 Gly Phe Phe Gln Val Ile Asn His Gly Val Ser Lys Lys Val Ile Asp 65 70 75 80 Glu Met Leu Gly Val Ser His Glu Phe Phe Lys Leu Pro Val Glu Glu 85 90 95 Lys Met Lys Leu Tyr Ser Asp Asp Pro Ser Lys Thr Met Arg Leu Ser 100 105 110 Thr Ser Phe Asn Val Lys Lys Glu Thr Val His Asn Trp Arg Asp Tyr 115 120 125 Leu Arg Leu His Cys Tyr Pro Leu Asp Lys Tyr Ala Pro Glu Trp Pro 130 135 140 Ser Asn Pro Pro Ser Phe Arg Glu Ile Val Ser Lys Tyr Cys Met Glu 145 150 155 160 Val Arg Glu Leu Gly Tyr Arg Leu Glu Glu Ala Ile Ser Glu Ser Leu 165 170 175 Gly Leu Glu Lys Asp Cys Ile Lys Asn Val Leu Gly Glu Gln Gly Gln 180 185 190 His Met Ala Ile Asn Phe Tyr Pro Gln Cys Pro Gln Pro Glu Leu Thr 195 200 205 Tyr Gly Leu Pro Ala His Thr Asp Pro Asn Ala Ile Thr Ile Leu Leu 210 215 220 Gln Asp Leu Gln Val Ala Gly Leu Gln Val Leu Lys Asp Gly Lys Trp 225 230 235 240 Leu Ser Ile Lys Pro Gln Pro Asn Ala Phe Val Ile Asn Leu Gly Asp 245 250 255 Gln Leu Glu Ala Leu Ser Asn Gly Lys Tyr Lys Ser Ile Trp His Arg 260 265 270 Ala Ile Val Asn Ser Asp Lys Ala Arg Met Ser Val Ala Ser Phe Leu 275 280 285 Cys Pro Asn Asp Cys Ser Ile Ile Ser Ala Pro Lys Thr Leu Thr Glu 290 295 300 Asp Gly Ser Ser Ala Ile Tyr Arg His Phe Thr Tyr Ala Glu Tyr Tyr 305 310 315 320 Glu Lys Phe Trp Ser Arg Asn Leu Asp Gln Glu Tyr Cys Leu Glu Leu 325 330 335 Phe Lys Asn Asp Gly Thr 340 79336PRTSorghum bicolor 79Met Ala Glu Gln Leu Leu Ser Thr Ala Val His Asp Thr Leu Pro Gly 1 5 10 15 Ser Tyr Val Arg Pro Glu Ser Gln Arg Pro Arg Leu Ala Glu Val Val 20 25 30 Thr Gly Ala Arg Ile Pro Val Val Asp Leu Gly Ser Pro Asp Arg Ala 35 40 45 Ala Val Val Ala Ala Ile Gly Asp Ala Cys Arg Ser His Gly Phe Phe 50 55 60 Gln Val Leu Asn His Gly Val His Ala Asp Leu Val Ala Ala Val Met 65 70 75 80 Ala Val Gly Arg Ala Phe Phe Arg Leu Ser Pro Glu Glu Lys Ala Lys 85 90 95 Leu Tyr Ser Asp Asp Pro Ala Arg Lys Ile Arg Leu Ser Thr Ser Phe 100 105 110 Asn Val Arg Lys Glu Thr Val His Asn Trp Arg Asp Tyr Leu Arg Leu 115 120 125 His Cys His Pro Leu Asp Glu Phe Val Pro Asp Trp Pro Ser Asn Pro 130 135 140 Pro Asp Phe Lys Asp Thr Met Ser Thr Tyr Cys Lys Glu Val Arg Glu 145 150 155 160 Leu Gly Phe Arg Leu Tyr Ala Ala Ile Ser Glu Ser Leu Gly Leu Glu 165 170 175 Ala Ser Tyr Met Lys Glu Thr Leu Gly Glu Gln Glu Gln His Met Ala 180 185 190 Val Asn Phe Tyr Pro Pro Cys Pro Glu Pro Glu Leu Thr Tyr Gly Leu 195 200 205 Pro Ala His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Met Asp Gln 210 215 220 Asp Val Ala Gly Leu Gln Val Leu His Gly Gly Lys Trp Val Ala Val 225 230 235 240 Asn Pro Gln Pro Gly Ala Leu Ile Ile Asn Ile Gly Asp Gln Leu Gln 245 250 255 Ala Leu Ser Asn Gly Gln Tyr Arg Ser Val Trp His Arg Ala Val Val 260 265 270 Asn Ser Asp Arg Glu Arg Met Ser Val Ala Ser Phe Leu Cys Pro Cys 275 280 285 Asn His Val Val Leu Gly Pro Ala Lys Lys Leu Val Thr Glu Asp Thr 290 295 300 Pro Ala Val Tyr Arg Ser Tyr Thr Tyr Asp Glu Tyr Tyr Lys Lys Phe 305 310 315 320 Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu Leu Phe Arg Thr 325 330 335 801020DNASpinacia oleracea 80atggcaaaca agatattatc caccggaatt ccttacaaaa ccctccccga aagctacatc 60cgacccgaaa atgagaggcc caacttatct caagtctccg attgcgagaa tgtccctgtt 120attgacttgg gtgccaaaga ccgtactcaa acaatccacc aagtcttcaa tgcttgtaaa 180aattacgggt ttttccaggt gattaatcat ggggtgtcaa aggaattagc ggagaagatg 240caaaaggtag ctcgagagtt cttcgatatg tcggttgagg aaaaaatgaa attatatagt 300gacgatccaa ctaaaacact aagattgtct acaagtttta acgttaacaa agaggaagtt 360cataattgga gagattatct taggctccat tgttggcctc ttgagcaata tgtccccgaa 420tggccttcta accccccttc cttcaaggaa atagtgagca agtacataaa agaagttagg 480gaacttggtt tcagagtcca agaactaata tcagagagtt tagggttgga gaaagattac 540ataaagaatg tcctaggaga tcaaggacaa cacatggctc ttaattatta ccctgagtgc 600ccggagccag agatgacata cgggttgccg ggtcatactg accctaatgc ccttaccatc 660cttctccaag acttgcaagt atctggcctt caaattttta aggatggtaa atggcttgct 720gtcaaacctc aacctgatgc ttttgtcatt aacattggtg atcaattgca ggcattaagt 780aacggtatat acaagagtgt atggcacaga gcagttgtga acacagataa gccaagatta 840tcagtagctt cattcctctg ccccgccaat gatgcgttga

taagcgcgcc aacacctctg 900accgccaacg gatcaccggc tgtatataga gactatacgt atcctgagta ctacaagact 960ttctggagta ggaacttgga ccaagagcac tgcttggagc tttttaaaaa ccaaacctag 102081339PRTSpinacia oleracea 81Met Ala Asn Lys Ile Leu Ser Thr Gly Ile Pro Tyr Lys Thr Leu Pro 1 5 10 15 Glu Ser Tyr Ile Arg Pro Glu Asn Glu Arg Pro Asn Leu Ser Gln Val 20 25 30 Ser Asp Cys Glu Asn Val Pro Val Ile Asp Leu Gly Ala Lys Asp Arg 35 40 45 Thr Gln Thr Ile His Gln Val Phe Asn Ala Cys Lys Asn Tyr Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Ser Lys Glu Leu Ala Glu Lys Met 65 70 75 80 Gln Lys Val Ala Arg Glu Phe Phe Asp Met Ser Val Glu Glu Lys Met 85 90 95 Lys Leu Tyr Ser Asp Asp Pro Thr Lys Thr Leu Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Asn Lys Glu Glu Val His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Trp Pro Leu Glu Gln Tyr Val Pro Glu Trp Pro Ser Asn 130 135 140 Pro Pro Ser Phe Lys Glu Ile Val Ser Lys Tyr Ile Lys Glu Val Arg 145 150 155 160 Glu Leu Gly Phe Arg Val Gln Glu Leu Ile Ser Glu Ser Leu Gly Leu 165 170 175 Glu Lys Asp Tyr Ile Lys Asn Val Leu Gly Asp Gln Gly Gln His Met 180 185 190 Ala Leu Asn Tyr Tyr Pro Glu Cys Pro Glu Pro Glu Met Thr Tyr Gly 195 200 205 Leu Pro Gly His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp 210 215 220 Leu Gln Val Ser Gly Leu Gln Ile Phe Lys Asp Gly Lys Trp Leu Ala 225 230 235 240 Val Lys Pro Gln Pro Asp Ala Phe Val Ile Asn Ile Gly Asp Gln Leu 245 250 255 Gln Ala Leu Ser Asn Gly Ile Tyr Lys Ser Val Trp His Arg Ala Val 260 265 270 Val Asn Thr Asp Lys Pro Arg Leu Ser Val Ala Ser Phe Leu Cys Pro 275 280 285 Ala Asn Asp Ala Leu Ile Ser Ala Pro Thr Pro Leu Thr Ala Asn Gly 290 295 300 Ser Pro Ala Val Tyr Arg Asp Tyr Thr Tyr Pro Glu Tyr Tyr Lys Thr 305 310 315 320 Phe Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu Leu Phe Lys 325 330 335 Asn Gln Thr 82338PRTVitis sp. 82Met Glu Ser Lys Val Leu Ser Thr Gly Ile Arg Tyr Leu Thr Leu Pro 1 5 10 15 Gln Ser Tyr Ile Arg Pro Glu Pro Glu Arg Pro Arg Leu Ser Gln Val 20 25 30 Ser Glu Cys Lys His Val Pro Ile Ile Asp Leu Gly Lys Asp Val Asn 35 40 45 Arg Ala Gln Leu Ile Gln His Ile Ala Asp Ala Cys Arg Leu Tyr Gly 50 55 60 Phe Phe Gln Val Ile Asn His Gly Val Ala Ala Glu Met Met Glu Lys 65 70 75 80 Met Leu Glu Val Ala Asp Glu Phe Tyr Arg Leu Pro Val Glu Glu Lys 85 90 95 Met Lys Leu Tyr Ser Asp Asp Pro Thr Lys Thr Met Arg Leu Ser Thr 100 105 110 Ser Phe Asn Val Asn Lys Glu Lys Val His Asn Trp Arg Asp Tyr Leu 115 120 125 Arg Leu His Cys Tyr Pro Leu Asp Gln Tyr Thr Pro Glu Trp Pro Ser 130 135 140 Asn Pro Pro Ser Phe Lys Glu Ile Val Ser Ser Tyr Cys Lys Glu Val 145 150 155 160 Arg Glu Leu Gly Phe Arg Leu Gln Glu Met Ile Ser Glu Ser Leu Gly 165 170 175 Leu Glu Lys Asp His Ile Lys Asn Val Phe Gly Glu Gln Gly Gln His 180 185 190 Met Ala Val Asn Tyr Tyr Pro Pro Cys Pro Gln Pro Glu Leu Thr Tyr 195 200 205 Gly Leu Pro Gly His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln 210 215 220 Asp Leu Arg Val Ala Gly Leu Gln Val Leu Lys Asp Gly Thr Trp Leu 225 230 235 240 Ala Ile Lys Pro His Pro Gly Ala Phe Val Val Asn Ile Gly Asp Gln 245 250 255 Leu Gln Ala Val Ser Asn Gly Lys Tyr Lys Ser Val Trp His Arg Ala 260 265 270 Val Val Asn Ala Glu Ser Glu Arg Leu Ser Val Ala Ser Phe Leu Cys 275 280 285 Pro Cys Asn Asp Ala Val Ile Gly Pro Ala Lys Pro Leu Thr Glu Asp 290 295 300 Gly Ser Ala Pro Ile Tyr Lys Asn Phe Thr Tyr Ala Glu Tyr Tyr Lys 305 310 315 320 Lys Phe Trp Gly Arg Asp Leu Asp Gln Glu His Cys Leu Glu Leu Phe 325 330 335 Lys Asn 83336PRTZea mays 83Met Ala Glu His Leu Leu Ser Thr Ala Val His Asp Thr Leu Pro Gly 1 5 10 15 Ser Tyr Val Arg Pro Glu Pro Glu Arg Pro Arg Leu Ala Glu Val Val 20 25 30 Thr Gly Ala Arg Ile Pro Val Val Asp Leu Gly Ser Pro Asp Arg Gly 35 40 45 Ala Val Val Ala Ala Val Gly Asp Ala Cys Arg Ser His Gly Phe Phe 50 55 60 Gln Val Val Asn His Gly Ile His Ala Ala Leu Val Ala Ala Val Met 65 70 75 80 Ala Ala Gly Arg Gly Phe Phe Arg Leu Pro Pro Glu Glu Lys Ala Lys 85 90 95 Leu Tyr Ser Asp Asp Pro Ala Arg Lys Ile Arg Leu Ser Thr Ser Phe 100 105 110 Asn Val Arg Lys Glu Thr Val His Asn Trp Arg Asp Tyr Leu Arg Leu 115 120 125 His Cys His Pro Leu Asp Glu Phe Leu Pro Asp Trp Pro Ser Asn Pro 130 135 140 Pro Asp Phe Lys Glu Thr Met Gly Thr Tyr Cys Lys Glu Val Arg Glu 145 150 155 160 Leu Gly Phe Arg Leu Tyr Ala Ala Ile Ser Glu Ser Leu Gly Leu Glu 165 170 175 Ala Ser Tyr Met Lys Glu Ala Leu Gly Glu Gln Glu Gln His Met Ala 180 185 190 Val Asn Phe Tyr Pro Pro Cys Pro Glu Pro Glu Leu Thr Tyr Gly Leu 195 200 205 Pro Ala His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Met Asp Pro 210 215 220 Asp Val Ala Gly Leu Gln Val Leu His Ala Gly Gln Trp Val Ala Val 225 230 235 240 Asn Pro Gln Pro Gly Ala Leu Ile Ile Asn Ile Gly Asp Gln Leu Gln 245 250 255 Ala Leu Ser Asn Gly Gln Tyr Arg Ser Val Trp His Arg Ala Val Val 260 265 270 Asn Ser Asp Arg Glu Arg Met Ser Val Ala Ser Phe Leu Cys Pro Cys 275 280 285 Asn His Val Val Leu Gly Pro Ala Arg Lys Leu Val Thr Glu Asp Thr 290 295 300 Pro Ala Val Tyr Arg Asn Tyr Thr Tyr Asp Lys Tyr Tyr Ala Lys Phe 305 310 315 320 Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu Leu Phe Arg Thr 325 330 335 84346PRTZingiber officinale 84Met Ala Asp Met Leu Leu Ser Ile Gly Glu His Asp Thr Met Pro Arg 1 5 10 15 Asn Tyr Val Arg Pro Glu Asn Glu Arg Pro His Leu Asp Asn Val Ile 20 25 30 Ala Asp Ala Asn Ile Pro Val Val Asp Phe Gly Ala Pro Asp Lys Ser 35 40 45 Gln Ile Ile Ser Gln Ile Glu Lys Ala Cys Arg Leu Tyr Gly Phe Phe 50 55 60 Gln Val Val Asn His Gly Ile Ala Ala Glu Leu Ile Lys Lys Val Leu 65 70 75 80 Ala Ile Ala Leu Glu Phe Phe Arg Leu Pro Gln Glu Glu Lys Ala Lys 85 90 95 Leu Tyr Ser Asp Asp Pro Ala Lys Lys Ile Arg Leu Ser Thr Ser Phe 100 105 110 Asn Val Arg Lys Glu Thr Val His Asn Trp Arg Asp Tyr Leu Arg Leu 115 120 125 His Cys Tyr Pro Leu Glu Glu Phe Ile Pro Asp Trp Pro Ser Asn Pro 130 135 140 Ser Ser Phe Lys Asp Val Phe Gly Ser Tyr Cys Gln Gln Val Arg Lys 145 150 155 160 Leu Gly Phe Arg Ile Leu Gly Ile Ile Ser Leu Ser Leu Gly Leu Glu 165 170 175 Glu Glu Tyr Leu Val Arg Val Leu Gly Glu Gln Glu Gln His Met Ala 180 185 190 Val Asn Tyr Tyr Pro Lys Cys Pro Glu Pro Glu Leu Thr Tyr Gly Leu 195 200 205 Pro Ala His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp Pro 210 215 220 His Val Ser Gly Leu Gln Val His Lys Asp Gly Lys Trp Ile Ala Val 225 230 235 240 Asp Pro Lys Pro Asn Ala Phe Val Ile Asn Ile Gly Asp Gln Leu Gln 245 250 255 Ala Leu Ser Asn Gly Arg Tyr Lys Ser Val Trp His Arg Ala Val Val 260 265 270 Asn Ser Asn Lys Glu Arg Met Ser Val Ala Ser Phe Leu Cys Pro Cys 275 280 285 Asn Ser Val Leu Ile Ser Pro Pro Glu Lys Leu Ile Ala Asp Gly Cys 290 295 300 Pro Ala Val Tyr Arg Ser Tyr Thr Tyr Asp Glu Tyr Tyr Lys Lys Phe 305 310 315 320 Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu Leu Phe Lys Lys 325 330 335 Glu Arg Glu Thr Cys Pro Asp Ala Pro Thr 340 345 8522DNAArtificialforward primer AtDMR6_fw 85caccatggcg gcaaagctga ta 228621DNAArtificialbackward primer AtDMR6UTR_rv 86gacaaacaca aaggccaaag a 218724DNAArtificialforward primer cuc_fw 87caccatgagc agtgtgatgg agat 248820DNAArtificialbackward primer cucUTR_rv 88tgggccaaaa agtttatcca 208927DNAArtificialforward primer spi_fw 89caccatggca aacaagatat tatccac 279022DNAArtificialbackward primer spiUTR_rv 90ttgctgccta caaaagtaca aa 229124DNAArtificialforward primer Lsat_fw 91caccatggcc gcaaaagtca tctc 249222DNAArtificialbackward primer LsatUTR_rv 92catggaaaca catattcctt ca 229328DNAArtificialforward primer Slyc1dmr6_fw 93caccatggaa accaaagtta tttctagc 289420DNAArtificialbackward primer Slyc1dmr6UTR_rv 94gggacatccc tatgaaccaa 20951013DNASolanum lycopersicum 95atggaaacca aagttatttc tagcggaatc aaccactcta ctcttcctca aagttacatc 60cgacccgaat ccgatagacc acgtctatcg gaagtggtcg attgtgaaaa tgttccaata 120attgacttaa gttgcggaga tcaagctcaa ataattcgtc aaattggaga agcttgtcaa 180acttatggtt tctttcaggt aattaatcat ggtgtaccaa aggaagttgt agagaaaatg 240ctaggggtag ctggggaatt tttcaattta ccagtagaag agaaactaaa attatattca 300gatgatcctt caaagaccat gagattatca acaagtttta atgttaaaaa ggagacagtt 360cataattgga gagattatct cagacttcat tgttatcctc tagagaagta tgctcctgaa 420tggccttcta atccatcatc tttcagggaa atcgtgagca gatattgcag ggaaattcgt 480caactcggat ttagattaga agaagccata gcagaaagcc tggggttaga taaagagtgt 540ataaaagatg tattgggtga acaaggacaa catatggcta tcaattatta tcctccttgt 600ccacaaccag aacttactta tgggcttccg gcccatactg atccaaattc acttacaatt 660cttcttcaag acttgcaagt tgcgggtctt caagttctta aagatggcaa atggttagct 720gtaaaacctc aacctgacgc ctttgtcatt aatcttgggg atcaattgca ggcagtaagt 780aacggtaagt acagaagtgt atggcatcga gctattgtga attcagatca agctaggatg 840tcagtggctt cgtttctatg tccgtgtgat agcgcgaaaa tcagtgcacc aaagctgctg 900acagaagatg gatctccagt gatttatcaa gactttacgt atgctgagta ttacaacaag 960ttctggagca ggaatttgga ccagcaacat tgtttggaac ttttcaagaa taa 101396337PRTSolanum lycopersicum 96Met Glu Thr Lys Val Ile Ser Ser Gly Ile Asn His Ser Thr Leu Pro 1 5 10 15 Gln Ser Tyr Ile Arg Pro Glu Ser Asp Arg Pro Arg Leu Ser Glu Val 20 25 30 Val Asp Cys Glu Asn Val Pro Ile Ile Asp Leu Ser Cys Gly Asp Gln 35 40 45 Ala Gln Ile Ile Arg Gln Ile Gly Glu Ala Cys Gln Thr Tyr Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Pro Lys Glu Val Val Glu Lys Met 65 70 75 80 Leu Gly Val Ala Gly Glu Phe Phe Asn Leu Pro Val Glu Glu Lys Leu 85 90 95 Lys Leu Tyr Ser Asp Asp Pro Ser Lys Thr Met Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Lys Lys Glu Thr Val His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Tyr Pro Leu Glu Lys Tyr Ala Pro Glu Trp Pro Ser Asn 130 135 140 Pro Ser Ser Phe Arg Glu Ile Val Ser Arg Tyr Cys Arg Glu Ile Arg 145 150 155 160 Gln Leu Gly Phe Arg Leu Glu Glu Ala Ile Ala Glu Ser Leu Gly Leu 165 170 175 Asp Lys Glu Cys Ile Lys Asp Val Leu Gly Glu Gln Gly Gln His Met 180 185 190 Ala Ile Asn Tyr Tyr Pro Pro Cys Pro Gln Pro Glu Leu Thr Tyr Gly 195 200 205 Leu Pro Ala His Thr Asp Pro Asn Ser Leu Thr Ile Leu Leu Gln Asp 210 215 220 Leu Gln Val Ala Gly Leu Gln Val Leu Lys Asp Gly Lys Trp Leu Ala 225 230 235 240 Val Lys Pro Gln Pro Asp Ala Phe Val Ile Asn Leu Gly Asp Gln Leu 245 250 255 Gln Ala Val Ser Asn Gly Lys Tyr Arg Ser Val Trp His Arg Ala Ile 260 265 270 Val Asn Ser Asp Gln Ala Arg Met Ser Val Ala Ser Phe Leu Cys Pro 275 280 285 Cys Asp Ser Ala Lys Ile Ser Ala Pro Lys Leu Leu Thr Glu Asp Gly 290 295 300 Ser Pro Val Ile Tyr Gln Asp Phe Thr Tyr Ala Glu Tyr Tyr Asn Lys 305 310 315 320 Phe Trp Ser Arg Asn Leu Asp Gln Gln His Cys Leu Glu Leu Phe Lys 325 330 335 Asn 971014DNANicotiana benthamiana 97atggaagcaa aagttctttc cagcggaatc cgccactcta ctatccctca aagttacatc 60cgccctcaat ccgataggcc gcgcctttct gaagttgctg attgtgaaaa cgttccagta 120gttgatatag gttgcggtga tagaaacctt attgttcatc aaattggtga agcctgtcgt 180ctttatggtt ttttccaggt aattaatcat ggtgtaccaa agaatttaat agacgaaatg 240ctagagatag ctggggaatt ttttaggctt ccagttgaag agaagttgaa attgtactca 300gatgacccat cgaagacgat gagattgtcg actagtttta atgtgaaaaa ggagaaggtt 360cacaattgga gagattatct cagacttcat tgttatcctc ttgaaaatta cgctcctgaa 420tggccttcca atccttcctc tttcagggaa atcgtgagca gatattgcat ggaagttcga 480caactcgggt tcagattgca ggaagccata gcagagagcc taggcttaga gaaagagtgt 540ataaaggatg tattgggcga acaaggtcaa cacatggcta tcaatttcta tcctccttgt 600ccacaaccag aactcactta tgggctgcca gcacatactg atccaaatgc ccttacaatt 660cttcttcaag acttagaagt agctggtctt caagttctta aagatggcga atggttggcc 720gtcaagcctc aaccagatgc ctttgtcatt aatcttggtg atcaactgca ggcagtgagt 780aatgggagat acaaaagcgt atggcatcga gctattgtaa attcagacaa agccaggttg 840tcagtggctt cgttcctttg tccgtgcgat agcgcgaaaa tcagtgctcc aaagctcctc 900actgaagatg gatctcctgt catttatcag gactttacct atgctgagta ttacaaaaag 960ttctggagca ggaatttgga ccaggaacat tgtttggaac ttttcaagaa ctaa 101498337PRTNicotiana benthamiana 98Met Glu Ala Lys Val Leu Ser Ser Gly Ile Arg His Ser Thr Ile Pro 1 5 10 15 Gln Ser Tyr Ile Arg Pro Gln Ser Asp Arg Pro Arg Leu Ser Glu Val 20 25 30 Ala Asp Cys Glu Asn Val Pro Val Val Asp Ile Gly Cys Gly Asp Arg 35 40 45 Asn Leu Ile Val His Gln Ile Gly Glu Ala Cys Arg Leu Tyr Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Pro Lys Asn Leu Ile Asp Glu Met 65 70 75 80 Leu Glu Ile Ala Gly Glu Phe Phe Arg Leu Pro Val Glu Glu Lys Leu 85 90

95 Lys Leu Tyr Ser Asp Asp Pro Ser Lys Thr Met Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Lys Lys Glu Lys Val His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Tyr Pro Leu Glu Asn Tyr Ala Pro Glu Trp Pro Ser Asn 130 135 140 Pro Ser Ser Phe Arg Glu Ile Val Ser Arg Tyr Cys Met Glu Val Arg 145 150 155 160 Gln Leu Gly Phe Arg Leu Gln Glu Ala Ile Ala Glu Ser Leu Gly Leu 165 170 175 Glu Lys Glu Cys Ile Lys Asp Val Leu Gly Glu Gln Gly Gln His Met 180 185 190 Ala Ile Asn Phe Tyr Pro Pro Cys Pro Gln Pro Glu Leu Thr Tyr Gly 195 200 205 Leu Pro Ala His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp 210 215 220 Leu Glu Val Ala Gly Leu Gln Val Leu Lys Asp Gly Glu Trp Leu Ala 225 230 235 240 Val Lys Pro Gln Pro Asp Ala Phe Val Ile Asn Leu Gly Asp Gln Leu 245 250 255 Gln Ala Val Ser Asn Gly Arg Tyr Lys Ser Val Trp His Arg Ala Ile 260 265 270 Val Asn Ser Asp Lys Ala Arg Leu Ser Val Ala Ser Phe Leu Cys Pro 275 280 285 Cys Asp Ser Ala Lys Ile Ser Ala Pro Lys Leu Leu Thr Glu Asp Gly 290 295 300 Ser Pro Val Ile Tyr Gln Asp Phe Thr Tyr Ala Glu Tyr Tyr Lys Lys 305 310 315 320 Phe Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu Leu Phe Lys 325 330 335 Asn 991026DNAArabidopsis thaliana 99atggcggcaa agctgatatc caccggtttc cgtcatacta ctttgccgga aaactatgtc 60cggccaatct ccgaccgtcc acgtctctct gaagtctctc aactcgaaga tttccctctc 120atcgatctct cttccactga tcgatctttt ctcatccaac aaatccacca agcttgtgcc 180cgattcggat tttttcaggt cataaatcac ggagttaaca aacaaataat agatgagatg 240gtgagtgttg cgcgtgagtt ctttagcatg tctatggaag aaaaaatgaa gctatattca 300gacgatccaa cgaagacaac aagattatcg acgagcttca atgtgaagaa agaagaagtc 360aacaattgga gagactatct aagactccat tgttatccta tccacaagta tgtcaatgag 420tggccgtcaa accctccttc tttcaaggaa atagtaagta aatacagtag agaagtaaga 480gaagtgggat ttaaaataga ggaattaata tcagagagct taggtttaga aaaagattac 540atgaagaaag tgcttggtga acaaggtcaa cacatggcag tcaactatta tcctccatgt 600cctgaacctg agctcactta cggtttacct gctcataccg acccaaacgc cctaaccatt 660cttcttcaag acactactgt ttgcggtctc cagatcttga tcgacggtca gtggttcgcc 720gttaatccac atcctgatgc ttttgtcatc aacataggtg accagttaca ggcattaagt 780aatggagtat acaaaagtgt ttggcatcgc gctgtaacaa acacagaaaa tccgagacta 840tcggtcgcat cgtttctgtg cccagctgac tgtgctgtca tgagcccggc caagcccttg 900tgggaagctg aggacgatga aacgaaacca gtctacaaag atttcactta tgcagagtat 960tacaagaagt tttggagtag gaatctggac caagaacatt gcctcgagaa ttttctaaac 1020aactaa 1026100341PRTArabidopsis thaliana 100Met Ala Ala Lys Leu Ile Ser Thr Gly Phe Arg His Thr Thr Leu Pro 1 5 10 15 Glu Asn Tyr Val Arg Pro Ile Ser Asp Arg Pro Arg Leu Ser Glu Val 20 25 30 Ser Gln Leu Glu Asp Phe Pro Leu Ile Asp Leu Ser Ser Thr Asp Arg 35 40 45 Ser Phe Leu Ile Gln Gln Ile His Gln Ala Cys Ala Arg Phe Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Asn Lys Gln Ile Ile Asp Glu Met 65 70 75 80 Val Ser Val Ala Arg Glu Phe Phe Ser Met Ser Met Glu Glu Lys Met 85 90 95 Lys Leu Tyr Ser Asp Asp Pro Thr Lys Thr Thr Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Lys Lys Glu Glu Val Asn Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Tyr Pro Ile His Lys Tyr Val Asn Glu Trp Pro Ser Asn 130 135 140 Pro Pro Ser Phe Lys Glu Ile Val Ser Lys Tyr Ser Arg Glu Val Arg 145 150 155 160 Glu Val Gly Phe Lys Ile Glu Glu Leu Ile Ser Glu Ser Leu Gly Leu 165 170 175 Glu Lys Asp Tyr Met Lys Lys Val Leu Gly Glu Gln Gly Gln His Met 180 185 190 Ala Val Asn Tyr Tyr Pro Pro Cys Pro Glu Pro Glu Leu Thr Tyr Gly 195 200 205 Leu Pro Ala His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp 210 215 220 Thr Thr Val Cys Gly Leu Gln Ile Leu Ile Asp Gly Gln Trp Phe Ala 225 230 235 240 Val Asn Pro His Pro Asp Ala Phe Val Ile Asn Ile Gly Asp Gln Leu 245 250 255 Gln Ala Leu Ser Asn Gly Val Tyr Lys Ser Val Trp His Arg Ala Val 260 265 270 Thr Asn Thr Glu Asn Pro Arg Leu Ser Val Ala Ser Phe Leu Cys Pro 275 280 285 Ala Asp Cys Ala Val Met Ser Pro Ala Lys Pro Leu Trp Glu Ala Glu 290 295 300 Asp Asp Glu Thr Lys Pro Val Tyr Lys Asp Phe Thr Tyr Ala Glu Tyr 305 310 315 320 Tyr Lys Lys Phe Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu 325 330 335 Asn Phe Leu Asn Asn 340 1011014DNALactuca sativa 101atggccgcaa aagtcatctc cagtggattc cggtatacta ctctaccgga gagctacgtc 60cgtccggtta acgacagacc taacctatct caagtttccg attgcaacga cgttcctgtt 120attgacatcg gttgtggtga tagacaactc ataagccaac aaattggcga tgcttgtaga 180agatacggtt ttttccaggt gattaatcat ggtgtgcctg atgaaatagt ggagaaaatg 240caacaagtag gtagggagtt tttcctgttg cctgtggaag agaagatgaa gctttactca 300gaggatccat cgaagacgat gaggctatcc accagcttta acgtccaaaa agaacaaatt 360cataactggc gagattatct ccgccttcac tgttatcctc tggatcaata cagtcctgaa 420tggccttcaa atccttctta tttcaaggaa tatgttggta attattgtac agcagtgcga 480aatttaggaa tgagaatatt agaatcaata tcagaaagtt tagggttaca aaaagaagaa 540ataaaaacta tattaggcga tcaaggtcaa cacatggcca tcaaccatta cccagtgtgc 600cctgagcccg agctaaccta cgggctaccc gggcacacag accccaatgc tctcaccatc 660cttctacagg acacactggt ctctggtctt caggttctca aagatggcaa atggttagcc 720gttaaaccac accctaatgc gtttgtaatt aacattggtg atcagttaga ggcggtgagt 780aatggtgaat ataaaagtgt atggcatcga gctgtggtta actcagacaa cccgcgaatg 840tctatagctt cgtttttgtg tccttgtaat gacaccgtta ttagggctcc taaagaaata 900ataaaggaag gatcgaaacc tgttttcaaa gaatttactt atgcagaata ctacgcgaag 960ttttggacaa gaaaccttga tcaagaacat tgcttagaat tcttcaagaa ctag 1014102337PRTLactuca sativa 102Met Ala Ala Lys Val Ile Ser Ser Gly Phe Arg Tyr Thr Thr Leu Pro 1 5 10 15 Glu Ser Tyr Val Arg Pro Val Asn Asp Arg Pro Asn Leu Ser Gln Val 20 25 30 Ser Asp Cys Asn Asp Val Pro Val Ile Asp Ile Gly Cys Gly Asp Arg 35 40 45 Gln Leu Ile Ser Gln Gln Ile Gly Asp Ala Cys Arg Arg Tyr Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Pro Asp Glu Ile Val Glu Lys Met 65 70 75 80 Gln Gln Val Gly Arg Glu Phe Phe Leu Leu Pro Val Glu Glu Lys Met 85 90 95 Lys Leu Tyr Ser Glu Asp Pro Ser Lys Thr Met Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Gln Lys Glu Gln Ile His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Tyr Pro Leu Asp Gln Tyr Ser Pro Glu Trp Pro Ser Asn 130 135 140 Pro Ser Tyr Phe Lys Glu Tyr Val Gly Asn Tyr Cys Thr Ala Val Arg 145 150 155 160 Asn Leu Gly Met Arg Ile Leu Glu Ser Ile Ser Glu Ser Leu Gly Leu 165 170 175 Gln Lys Glu Glu Ile Lys Thr Ile Leu Gly Asp Gln Gly Gln His Met 180 185 190 Ala Ile Asn His Tyr Pro Val Cys Pro Glu Pro Glu Leu Thr Tyr Gly 195 200 205 Leu Pro Gly His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp 210 215 220 Thr Leu Val Ser Gly Leu Gln Val Leu Lys Asp Gly Lys Trp Leu Ala 225 230 235 240 Val Lys Pro His Pro Asn Ala Phe Val Ile Asn Ile Gly Asp Gln Leu 245 250 255 Glu Ala Val Ser Asn Gly Glu Tyr Lys Ser Val Trp His Arg Ala Val 260 265 270 Val Asn Ser Asp Asn Pro Arg Met Ser Ile Ala Ser Phe Leu Cys Pro 275 280 285 Cys Asn Asp Thr Val Ile Arg Ala Pro Lys Glu Ile Ile Lys Glu Gly 290 295 300 Ser Lys Pro Val Phe Lys Glu Phe Thr Tyr Ala Glu Tyr Tyr Ala Lys 305 310 315 320 Phe Trp Thr Arg Asn Leu Asp Gln Glu His Cys Leu Glu Phe Phe Lys 325 330 335 Asn 1031020DNASpinacia oleracea 103atggcaaaca agatattatc caccggaatt ccttacaaaa ccctccccga aagctacatc 60cgacccgaaa atgagaggcc caacttatct caagtctccg attgcgagaa tgtccctgtt 120attgacttgg gtgccaaaga ccgtactcaa acaatccacc aagtcttcaa tgcttgtaaa 180aattacgggt ttttccaggt gattaatcat ggggtgtcaa aggaattagc ggagaagatg 240caaaaggtag ctcgagagtt cttcgatatg tcggttgagg aaaaaatgaa attatatagt 300gacgatccaa ctaaaacact aagattgtct acaagtttta acgttaacaa agaggaagtt 360cataattgga gagattatct taggctccat tgttggcctc ttgagcaata tgtccccgaa 420tggccttcta accccccttc cttcaaggaa atagtgagca agtacataaa agaagttagg 480gaacttggtt tcagagtcca agaactaata tcagagagtt tagggttgga gaaagattac 540ataaagaatg tcctaggaga tcaaggacaa cacatggctc ttaattatta ccctgagtgc 600ccggagccag agatgacata cgggttgccg ggtcatactg accctaatgc ccttaccatc 660cttctccaag acttgcaagt atctggcctt caaattttta aggatggtaa atggcttgct 720gtcaaacctc aacctgatgc ttttgtcatt aacattggtg atcaattgca ggcattaagt 780aacggtatat acaagagtgt atggcacaga gcagttgtga acacagataa gccaagatta 840tcagtagctt cattcctctg ccccgccaat gatgcgttga taagcgcgcc aacacctctg 900accgccaacg gatcaccggc tgtatataga gactatacgt atcctgagta ctacaagact 960ttctggagta ggaacttgga ccaagagcac tgcttggagc tttttaaaaa ccaaacctag 1020104339PRTSpinacia oleracea 104Met Ala Asn Lys Ile Leu Ser Thr Gly Ile Pro Tyr Lys Thr Leu Pro 1 5 10 15 Glu Ser Tyr Ile Arg Pro Glu Asn Glu Arg Pro Asn Leu Ser Gln Val 20 25 30 Ser Asp Cys Glu Asn Val Pro Val Ile Asp Leu Gly Ala Lys Asp Arg 35 40 45 Thr Gln Thr Ile His Gln Val Phe Asn Ala Cys Lys Asn Tyr Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Ser Lys Glu Leu Ala Glu Lys Met 65 70 75 80 Gln Lys Val Ala Arg Glu Phe Phe Asp Met Ser Val Glu Glu Lys Met 85 90 95 Lys Leu Tyr Ser Asp Asp Pro Thr Lys Thr Leu Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Asn Lys Glu Glu Val His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys Trp Pro Leu Glu Gln Tyr Val Pro Glu Trp Pro Ser Asn 130 135 140 Pro Pro Ser Phe Lys Glu Ile Val Ser Lys Tyr Ile Lys Glu Val Arg 145 150 155 160 Glu Leu Gly Phe Arg Val Gln Glu Leu Ile Ser Glu Ser Leu Gly Leu 165 170 175 Glu Lys Asp Tyr Ile Lys Asn Val Leu Gly Asp Gln Gly Gln His Met 180 185 190 Ala Leu Asn Tyr Tyr Pro Glu Cys Pro Glu Pro Glu Met Thr Tyr Gly 195 200 205 Leu Pro Gly His Thr Asp Pro Asn Ala Leu Thr Ile Leu Leu Gln Asp 210 215 220 Leu Gln Val Ser Gly Leu Gln Ile Phe Lys Asp Gly Lys Trp Leu Ala 225 230 235 240 Val Lys Pro Gln Pro Asp Ala Phe Val Ile Asn Ile Gly Asp Gln Leu 245 250 255 Gln Ala Leu Ser Asn Gly Ile Tyr Lys Ser Val Trp His Arg Ala Val 260 265 270 Val Asn Thr Asp Lys Pro Arg Leu Ser Val Ala Ser Phe Leu Cys Pro 275 280 285 Ala Asn Asp Ala Leu Ile Ser Ala Pro Thr Pro Leu Thr Ala Asn Gly 290 295 300 Ser Pro Ala Val Tyr Arg Asp Tyr Thr Tyr Pro Glu Tyr Tyr Lys Thr 305 310 315 320 Phe Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu Leu Phe Lys 325 330 335 Asn Gln Thr 1051029DNACucumis sativus 105atgagcagtg tgatggagat ccaacttttg tgttcagggg gacgtcacga gaagttgcca 60gagaagtatg aacggcctga atcggatagg ccgcggctgt cggaggtgtg ttgttgggac 120aaggttccaa taatcgactt gggatgcgag gagagagaga tgattgtgaa gcaagtggag 180gaggcctgca agtcttacgg ctttttccag gttataaatc atggtgtgag gaaggaattg 240gtggagaaag tgatagaagt tggcaagcag ttctttgagc tgccgatgga ggagaagttg 300aaattttatt cagacgaccc ttccaagacc gtcagactct ccacaagttt caatgtccgg 360aaagagcaat ttcgcaactg gagggattat ctcagactcc attgctatcc tctctccaac 420tacacccccc attggccctc taacccacca tccttcaggg aaatagtgag tagttattgc 480aatgaagtac gaaaagttgg gtacagaata gaggagctaa tatcggagag cttggggctg 540gagaaggaat acataaggaa gaagttgggt gaacaaggtc agcacatggc tataaattat 600tatccgccat gtccccaacc agaactcacc tacgggctcc ctggccatac ggatcccaac 660gcactcacca ttctccttca ggatctccat gtcgccggcc tccaagtcct caaagatgga 720aagtggctag cggtcaaccc ccaccccaat gcctttgtaa tcaatatagg cgaccaattg 780caggcattga gcaatggggt gtacaagagc gtttggcacc gagcggtggt caatgttgat 840aagcccaggc tgtcggtcgc ttcttttctc tgcccttgtg atgacgccct cattactcct 900gcaccgctcc tctcccagcc ttcccccatt tacagacctt tcacctacgc ccagtactac 960aatacttttt ggagcagaaa cttggatcaa caacattgct tggaactatt taaaaaccac 1020cctccttaa 1029106342PRTCucumis sativus 106Met Ser Ser Val Met Glu Ile Gln Leu Leu Cys Ser Gly Gly Arg His 1 5 10 15 Glu Lys Leu Pro Glu Lys Tyr Glu Arg Pro Glu Ser Asp Arg Pro Arg 20 25 30 Leu Ser Glu Val Cys Cys Trp Asp Lys Val Pro Ile Ile Asp Leu Gly 35 40 45 Cys Glu Glu Arg Glu Met Ile Val Lys Gln Val Glu Glu Ala Cys Lys 50 55 60 Ser Tyr Gly Phe Phe Gln Val Ile Asn His Gly Val Arg Lys Glu Leu 65 70 75 80 Val Glu Lys Val Ile Glu Val Gly Lys Gln Phe Phe Glu Leu Pro Met 85 90 95 Glu Glu Lys Leu Lys Phe Tyr Ser Asp Asp Pro Ser Lys Thr Val Arg 100 105 110 Leu Ser Thr Ser Phe Asn Val Arg Lys Glu Gln Phe Arg Asn Trp Arg 115 120 125 Asp Tyr Leu Arg Leu His Cys Tyr Pro Leu Ser Asn Tyr Thr Pro His 130 135 140 Trp Pro Ser Asn Pro Pro Ser Phe Arg Glu Ile Val Ser Ser Tyr Cys 145 150 155 160 Asn Glu Val Arg Lys Val Gly Tyr Arg Ile Glu Glu Leu Ile Ser Glu 165 170 175 Ser Leu Gly Leu Glu Lys Glu Tyr Ile Arg Lys Lys Leu Gly Glu Gln 180 185 190 Gly Gln His Met Ala Ile Asn Tyr Tyr Pro Pro Cys Pro Gln Pro Glu 195 200 205 Leu Thr Tyr Gly Leu Pro Gly His Thr Asp Pro Asn Ala Leu Thr Ile 210 215 220 Leu Leu Gln Asp Leu His Val Ala Gly Leu Gln Val Leu Lys Asp Gly 225 230 235 240 Lys Trp Leu Ala Val Asn Pro His Pro Asn Ala Phe Val Ile Asn Ile 245 250 255 Gly Asp Gln Leu Gln Ala Leu Ser Asn Gly Val Tyr Lys Ser Val Trp 260 265 270 His Arg Ala Val Val Asn Val Asp Lys Pro Arg Leu Ser Val Ala Ser 275 280 285 Phe Leu Cys Pro Cys Asp Asp Ala Leu Ile Thr Pro Ala Pro Leu Leu 290 295 300 Ser Gln Pro Ser Pro Ile Tyr Arg Pro Phe Thr Tyr Ala Gln Tyr Tyr 305 310 315 320 Asn Thr Phe Trp Ser Arg Asn Leu Asp Gln Gln His Cys Leu Glu Leu 325 330 335 Phe Lys Asn His Pro Pro 340 1073003DNAArabidopsis thaliana 107catttttcta taaatccaaa ctaacatcta ctttctttaa atctataacc ctaaacactt 60ttttaaactc aaaccgatat ataattttgt ttaattttaa atctaaactc tagtgactta 120tttataaacc caaacctaaa aataatttcg

ttttattgta aatttaaact ctaatttata 180tttataaatc taaactgact tataattttg tttaattgta aaatctaaat tttaaatata 240attaatcttg tttaattaaa agtatacaga tttgttattt tagtttatta tataatatga 300tataataact agtttaaatt aaaagtaaga gtttattctt agaggtaaat gcaagtattg 360tccgaaaaaa caaatctaat tcaagtagtg tccgaaaaaa aattctaact agtttgatag 420ttaaaatttt gatttaaaaa aggaaaaaaa tcaaacaaga tattaattag aagtgtgaga 480cacggcacaa gagtcacatg agtgtacgta cttatcaaga ttgactctgt ctgagtctga 540agtcccaaac catgatggca ccacttccac atacgatcgt gccccgtatt ttggatagaa 600tacggacagt ggttttcgtt tggacacgtg tcctgcttta tctcttcgtc gccccaaaaa 660ataccacaat gtcttatctc aaccacacgt gttctgctta tcccaacctc acaatttgta 720ccaaaataca cactttgcat ggaagatttt ctaattatac aactcacatt attcgaattt 780aaatttcgat tttttagttt caagaaaatc attctttgat gggtacttgt cttatttaac 840aggttgtata cttgtattca ttgttctgcc aaatgaaaat aaaaatgaaa atgatgttca 900ttgtttaata aaagtactaa gataacaatc acgacaaatt tctgtctagt tcattaaata 960tttaatcaaa ctctaaacga ttttcaaaca atttttataa ttcaaaaaat aagttacata 1020tctttgttta acataatata ataaaaataa catgaataaa ttattttaac ataaaaaatt 1080cagtttttca aaaataagtt tagaagttta cgttctaaaa taaggtaaaa tatgaatgct 1140gttttaagac gcaatctaga taattttttt taataaaaac cgagatacat ttaaatctat 1200ctaaataact tataactacc taattgttac ataatctacc aatttaactc tatgtaaaat 1260aaaactgatt ttagtaacat ttaagcagta cgagaatgct agcgcctaat taaacgatct 1320tctaatccac tttcttgaat atttgtttta actaaatcta aacaaaaata tagttatata 1380accacaaata ttaatgaaat ttaaacttat agtaactgaa atacccaaaa ctaaaaaaaa 1440aaaccaaaat tataataatt ataaataaga agatattagt ttatgtttac aatcgaaata 1500atcaaataaa tgattgtctt tatttaggac tacgatcaag aaccgaatgg gcttttccaa 1560accaaaccga gatttgaatt ttatggtgcg gattcggtta actggagaat agctatcaac 1620aacaatttaa aatagattta gctagatcgg tttggttcgg ttcgttttgt attctctgtc 1680actcctcaca atcgcttata ttttatattg tatgtttaaa agtcaacatc gaaatattgt 1740acgttagtat gtcacttatg ataatgttta ttcgtaaaca caatttgaaa aggtcaaaga 1800aagaggaaag atagttaatc aagcccttgt tgtcaaaaat aattatttta tttactgtca 1860tcgtaatgtt tatcaatgca gttattaatc tcattttttt ctcttccgaa gtcgacgaac 1920aataaaaaaa accaatctca ttcgaagtac ttattactga tatgatgctg agctgacaca 1980gtcgtaagcc ttggacaaca atcattcatg acgtcactgc tgtgacgcta gaatgatgac 2040attatatcaa tgtttttttg tctgaatttt gttatggtaa aaataatgaa aatgtagagc 2100ttgagtattt tgattttcgt tttattgtaa actagctgaa tctgaatctt gagcagttaa 2160ttaatttcgt aatttattaa ttctattctg actttttaaa atataatata tattaacttt 2220ggtagatgct taaggtaatt cttttttaat aaataagatg gttagagtat cttaaagtta 2280gcttataaga aaatcggaaa aattactttt ggtgggttaa ttgtttctgt ttgaagtaat 2340gtgtgtagat ttttcttatg aatttagatt aaaaactatt tgtttttcag atgttttaag 2400aaaaaaattg tcattcatag cttgtccatt cttacatacc ttaataagaa aaattataaa 2460gttttgtgga ttcacggaag ctaatctagg ttatgtattt gcccaaaaaa taatctaggt 2520tttgttatgg aattaagaag gaaaaaaaaa ttgagataaa tagtatataa aaacaattta 2580aactaagtat tattagctta attgataaag attttaggtg aaacttaaaa atagttggtt 2640aaagagatta caaacattaa ccaaattaac caagaacctc ctagtattta aaaaaaacac 2700ttaaaaatat ccaaacattt aattttttaa tcataaatct tataaaaccc acagctgtcc 2760tttcgaaaat ccactatatt cggtggatta agaattaaaa atcattcgaa taatatgcat 2820acttatataa caaaaacaat tcacttgaaa acataatcaa ttgagagtag gaccgagtaa 2880cactgcattg ttttatatat atcatcgatg cacatcgcat acataatata ctcaaagtcg 2940agccttcctt cctttatctc ttataccctt tttgattctt cttcaatttt ctgacatcaa 3000atg 300310824DNAArtificial SequenceLP primer 108caggtttatg gcatatctca cgtc 2410924DNAArtificial SequenceT-DNA right border primer 109tgataccaga cgttgcccgc ataa 2411025DNAArtificial SequenceRB4 primer 110tcacgggttg gggtttctac aggac 2511124DNAArtificial SequenceLP or RP primer 111atgtccaagt ccaatagcca caag 24112337PRTSolanum tuberosum 112Met Glu Thr Lys Val Ile Ser Ser Gly Ile His His Ser Thr Leu Pro 1 5 10 15 Gln Ser Tyr Ile Arg Pro Glu Ser Asp Arg Pro Arg Leu Ser Asp Val 20 25 30 Val Asp Cys Glu Asn Val Pro Ile Ile Asp Leu Gly Cys Gly Asp Gln 35 40 45 Ala Gln Ile Ile Arg Leu Ile Gly Glu Ala Cys Gln Thr Tyr Gly Phe 50 55 60 Phe Gln Val Ile Asn His Gly Val Pro Lys Glu Val Val Glu Lys Met 65 70 75 80 Leu Gly Val Ala Gly Glu Phe Phe Asn Leu Pro Val Glu Glu Lys Leu 85 90 95 Lys Leu Tyr Ser Asp Asp Pro Ser Lys Thr Met Arg Leu Ser Thr Ser 100 105 110 Phe Asn Val Lys Lys Glu Thr Val His Asn Trp Arg Asp Tyr Leu Arg 115 120 125 Leu His Cys His Pro Leu Glu Lys Tyr Ala Pro Glu Trp Pro Ser Asn 130 135 140 Pro Ser Ser Phe Arg Asp Ile Val Ser Arg Tyr Cys Thr Glu Val Arg 145 150 155 160 Gln Leu Gly Phe Arg Leu Glu Glu Ala Ile Ala Glu Ser Leu Gly Leu 165 170 175 Glu Lys Glu Cys Ile Lys Asp Val Leu Gly Glu Gln Gly Gln His Met 180 185 190 Ala Ile Asn Phe Tyr Pro Pro Cys Pro Gln Pro Glu Leu Thr Tyr Gly 195 200 205 Leu Pro Ala His Thr Asp Pro Asn Ser Leu Thr Ile Leu Leu Gln Asp 210 215 220 Leu Gln Val Ser Gly Leu Gln Val Leu Lys Asp Gly Lys Trp Leu Ala 225 230 235 240 Val Lys Pro Gln Pro Asp Ala Phe Val Ile Asn Leu Gly Asp Gln Leu 245 250 255 Gln Ala Val Ser Asn Gly Lys Tyr Lys Ser Val Trp His Arg Ala Ile 260 265 270 Val Asn Ser Asp Gln Ala Arg Met Ser Val Ala Ser Phe Leu Cys Pro 275 280 285 Cys Asp Ser Ala Lys Ile Ser Ala Pro Lys Leu Leu Thr Glu Asp Gly 290 295 300 Ser Pro Val Ile Tyr Gln Asp Phe Thr Tyr Ala Glu Tyr Tyr Lys Lys 305 310 315 320 Phe Trp Ser Arg Asn Leu Asp Gln Glu His Cys Leu Glu Leu Phe Lys 325 330 335 Asn 1131014DNASolanum tuberosum 113atggaaacga aagttatttc cagcggaatc caccactcta ctctccctca aagttacatc 60cgacccgaat ccgataggcc acgtctatcg gatgtggtcg attgcgaaaa tgttccaata 120attgacttag gttgcggaga ccaagctcaa ataatccgtc taattggaga agcttgtcaa 180acttatggtt tctttcaggt aattaatcat ggtgtaccaa aggaagttgt agagaaaatg 240ctaggggtag ctggggaatt tttcaatcta ccagtagaag agaagctaaa attgtattca 300gatgatcctt caaagaccat gagattatct actagtttta atgttaaaaa ggagacagtt 360cataattgga gagattatct cagacttcat tgtcatcctc tggagaaata tgctcctgaa 420tggccttcta atccatcgtc tttcagggat atcgtgagca gatattgcac ggaagttcga 480caactcggat ttagattgga ggaagccata gcagagagcc tgggcttaga gaaagagtgt 540attaaagatg tattgggaga acaaggccaa catatggcta tcaattttta tcctccttgt 600ccacaaccag aactcacata tgggcttccg gcccatactg atccaaattc acttacaatt 660cttcttcaag acttgcaagt ttctggtctt caagttctta aagatggtaa atggttggct 720gtcaaacctc aaccagatgc ctttgtcatt aatcttggtg atcaattgca ggcagtaagt 780aacggtaagt acaaaagtgt atggcatcga gctattgtga attcagatca agctaggatg 840tcagtggctt cgttcctatg tccgtgcgat agcgcgaaaa tcagtgctcc aaaactcctg 900acagaagatg gatctccagt catttatcag gacttcacgt atgctgagta ttacaagaag 960ttctggagca ggaatttgga ccaggaacat tgtttggaac ttttcaagaa ttaa 1014114342PRTSolanum tuberosum 114Met Glu Thr Thr Ser Val Leu Ser Gly Gly Phe Asn His Ser Thr Leu 1 5 10 15 Pro Glu Ser Tyr Val Arg Pro Glu Ser Gln Arg Pro Arg Met Ser Glu 20 25 30 Val Val Asp Arg Asp Asp Leu Val Pro Val Ile Asp Met Ser Cys Thr 35 40 45 Asp Arg Asn Val Ile Val His Gln Ile Gly Glu Ala Cys Arg Leu Tyr 50 55 60 Gly Phe Phe Gln Val Ile Asn His Gly Val Ser Lys Lys Val Met Asp 65 70 75 80 Glu Met Leu Gly Val Ala His Glu Phe Phe Lys Leu Pro Val Glu Glu 85 90 95 Lys Met Lys Leu Tyr Ser Asp Asp Pro Ser Lys Thr Met Arg Leu Ser 100 105 110 Thr Ser Phe Asn Val Lys Lys Glu Thr Val His Asn Trp Arg Asp Tyr 115 120 125 Leu Arg Leu His Cys Tyr Pro Leu Asp Lys Tyr Ala Pro Glu Trp Pro 130 135 140 Ser Asn Pro Pro Ser Phe Arg Glu Ile Val Ser Lys Tyr Cys Met Glu 145 150 155 160 Val Arg Gln Val Gly Tyr Arg Leu Glu Glu Ala Ile Ser Glu Ser Leu 165 170 175 Gly Leu Glu Lys Asp Cys Ile Lys Asn Val Leu Gly Glu Gln Gly Gln 180 185 190 His Met Ala Ile Asn Phe Tyr Pro Pro Cys Pro Gln Pro Glu Leu Thr 195 200 205 Tyr Gly Leu Pro Ala His Thr Asp Pro Asn Ala Ile Thr Ile Leu Leu 210 215 220 Gln Asp Leu Gln Val Ala Gly Leu Gln Val Leu Lys Asp Gly Glu Trp 225 230 235 240 Leu Ser Ile Lys Pro Gln Pro Asp Ala Phe Val Ile Asn Leu Gly Asp 245 250 255 Gln Leu Glu Ala Leu Ser Asn Gly Lys Tyr Lys Ser Ile Trp His Arg 260 265 270 Ala Ile Val Asn Ser Asp Lys Ala Arg Met Ser Val Ala Ser Phe Leu 275 280 285 Cys Pro Asn Asp Cys Ser Ile Ile Ser Ala Pro Lys Thr Leu Ile Glu 290 295 300 Asp Gly Ser Ser Ala Ile Tyr Arg Asp Phe Thr Tyr Thr Glu Tyr Tyr 305 310 315 320 Asp Lys Phe Trp Ser Arg Asn Leu Asp Gln Glu Tyr Cys Leu Glu Leu 325 330 335 Phe Lys Asn Asp Gly Thr 340 1151029DNASolanum tuberosum 115atggaaacaa caagtgttct ttccggtgga ttcaaccact caaccctccc tgaatcttac 60gttcgacctg aatcccaaag accccgcatg tctgaagttg ttgatcgtga tgatcttgtt 120ccagttatcg atatgtcttg tactgatagg aacgttatcg ttcatcaaat tggcgaagct 180tgtcgccttt atgggttttt ccaggtgata aatcacggtg tatcaaagaa ggttatggat 240gaaatgttgg gggtagctca tgaatttttt aagcttccag tggaagaaaa gatgaaattg 300tactcagatg atccatcaaa gactatgaga ttatcaacta gttttaatgt taagaaggaa 360actgttcata attggagaga ttatcttagg ctacactgtt atcctttgga caaatatgcc 420cctgaatggc cttctaatcc tccttctttc agggaaatag tgagcaaata ttgcatggaa 480gttagacaag ttggatatag attagaagaa gcaatatcag agagcctagg gctcgagaaa 540gattgtatta aaaatgtgtt gggtgaacaa ggacaacata tggctatcaa tttttatcct 600ccatgtccac aacctgaact aacttatggg ttaccagccc atacagatcc aaatgcaatt 660acaattcttc ttcaagattt gcaagtggct ggccttcaag ttcttaagga tggagaatgg 720ttatctatta aacctcaacc tgatgccttt gtcatcaatc ttggtgatca attggaggca 780ttgagtaatg gaaagtataa aagtatatgg catagagcta ttgtaaattc agataaagca 840aggatgtctg tggcttcttt cctctgtccc aatgattgtt ccattatcag tgctccaaaa 900accttaattg aagatggatc ttcagccatt tatcgagatt tcacttatac tgaatattat 960gacaaatttt ggagcaggaa tttagaccag gaatattgtt tagaactttt caagaacgat 1020ggaacctag 1029

* * * * *

File A Patent Application

  • Protect your idea -- Don't let someone else file first. Learn more.

  • 3 Easy Steps -- Complete Form, application Review, and File. See our process.

  • Attorney Review -- Have your application reviewed by a Patent Attorney. See what's included.